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1 Introduction

Our goal is to estimate the probability that we have a certain number of nodes M in their “active” regions,

so that the network as a whole produces M -dimensional dynamics.

2 Finding average θ boundaries

One way to view the estimation of the probability of a random network having M -dimensional dynamics is

by looking at the parameter-space volumes of the asymptotic saturation regions found in Ref. [1]. The idea

is to find the total volume of the regions in parameter space that produce M active nodes, and divide by

the volume of the whole parameter space (specified by the limiting boundaries placed on each parameter).

This gives the probability that a set of parameters picked randomly from within the limiting boundaries will

produce M active nodes.

The parameter space for CTRNNs consists of N time constants (τi), N biases (θi), N self-weights (Wii),

and N2−N cross-weights (Wij , i 6= j). We will ignore the time constants, since they do not affect saturation

(see [1]). Based on the specific set of θi, Wii, and Wij , we can classify each node as being in one of three

different “regimes”: saturated off, in which case its output is always near 0, regardless of the states of the

other nodes in the circuit; saturated on, in which case its output is always near 1; or active, in which case

the node can actively respond to the input of the other nodes. In the asymptotic saturation approximation,

we assume that a node saturated on (off) always has an output of exactly 1 (0).

With this approximation, given the weights W and the regimes of the other nodes in the network, it is

possible to solve for the boundaries on θ necessary for a given node i to be in one of the three regimes; we

call the lower bound li and the upper bound ui. Since these boundaries will change with the weights, we

can integrate over the weights to obtain “average” boundaries for θi:

〈ui〉 =
1

VT

∫
Wi

[ui]θmax
θmin

(1)

〈li〉 =
1

VT

∫
Wi

[li]θmax
θmin

,
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Saturated Off Active Saturated On
ui IL(wself)−max IM −

∑U
j=1 wj IR(wself)−min IM −

∑U
j=1 wj ∞

li −∞ IL(wself)−max IM −
∑U

j=1 wj IR(wself)−min IM −
∑U

j=1 wj

Table 1: The boundaries on θ for getting different node “regimes,” from [1]. Note that these are written in
an arbitrary form that works due to symmetry in the integrals over Wi.

where Wi represents the N -dimensional range of weights, and VT is the total integration volume

VT = (wself
max − wself

min)(wmax − wmin)N−1. (2)

In this paper, we will write li and ui in a form that uses the symmetry that occurs since we are always

integrating over the same range of W s for each node. These boundaries are shown in Table 1. In the table,

M is the number of active nodes and U is the number of nodes saturated on. The notation IM represents

the input that the node receives from the M other active nodes in the network.1 We have taken symmetry

into account in that the integral will always give the same value for a given N , M , and U — for instance,

we would get the same result whether node 1 is active and node 2 is on or vice versa. Thus we can write the

self-weight as an arbitrary wself, and have U cross-weights that we arbitrarily label from 1 to U .

Notice that, besides ∞ and −∞, there are only two distinct values in the table. We therefore lose no

information if we only calculate the boundaries for the active regime:

〈ui(active)〉 =
1

VT

∫ wself
max

wself
min

∫ wmax

wmin

. . .

∫ wmax

wmin

IR(wself)−
(
min IM +

U∑
j=1

wj

)θmax

θmin

dwself dw1 . . . dwN−1(3)

〈li(active)〉 =
1

VT

∫ wself
max

wself
min

∫ wmax

wmin

. . .

∫ wmax

wmin

IL(wself)−
(
max IM +

U∑
j=1

wj

)θmax

θmin

dwself dw1 . . . dwN−1.

Furthermore, since the probabilities we are interested in will always be written in terms of differences between

the average θ boundaries and θmin and θmax, we can shift all of the average boundaries by a constant amount.

It will be convenient to shift and rescale the average boundaries so they are always between 0 and 1. We

therefore make the following definitions:

NχU
D =

〈ui(active)〉 − θmin

θmax − θmin
, (4)

N χ̄U
D =

〈li(active)〉 − θmin

θmax − θmin
,

where U and D are the number of nodes saturated on and off, respectively, and the number of active nodes

is M = N − U −D.

As an example of the use of these definitions, we can find the probability of the three possible regimes for
1Note that this is a slightly different definition than IN in [1], which indicated N − 1 active nodes.
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a single node, given that there are D total nodes saturated off and U total saturated on:

PU
D (active) = (NχU

D − N χ̄U
D) (5)

PU
D (on) = (1− NχU−1

D ) (6)

PU
D (off) = N χ̄U

D−1. (7)

So, for example, the probability of choosing parameters within RN
N , so that all N nodes are within their

active regions, is2

P (RN
N ) =

[
P 0

0 (active)
]N

=
(
χ0

0 − χ̄0
0

)N
; (8)

The more general case of finding P (RN
M ) involves overlapping regions, and becomes much more complicated;

we will discuss this in Section 3. It is important to note, however, that the calculation of P (RN
M ) also involves

only differences of χ and χ̄; this is ultimately the motivation for defining them.

2.1 Estimating χs

We will now discuss a way to view the calculation of χ and χ̄ in a different way from Eq. (3) and Eq. (4)

that is more amenable to invoking helpful approximations. First, ignoring the effects of the other nodes

(the weights w1 through wN−1), we view the integration in Eq. (3) of the clipped integrand over wself as

defining a two-dimensional area (see Figure 1). We will call the percentage of “filled” area F (or F̄ for the

corresponding integral involving IL)3. Ignoring for the moment the other nodes, we have then

F =
1

AT

∫ wself
max

wself
min

[IR(wself)]
θmax
θmin

dwself, (9)

where we have again factored out the total area AT of the region to get a percentage for F . Now depending

on the other nodes’ weights, we will also need add some value inside the square brackets [see Eq. (3)]. Calling

this number x, we write F as a function of x:

F (x) =
1

AT

∫ wself
max

wself
min

[IR(wself) + x]θmax
θmin

dwself. (10)

We now view the ramaining integrals in Eq. (3) as defining the probability of getting different values for x.

More specifically, we define a normalized distribution ρ(x) such that ∆xρ(x) gives the probability of finding

−(min IM +
∑U

j=1 wj) between x and x + ∆x as the ws range through their different values. With these

2Note that we have dropped the N superscripts, which we will do from now on where N is apparent from the context.
3In the remainder of this section, we will often omit the barred case for simplicity, as it is usually a straightforward

generalization of the unbarred case.
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Figure 1: The function F (x) gives the percentage of the total area that is under the curve θ = IR(wself) + x.
F̄ (x̄) gives the corresponding area under the curve θ = IL(wself) − x̄. This area is represented by the dark
shading, for wself ∈ (−5, 15), θ ∈ (−10, 10), x = 0. The light area plus the dark area corresponds to the
simplified version of F (x) and F̄ (x̄).

definitions, χ can be written rather simply in terms of F and ρ:

NχU
D =

∫
F (x)ρ(x) dx, (11)

or, writing the dependence of F and ρ explicitly,

NχU
D =

∫
F (x, wself

min, wself
max, θmin, θmax) ρ(x,wmin, wmax,M,U) dx. (12)

Unfortunately, there is no way to write an exact formula for either F (x) or ρ(x) that does not itself involve

integration. The key fact, however, is that both F (x) and ρ(x) are well-approximated by simple functions

under many circumstances.

To see this, we will first look at approximations of F (x). This function gives the percentage of the

region (wself
min, wself

max) × (θmin, θmax) that lies under the curve θ = IR(wself) + x. As seen in Figure 1, using

the extended definitions of IL and IR, F and F̄ will generally involve the area under a straight line when

wself < 4, and under a curve when wself > 4. The first approximation we will make is shown as light shading

in Figure 1: we will extend the linear definitions of IL and IR into the region where wself > 4. This turns our

calculation of F (x) into a simple sum of rectangles and triangles of varying sizes. Appendix A gives explicit

formulas for this approximation.

An example of this approximation, compared with the “exact” result obtained numerically from Eq. (10),

is shown in Figure 2. For this set of ranges, the simplified version approximates F (x) quite well. Note, though,

that if we were to choose wself and θ ranges inside which the area between IR and its linearized version is

significant, the approximation would be worse.

A further possible simplification would be to assume F (x) is simply linear in the region where it travels

between zero and one. This will be useful in finding an approximate functional form for χ, but the validity
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Figure 2: Solid curve: The function F (x) for wself ∈ (−5, 15), θ ∈ (−10, 10). F (0) corresponds to the
percentage of darkly shaded area in Figure 1. Dashed curve: An approximation to F (x), corresponding to
the straight line approximation shown in Figure 1. This approximation is defined piecewise, and has parts
that are linear and quadratic in x. Dotted line: A further simplification which takes F (x) to be linear in x
in the middle region.

of the approximation is more questionable. See the dotted lines in Figure 2 for this second approximation

of F (x).

The second half of the problem for approximating χ is to find the probability distribution ρ(x). Recall

that ρ(x) is the probability distribution corresponding to x = (min IM +
∑U

j=1 wj), as each of the weights

range from wmin to wmax. Or, we can think of the problem probabilistically; we are picking M weights from

the given range and computing the minimum of IM , and then adding this to the sum of U weights picked

from the same range.

Suppose first that M = 0, so that we have only U other nodes saturated on. Then we just need the

probability distribution corresponding to the sum of U numbers picked from uniform distributions. For large

U , this approaches a normal distribution with mean µon and variance σ2
on given by

µon = −U

2
(wmax + wmin) (13)

σ2
on =

U

3
wmax

3 − wmin
3

wmax − wmin
− µon

2

U
. (14)

This is what we will use for our approximation of ρ(x) when M = 0.

Now we consider the case where U = 0, but M 6= 0. Then x = min IM . From our probabilistic viewpoint,

this is telling us to first choose M values between wmin and wmax, and then to add up only the negative

values from that set. To see what distribution this corresponds to, first suppose that wmin = −wmax. Then,

with each w that we pick, we have a 50% chance of picking a positive number, which we will ignore, and a

50% chance of getting a negative number, which we will add to the total. Then with each w, we are drawing

from a distribution that we will call ρ1(x), which corresponds to a “half delta function” at zero plus a “half
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Figure 3: Comparison of empirically-generated ρ(x) distributions and the normal distribution approximation
used in this paper, for w ∈ (−10, 10). The left plot is for U = M = 1, and the right plot is for U = M = 3.
The agreement improves as U and M increase. In each case, 106 sets of random ws were generated, and x
was calculated for each to construct a histogram.

uniform distribution” from wmin to zero. Or, if we generalize to let wmin and wmax have any values, then

ρ1(x) =
b

|wmin|
+ (1− b)δ(x), wmin ≤ x ≤ 0, (15)

and ρ1(x) = 0 outside that range. The parameter b is the percentage of the range of w values that is negative,

or (as long as wmin ≤ 0)

b =
−wmin

wmax − wmin
. (16)

In our example where wmin = −wmax, b = 1/2. Now if M is large, the overall distribution ρ(x) [which would

in general be a convolution of M copies of ρ1(x)] also approaches a normal distribution, with mean µactive

and variance σ2
active given by (see appendix?)

µactive = −M b
wmin

2
(17)

σ2
active = M b(4− 3b)

wmin
2

12
. (18)

Finally, we need to combine these two distributions for the case where both U and M may be nonzero.

Our general approximation for ρ(x) will then be a convolution of the two normal distributions we have just

found, which is simply another normal distribution with mean and variance

µ = µon + µactive (19)

σ2 = σ2
on + σ2

active. (20)

Figure 3 compares this normal distribution to the actual ρ(x), calculated by randomly generating many sets

of ws and finding the distribution of x. The approximation is very close to the true distribution for large U
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and M .

With these approximations for F (x) and ρ(x), it is possible to estimate NχU
D using Eq. (11) by doing a

one-dimensional integral over x. This greatly improves the speed with which calculations of P (RN
M ) can be

made.

3 Estimating P (RN
M)

Using Eq. (11), we now have a way of efficiently estimating χ and χ̄, giving us the “average” boundaries in

θ space that can be used to calculate the relative volumes of all the different RN
M regions. While we already

have enough information to begin efficiently estimating the probability of hitting RN
N [using Eq. (8) and our

approximate χ and χ̄], we will now introduce a recursive approach for finding P (RN
M ) for general M .

This problem reduces naturally to finding the probabilities of different numbers of nodes being active

(M), saturated on (U), and saturated off (D). For a given N and M , we want

U + D = N −M, (21)

but there are in general many ways of choosing U and D to get this total. Also, for any particular U and

D, there are many ways of picking which specific nodes are on and off out of the N total. Taking all of this

into account, we can write

P (RN
M ) =

N−M∑
U=0

(
N

U

)(
N − U

D

)
AU

DSU
D, (22)

where AU
D is the probability of having M = N − U −D active nodes when there are U other nodes on and

D nodes off, and SU
D is the probability of having U nodes saturated on and D saturated off.

To find expressions for AU
D and SU

D, we first look back at Eqs. (5)-(7). These give probabilities for the

different regimes of a given node based on the regimes of all the other nodes. Based on these equations, we

would say4

AU
D =

[
PU

D (active)
]M

= (χU
D − χ̄U

D)M , (23)

and for SU
D, we might guess [

PU
D (on)

]U [
PU

D (off)
]D

.

The problem is, this method is picking the set of θis correctly only if all the other nodes are saturated

the way we want them to be. This in general gives a result that is too large. For example, in calculating S4
2 ,

we want 4 nodes saturated on and 2 saturated off. So we pick 4 nodes to have θ such that each is saturated

on, given that 3 others are on and 2 others are off; and we pick 2 nodes to have θ such that each is saturated

off, given that 4 others are on and 1 other is off. But it could happen that we accidentally choose the set of

θs such that a subset of two or more of the nodes are actually active, since all we know for sure is that we
4Again, we are suppressing the N superscript on the χs and χ̄s.
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have chosen things so that no single node can be active by itself.

A key fact, however, is that once a node’s θ is chosen within its active region for some U and D, it always

remains active even if some of the saturated nodes “become” active. So our Eq. (23) is correct as written,

and we just have to worry about correctly calculating SU
D.

One way to calculate SU
D is to first find the probability of choosing all of the θs correctly individually, as

described above, and then subtract the overlapping regions of θ space where some number Ma of the nodes

are actually active.5 We end up with a recursive equation (see Appendix B for a derivation):

SU
D = (1− χU−1

D )U (χ̄U
D−1)

D (24)

−
U+D∑
Ma=2

min (Ma,U)∑
i=max (Ma−D,0)

(
U

i

)(
D

Ma − i

)(
χUa

Da
− χU−1

D

)i (
χ̄U

D−1 − χ̄Ua

Da

)Ma−i

SUa

Da
,

where Ua = U − i, Da = D − (Ma − i). This, combined with Eq. (22), Eq. (23), and the estimates of χ and

χ̄ from the last section, gives a way of calculating P (RN
M ) for any given N , M , and parameter ranges. This

is implemented in the Mathematica notebook.

4 An approximate formula for χ and χ̄

Due to the form of the approximate versions of F (x) and ρ(x) that we use, it is possible to write an

approximate formula for χ that does not involve integration. Here we will write a formula that assumes

F (x) to be purely linear in x (see the dotted line in Figure 2). If we define x1 and x2 as the values of x

between which our approximation to F (x) increases linearly from 0 to 1, then6

NχU
D ≈ 1

2

(
1

x1 − x2

(√
2σ2

π

(
e−

(x2−µ)2

2σ2 − e−
(x1−µ)2

2σ2

)
+ (x1 − µ)

(
erf(

x2 − µ√
2σ2

)− erf(
x1 − µ√

2σ2
)
))

+ 1− erf(
x2 − µ√

2σ2
)

)
,

(25)

with µ and σ given by Eq. (19) and Eq. (20).

A Explicit forms for estimating F (x) and F̄ (x̄)

F (x) ≈ F1(x) + F2(x)
(wself

max − wself
min)(θmax − θmin)

, (26)

5A way of seeing this visually (at least up to N=3) is by looking at the pictures of the asymptotic saturation regions in
Ref. [1]—we can start off with a rectangular region that is too large, and then subtract off the “corners” where there are active
nodes.

6The transcendental function erf is the so-called error function, which shows up because we are integrating normal distribu-
tions.
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where

F1(x) =



0 x ≤ (θmin + 2) + (wself
min − 4),

1
2

(
x− (θmin + 2)− (wself

min − 4)
)2 (θmin + 2) + (wself

min − 4) ≤ x ≤ θmin + 2,

1
2 (wself

min − 4)2 + (wself
max − wself

min)
(
x− (θmin + 2)

)
θmin + 2 ≤ x ≤ θmax + 2,

(wself
max − wself

min)(θmax − θmin) x ≥ θmax + 2

(27)

F2(x) =


0 x ≤ (θmax + 2) + (wself

min − 4),

− 1
2

(
x−

(
(θmax + 2) + (wself

min − 4)
))2

(θmax + 2) + (wself
min − 4) ≤ x ≤ θmax + 2,

0 x ≥ θmax + 2.

(28)

F̄ (x̄) is equal to 1 minus F (x) with all the maxs and mins swapped and the sense of each inequality

flipped.

B Deriving SU
D

Here we derive Eq. (24) for SU
D, the probability of finding U nodes saturated on and D nodes saturated off.

We are assuming that we already know the necessary average θ boundaries (the various χ and χ̄).

As noted in the text, we first assume that every node is in its correct regime, and pick each node’s θ from

the correct range. The corresponding probability is

[
PU

D (on)
]U [

PU
D (off)

]D
,

which we can easily compute using Eq. (6) and Eq. (7). Now we need to subtract regions where this “naive”

approach overlaps with regions with some number of active nodes Ma. We will in general have overlap

contributions from regions with Ma between 2 and U + D (where all the nodes are actually active).

For each Ma, we need to account for all the different ways in which overlapping could occur. First, some

number i of the nodes we picked to be saturated on will actually be active, contributing to Ma. Then the

actual number of nodes saturated on is Ua = U − i. This will happen with a probability given by the range

shared by the ranges that tell us where we’re saturated on and where we’re active in the two cases. Thinking

of each PU
D as specifying a range, we will write the overlap as an intersection of the ranges, so that the

probability of hitting this overlap is [
PU

D (on) ∩ PUa

Da
(active)

]i
.

Next, there must be (Ma − i) active nodes coming from the nodes that we initially picked to be saturated
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off. Analogously, this happens with probability

[
PU

D (off) ∩ PUa

Da
(active)

]Ma−i

.

To account for all the overlap, we must allow i to take on all possible values. With a little thought, we see

that the lowest i could be is Ma −D, unless D > Ma, in which case we start i at zero. The highest it could

be is U , unless U > Ma, in which case it can only go up to Ma.

Then we must also include the probability associated with picking all the rest of the saturated nodes.

This will always overlap completely with our original region (why?), so it is just SUa

Da
. Finally, for each Ma

and i, there are multiple ways to pick the individual nodes that are active, giving us two combinatorial

factors. Putting this all together,

SU
D =

[
PU

D (on)
]U [

PU
D (off)

]D
(29)

−
U+D∑
Ma=2

min (Ma,U)∑
i=max (Ma−D,0)

(
U

i

)(
D

Ma − i

)[
PU

D (on) ∩ PUa

Da
(active)

]i [
PU

D (off) ∩ PUa

Da
(active)

]Ma−i

SUa

Da
,

with Ua = U − i, Da = D − (Ma − i).

To find the intersections of the different ranges, we need to know some relationships among the various

χs and χ̄s. It turns out (explain?) that the following relationships always hold:

χi
j ≥ χi

J , χi
j ≥ χI

j ; (30)

χ̄i
j ≤ χ̄i

J , χ̄i
j ≤ χ̄I

j ; (31)

χ̄i
j ≤ χk

l ; (32)

for any i, j, k, l, I, J where I > i and J > j, and all the relationships are for the same total number of nodes

N .

We make use of these relationships in computing the overlapping regions. For example, in the case of the

“on” overlap range in Eq. (29), we have [using Eq. (5) and Eq. (6)]

PU
D (on) ∩ PUa

Da
(active) =

[
χU−1

D , 1
]
∩
[
χ̄Ua

Da
, χUa

Da

]
. (33)

First, any χ̄ is less than any χ [Eq. (32)], so we know the lower bound of the intersection will be either χU−1
D

or χUa

Da
. Second, we know that no χ is larger than 1, so the upper bound must be one of these same two.

Finally, we know that Da = D − (Ma − i) ≤ D and Ua = U − i ≤ U − 1 in this case (note that if i = 0, we

are not using this part at all). From Eq. (30), then, we see that χU−1
D ≤ χUa

Da
, so we do in general have a

nonzero intersection. We get

PU
D (on) ∩ PUa

Da
(active) =

(
χUa

Da
− χU−1

D

)
. (34)
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Similar logic provides the intersection for the “off” part, and Eq. (29) becomes the final result of Eq. (24):

SU
D = (1− χU−1

D )U (χ̄U
D−1)

D (35)

−
U+D∑
Ma=2

min (Ma,U)∑
i=max (Ma−D,0)

(
U

i

)(
D

Ma − i

)(
χUa

Da
− χU−1

D

)i (
χ̄U

D−1 − χ̄Ua

Da

)Ma−i

SUa

Da
.
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