
Juan Qiao,1 Hang Tan,1 Yong Qiu,1,a) and K. Balasubramanian2

1Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
2Department of Mathematics and Computer Science, California State University East Bay, Hayward, California 94542, USA; Chemistry and Material Science Directorate Lawrence Livermore National Laboratory, Livermore, University of California, California 94550, USA; and Glenn T. Seaborg Center, Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720, USA

(Received 22 November 2010; accepted 23 November 2010; published online 12 January 2011)

[doi:10.1063/1.3530285]

The isocontour plots of Figs. 2 and 3 in the original published version of this paper1 correspond to an isocontour value of $|\Psi| = 0.010$ a.u. not 0.025 a.u. The corresponding isocontour plots at $|\Psi| = 0.025$ a.u. are shown here as Fig. 1.

Compared with the published isocontour plots at $|\Psi| = 0.010$ a.u. (Fig. 2 on p. 024719-4 and Fig. 3 on p. 024719-5), it seems that there is a little difference between the electronic structures. However, the related discussion and conclusion based on these electronic structures (the third and fourth paragraph of p. 024719-4) have not affected. In recent years, the isocontour plots are widely used at a value of $|\Psi| = 0.025$ a.u. In this case, the isocontour plots at 0.010 a.u. are better to show the wide spread of the positive charge in the cation. And the isocontour plots at 0.025 a.u. are better to show the high localization of HOMO, LUMO, and the excess electron in the anion. Therefore, the paper’s overall conclusions are unchanged.

FIG. 1. Isocontour plots of HOMO (a) and LUMO (b) and spin-density surfaces of the cation (c) and the anion (d) for the Ga2(saph)2q2 molecule obtained at the ROB3LYP/6–31G(d) level. All the MO surfaces correspond to an isocontour value of $|\Psi| = 0.025$ a.u.

a)Electronic mail: qiuy@mail.tsinghua.edu.cn.