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ABSTRACT 
In XML Data Integration, data/metadata merging and query processing are indispensable. 
Specifically, merging integrates multiple disparate (heterogeneous and autonomous) input data 
sources together for further usage, while query processing is one main reason why the data need 
to be integrated in the first place. Besides, when supported with appropriate user feedback 
techniques, queries can also provide contexts in which conflicts among the input sources can be 
interpreted and resolved. The flexibility of XML structure provides opportunities for alleviating 
some of the difficulties that other less flexible data types face in the presence of uncertainty; yet, 
this flexibility also introduces new challenges in merging multiple sources and query processing 
over integrated data. In this chapter, we discuss two alternative ways XML data/schema can be 
integrated: conflict-eliminating (where the result is cleaned from any conflicts that the different 
sources might have with each other) and conflict-preserving (where the resulting XML data or 
XML schema captures the alternative interpretations of the data). We also present techniques for 
query processing over integrated, possibly imprecise, XML data, and cover strategies that can be 
used for resolving underlying conflicts. 
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INTRODUCTION 
One of the primary motivations behind the development of eXtensible Markup Language (XML) 
was to create a framework that can support interoperability between businesses and other 
enterprises. In short time, the simplicity and flexibility of XML led to many new applications, 
including peer-to-peer (P2P) applications (Koloniari & Pitoura, 2005; Pankowski, 2008), 
bioinformatics (Achard, Vaysseixm, & Barillot, 2001), and semantic web (Decker et al., 2000). 



As we have seen in Chapter titled “XML Data Integration: Schema Extraction and Mapping”, the 
simple, flexible, and self-describing data representation of XML provides unique opportunities to 
support data integration. On the other hand, these same properties, especially the flexibility of the 
structure of the data and the possibility for each data contributor and user to have their own 
schemas also introduce many new challenges in the integration process. Figure 1 provides an 
overview of the major steps underlying the XML data integration process: 
 
Figure 1. [Overview of the XML data integration process]. (Put ‘Figure 1.tif’ here)  
 

• Schema extraction: A particular challenge introduced by XML is that not all XML data 
come with an associated schema. While this enables the use of XML as a flexible 
messaging and integration medium, when the integration process is schema-aware, it also 
necessitates a process to extract schemas that can be used during integration. 

• Matching and mapping: Finding mappings between data components is a common 
problem in almost all integration domains. XML data can often be represented using trees 
or tree-like graphs (Goldman & Widom, 1997). This impacts solutions for finding 
mappings between XML data. 

• XML data/metadata merging: Once the mappings are discovered, the next step in the 
process is to integrate the XML data or metadata, depending on whether the system is 
operating on data- or schema-level. This is often done through a transform-and-merge 
process. 

• Query processing and conflict resolution: The results of the merge process, however, 
may not always be a valid XML data or schema. In these cases, in order to be able to use 
the resulting merged data in query processing, we either need to apply conflict resolution 
strategies or develop new query processing techniques that can operate on more relaxed 
data structures, such as graphs. 
In fact, conflict resolution process can be integrated with query processing to support an 
incremental approach to cleaning the conflicts: as the user explores the integrated data 
(and conflicts) within the context of her queries, she can provide more informed conflict 
resolution feedback to the system. 

 
 In Chapter “XML Data Integration: Schema Extraction and Mapping” we have discussed the 

first two bullets in detail. In this chapter, we focus on merging and query processing over 
integrated XML data, and cover strategies that can be used for resolving conflicts with the user’s 
help. The running example we use in this chapter is from the same domain (universities and 
research institutes) as Chapter “XML Data Integration: Schema Extraction and Mapping”.  
 
MERGING 
Once the mappings between the sources are discovered through the matching process, the input 
sources can be merged into a logical “global” view for further use in integrated data processing. 
The merge process takes as input (a) a set of sources and (b) the mappings among them, and 
generates an integrated (target) data or schema. 

 
 
 



Handling Conflicts during the Merge Process 
Due to the imperfectness of the matching process and possible incompatibilities among the input 
sources, inputs cannot always be merged perfectly. According to way conflicts are handled, we 
can classify the merge integration algorithms into two broad categories: 
 

• Conflict-elimination strategies: conflicts are resolved during the integration process and 
one unified target schema is generated (Pottinger & Bernstein, 2003). 

• Conflict-preserving strategies: all interpretations of the data are preserved in one unified 
representation (Candan, Cao, Qi, & Sapino, 2008; Qi, Candan, & Sapino, 2007a) and 
conflicts are left to be resolved through user feedback during query processing. 

 
Generalized Mappings 
In this section, we will use a more general form of mappings than the one we have used in 
Chapter titled “XML Data Integration: Schema Extraction and Mapping”. Without loss of 
generality, let us denote each source as a node and edge labeled directed graph, S(V,E), where 
each node, v∈V, corresponds to a labeled element, attribute, or value, and each edge, e∈E 
between two nodes corresponds to a named relationship between the corresponding data 
elements. Given this, a mapping over two sources S1 (V1,E1) and S2 (V2, E2) is a pair M (C, M) 
where 
 

• C (CM, EM) describes any knowledge that is not directly obtainable from the input 
sources, such as elements not covered in either source but needed to properly unify the 
input sources; and 

• each element μ∈M is in the form of 〈Vi, Vj, map_name, τ〉 where Vi ⊆V1∪C.CM, Vj ⊆ 
V2∪C.CM, and map_name denotes the type of the correspondence (e.g. “equality”, 
“subsumption”, or “similarity”) between Vi and Vj, and τ is the confidence value 
associated to this mapping element. 

 
Note that this general mapping definition corresponds to the basic mapping rules defined in 

the previous section when (a) C.CM and C.EM are all empty and (b) for μ∈M, both Vi and Vj 
contain one element respectively and map_name is always “equality”. 

 
Conflict-Elimination Strategies 
In (Pottinger & Bernstein, 2003), Pottinger and Bernstein analyze generic merge requirements for 
schema integration (or merging), including preserving the elements, relationships, constraints, 
and properties. More specifically, they present a Merge operator for schema integration which 
satisfies these requirements.  The operator works for schemas conforming to a general model, 
thus can be adapted to XML schemas as well. The algorithm takes as input two source schemas 
S1, S2, and the mapping M12 between them.  The output is a unified schema S which keeps all the 
elements and relationships in the input models and the input mapping.  

M12 is a general mapping as described above, with some limitations: 
• First, no confidence value is attached to mapping elements. 
• Secondly, Vi and Vj are singleton; i.e., the mapping rules are defined over element pairs. 



• The correspondence types are limited to “equality” and “similarity”.  “Equality” means 
that two elements are semantically equal, whereas, “similarity” denotes that two elements 
are related but not completely equal. 

As discussed in Section “Generalized Mappings”, given a correspondence μ:〈v1,v2〉, both v1 
and v2 do not have to belong to S1 or S2; but they may be some new concept/element defined in 
M12. This is, for instance, very useful in representing a mapping correspondence where an 
element in one schema equals to a combination of several elements in another. As an example, let 
us consider a scenario where a name element in one model refers to two elements firstName and 
lastName in another model. This can be represented using three correspondences μ1:〈c,name〉, 
μ2:〈c1,firstName〉, and μ3:〈c2,lastName〉, where c, c1, and c2 are new elements introduced, such that 
c has parent-child relationships with c1 and c2. 

Given S1, S2, and M12, the outline of the Merge process is as follows: 
1. First, the Merge operator initializes the integrated schema S with an empty schema.  
2. Then, elements are created and added to S. To do this, the elements in S1, S2, and M12 are 

grouped, in such a way that there is one group for each mapping condition μ:〈vi, vj〉.  
3. For each group, a new element is created in S to represent this group of elements. The 

properties of each new element “c” is the union of the properties of the group that c 
represents.  

4. Next, new relationships are inserted into S. Two cases need to be considered in inserting 
relationships between two elements ci and cj in S, where ci and cj represent two distinct 
groups gi and gj, respectively. 

o First case is when gi and gj do not contain elements with “similarity” type of 
correspondence.  In this case, if there is a correspondence μ:〈vi', vj'〉 (vi'∈gi, 
vj'∈gj) of type T and with cardinality l, a new relationship Rel(ci,cj) with the same 
type and same cardinality is created in S for ci and cj.  

o If some elements in gi and gj have “similarity” type correspondence, then a new 
similarity mapping element, c, is created and every mapping relationship 
originating from c is replaced by a “parent-child” relationship.  

 
Figure 2(a). [ (a) Two source schemas and the mapping between them]. (Put ‘Figure 2(a).tif’ here)  
Figure 2(b). [(b)The integrated schema]. (Put ‘Figure 2(b).tif’ here)  
Figure 2. [Example of the Merge process (Pottinger & Bernstein, 2003). Note the edge between 
two elements denotes the parent-child relationship between them. They are implicit in the 
graphs.]. 

 
Figure 2 shows an example execution of the Merge operator. In this example, the element 

‘edu-university’ in Figure 2(b) merges the nodes ‘edu’, ‘university’, and ‘μ0’ in the source 
schemas and the mapping. Similarly, ‘pname’ in Figure 2(b) incorporates the nodes ‘pname’ and 
‘μ3’ in Figure 2(a).  The mapping μ6 is reflected by creating a new node ‘all-bios’ with two 
children in the original schemas. 

Different from (Pottinger & Bernstein, 2003), which eliminates the conflicts and maintains 
only one merged consistent schema, (Chiticariu, Kolaitis, & Popa, 2008) creates multiple such 
schemas while one is to be selected in later stages through user interaction. The algorithm first 
creates a unified representation, where correspondences between elements are represented by 
mapping-edges. In the second phase, for each compatible subset of mapping-edges, a different 



merge result is obtained. To cope with the inherent cost of enumerating different mapping 
strategies, the algorithm uses several heuristics to identify and eliminate redundant strategies. 

 
Conflict-Preserving Strategies 
Attempting to resolve conflicts at the merging time may limit the future usage of data: if only one 
integrated schema is generated by enforcing only some constraints, this integrated target schema 
obviously misses some of the information in the input sources. In contrast, Candan et al. (Candan 
et al., 2008; Qi, Candan, Sapino, & Kintigh, 2006; Qi, Candan, & Sapino, 2007a) propose to 
merge sources (schemas or data instances) by preserving the possible different interpretations in 
the integrated target graph (schema or data instance) and attempt to resolve conflicts only when 
needed (e.g., in query processing).  

A value-null in databases is said to occur when the value cannot be determined for certain. A 
value-null can be of type “existential” (the value exists, but is not known), “maybe” (the value 
may or may not exist), “place holder” (the value is known not to exist, so a dummy symbol is 
used as a place holder), or “partial” (the value is known to be in a given set) (Candan, Grant, & 
Subrahmanian, 1997).  For example, 

• “Node &5's tag can be 4, 6, or 9.” 
is a value null. 
Qi et al. (2006) introduce structure-nulls, which occur when the structural relationship 

between the data nodes cannot be determined in certain. For example,  
• “Node &5 is a child of node &3 or &4”. 
• “Either node &5 or &6 is a child of node &3”. 

are structure nulls. A structure-null can also be of type “existential” (the structural relationship 
exists, but is not known), “maybe” (structural relationship may or may not exist), “place holder” 
(the structural relationship is known not to exist), or “partial” (the structural relationship is 
known to be in a given set of alternatives). An early attempt at modeling semistructured data with 
missing and partial data is presented in (Liu & Ling, 2000); authors use an object-based model, 
where null, or-valued, and partial set objects are used to handle partial and missing knowledge in 
semi-structured data. Although it is richer than standard semistructured data models, such as 
Object Exchange Model (OEM) (Buneman, Fan, & Weinstein, 1999; McHugh, Abiteboul, 
Goldman, & Widom, 1997), and Document Object Model (DOM), this model is more focused on 
value nulls and does not capture inconsistencies and missing knowledge in the structure of the 
data. Qi et al. (2006) present an assertion-based data model, QUEST, that captures both value-
based and structure-based “nulls” in data.  

Candan et al. in (2008) extend this framework to capture more general relationships (e.g., 
WORKS-AT) in addition to XML parent-child relationships. They also extend the assertions with 
trust values describing how trustable each assertion is. The trust value represents the user's source 
preference, assessment of mapping certainty, and the amount of agreement among different 
sources on this assertion. Candan et al. (Candan et al., 2008; Qi, Candan, & Sapino, 2007a) also 
introduce new coordination constructs that represent constraints that the integration process 
imposes on the various source relationships. The six basic constructs introduced in (Candan et al., 
2008; Qi, Candan, & Sapino, 2007a), as part of their FICSR framework, are shown in Figure 3. 
Constructs (a)-(c) coordinate multiple relationships from a single element, while constructs (d)-(f) 
coordinate relationships from multiple elements to a single one.  Candan et al. (2008) also show 
how to combine these constructs to obtain more complex and richer coordination semantics 
among a set of elements. Enriching the integrated graph with these coordination constructs (used 



along with the original source relationships) allows FICSR to preserve the multiple possible 
worlds (i.e., different interpretations) in the integrated graph. Thus, instead of having to enforce 
these constraints during the integration time, FICSR is able to defer the resolution process to a 
later stage in processing. In what follows, we roughly present FICSR's integration process. This 
work differs in several ways from other integration algorithms, which generally take as input only 
the source graphs and a mapping.  FICSR takes as input, in addition to the source graphs, the 
following rules: 

 
Figure 3(a). [(a) Negatively coordinate the destinations of w: either Rel(w,u) or Rel(w,v) holds, 
but not both.]. (Put ‘Figure 3(a).tif’ here)  
Figure 3(b). [(b) Positively coordinate the destinations of w: both Rel(w,u) and Rel(w,v) needs to 
hold.]. (Put ‘Figure 3(b).tif’ here)  
Figure 3(c). [(c) Implication of the destinations of w: if Rel(w,v) holds, then Rel(w,u) must 
hold.]. (Put ‘Figure 3(c).tif’ here)  
Figure 3(d). [(d) Negatively coordinate the sources of w: either Rel(u,w) or Rel(v,w) holds, but 
not both.]. (Put ‘Figure 3(d).tif’ here)  
Figure 3(e). [(e) Positively coordinate the sources of w: both Rel(u,w) and Rel(v,w) holds 
together.]. (Put ‘Figure 3(e).tif’ here)  
Figure 3(f). [(f) Implication of the sources of w: if Rel(v,w) holds, then Rel(u,w) must hold.]. (Put 
‘Figure 3(f).tif’ here)  
 

Figure 3. [Choice and coordination constructs with (a), (b), (c) destination coordination and 
(d), (e), (f) source coordination]. (Adapted from (Candan et al., 2008; Qi, Candan, & Sapino, 
2007a)) 

• mapping rules: FICSR uses a general mapping rule format; each mapping rule μ: 〈Vi, Vj, 
map_name, τ〉 consists of subsets, Vi ⊆ V1 and Vj ⊆ V2, of elements from the sources S1 
and S2, a correspondence name map_name, and a confidence τ.   

• embedding rules: embedding rules of the form ρ:〈c1, c2, rel_name,τ〉 describe how 
elements that do not belong to any of the sources (but might be created during the 
integration process) relate to each other. Here, c1 or c2 can be either an element created 
during the integration process or an element in V1∪V2 (but at least one of them is a new 
element). 

• co-validity rules: co-validity rules of the form γ:〈E,τ〉 represent the inter-dependence of 
various relationships in the source graphs; i.e., the relationships in E either all hold 
together or none holds. 

 
Given mappings and above rules, the merge algorithm integrates the sources by incorporating 

these mappings and rules: 
• For each mapping rule μ:〈Vi,Vj,map_name,τ〉, a new element ck with the name map_name 

is created. Then, each element in Vi, Vj is linked to ck with positively coordinated edges.  
During this process, the edges to ck from the elements in Vi (or Vj) are positively 
coordinated with each other; 

• When incorporating an embedding rule ρ: 〈c1, c2, rel_name, τ〉 into the integrated graph, 
if the relationship rel_name has no arity constraint, an edge with label rel_name is 
created from the concept c1 to c2. Otherwise, the edge may need to be negatively 
coordinated with other edges. For   example, if the edge describes the parent-child 



relationship where an element can have only one parent, the edge from c1 to c2 with label 
“parent” needs to be coordinated with the other edges coming out of c1 and going to other 
concepts. 

• To incorporate a co-validity rule of the form γ:〈E,τ〉, all the maximal subsets E' ⊆ E with 
the same source and destinations are detected and all these subsets are positively 
coordinated.  The remaining co-validity requirements are recorded as integrity constraints 
to be enforced separately. 

 
We use Figure 4 as an example to illustrate the integration algorithm. 
Let us consider the following integration rules: 
• mapping rules:  

    μ1: 〈{lname, fname}, {pname}, president-name,∞〉 
    μ2: 〈{edu}, {university}, edu(university), ∞〉 
    μ3: 〈{name}, {name}, uni-name, ∞〉 
• embedding rules:  

    ρ1: 〈president-name, president, parent-child, ∞〉 
    ρ2: 〈president-name, university, parent-child, 1〉 
    ρ3: 〈uni-name, edu(university), parent-child, 1〉 
• no co-validity rules. 

While incorporating the three mapping rules, FICSR introduces positive coordinate constructs 
to connect the source elements to the new concepts. 

For example, for μ1, before coordinating the elements in {lname,fname} {pname}, they are 
first positively coordinated among themselves.  For the embedding rules, FICSR incorporates 
three corresponding edges in the graph (from president-name to president, from president-name 
to university, from uni-name to edu(university)). 

Figure 4(c) shows the full integrated graph. 
Note that in the resulting graph, potential conflicts among the input schemas have not been 

resolved; the identification and resolution of any such conflict is deferred to query processing 
phase. 

 
Figure 4(a). [(a) First source graph]. (Put ‘Figure 4(a).tif’ here)  
Figure 4(b). [(b) Second source graph]. (Put ‘Figure 4(b).tif’ here)  
Figure 4(c). [(c) Integrated full graph]. (Put ‘Figure 4(c).tif’ here)  

Figure 4. [Example of the FICSR integration process]. 
  
While, FICSR data model can capture more general relationships, rich conflicts, and 

coordination semantics, Kimelfeld & Sagiv (2008) focus on tree structured data. In particular, 
(Kimelfeld & Sagiv, 2008) introduces probabilistic XML data representation, where XML data 
are represented in the form of tree structures composed of two types of nodes: ordinary nodes and 
distributional nodes. Ordinary nodes follow the definition of nodes in the traditional XML model; 
distributional nodes, however, specify the probabilistic process of generating a random document. 
Depending upon the semantics indicated by its distribution, a distributional node can be one of 
the following five types (Kimelfeld & Sagiv, 2008): 

• ind - the probability of choosing one of its children is independent of that of choosing 
any other; 

• det - all of its children are deterministically chosen; 



• mux - the probabilities of choosing different children are mutually exclusive; 
• exp - the probability of choosing any of its children is explicitly given; 
• cie - the probability of choosing a child is determined by the conjunction of a set of 

independent random Boolean variables, called events. 
 
Kimelfeld  et al. (2008) classify probabilistic XML models based on the types of distributional 

nodes they contain. For instance, PrXML{ind} represents probabilistic XML models which use only 
ind distributional nodes.  An example of PrXML{ind,mux} is shown in Figure 5. There are three 
distributional nodes: two of them are of type ind and the third is of type mux. Note that, since 
they are exclusive with each other, the sum of the probabilities of the two choices under the third 
distributional node is 1.0. 
 
Figure 5. [An Example of Probabilistic XML Document]. (Put ‘Figure 5.tif’ here)  
 
 
QUERY PROCESSING 
Query processing over integrated XML data shares many of the key difficulties, which other 
types of integrated data also pose. For instance, often some form of XML query reformulation is 
necessary in order to process queries over local data sources. Similarly, when data sources in the 
XML integration system are autonomous, query processing (even routing (Zhuge, Liu, Feng, & 
He, 2004)) needs to be performed without the support of a central mechanism, completely 
through peer-to-peer interaction. Since uncertainty and imperfections can be introduced during 
source matching and merging, special mechanisms that can handle inconsistency during query 
processing may be needed. While the special, relatively more flexible structure of XML provides 
opportunities for alleviating some of the difficulties that other less flexible data types face during 
integration, it also poses new challenges in that existing XML query processing techniques are 
often not directly applicable. 

 As in any integration system, there are two major ways to execute an XML query over data 
that initially exist in different sources. The first approach is to reformulate the query for each 
source, execute them independently at these sources, collect results, and integrate these results 
into a single unified answer. The second approach is to use mappings discovered in the previous 
steps to integrate the data in a common form and process the query over this integrated data. In 
this chapter, we discuss both of these two approaches. But, first we provide a brief overview of 
how queries over XML data are formulated. In Section “XML Query Processing with Local 
Sources”, we discuss major approaches to XML query processing across local sources. Then, in 
Section “Query Processing over uncertain XML data” we discuss challenges associated to query 
processing with uncertain data due to imprecise integration.  
 
Querying XML Data 
XPath (1999) and XQuery (2006), two popular query languages for querying XML documents, 
rely on path expressions -- which express the desired characteristics of the paths on the 
underlying data graph -- as building blocks. These path expressions combine requirements about 
values (such as the element tags of an XML document) with requirements about the structural 
organization of the elements of interest. Path expressions of type, {/,//,*}P , are composed of query 
steps, each consisting of an axis (parent/child “/” or ancestor/descendant “//”) test between data 



elements and a label test (including “*” wildcard which can match any element or tag). Often, 
multiple path expressions are combined into twigs (i.e., tree patterns (Amer-Yahia, Cho, 
Lakshmanan, & Srivastava, 2001; Jagadish et al., 2002)) by using path expressions of type 

{[],/,//,*}P , where “ [] ” denotes any predicate including sub-path expressions; as illustrated in 
Figure 6), such tree patterns can be visualized as trees, where nodes correspond to tag-predicates 
and edges correspond to a parent-child or ancestor-descendant axis. Thus, a twig query, q , can be 
represented in the form of a node- and edge-labeled tree, ( , )q q qT V E . The query q  may be 
attached with tag and edge predicates tag_pred(qv) and axis_pred(qe), where tag_pred(qv) 
denotes the tag predicate corresponding to the vertex qqv V∈  and axis_pred(qe) denotes the axis 

predicate associated with the edge qqe E∈ . An answer to q over data graph G  is a pair, 

,node edger μ μ= , of mappings: 

 
• nodeμ  is a mapping from the nodes of the query tree to the nodes of the data graph, such 

that given qqv V∈ and the corresponding data node, ( )node qvμ , ( ( ))nodetag qvμ  
satisfies tag_pred(qv). 

• edgeμ  is a mapping from the edges of the query tree to simple paths in the data graph, 

such that given ,i j qqe qv qv E= ∈ , the path qeμ , from ( )node iqvμ to ( )node jqvμ , 

satisfies axis_pred(qe). Note that a path consisting of a single edge can satisfy both 
parent-child and ancestor-descendant axis, while a multi-edge path can satisfy only 
ancestor-descendant axis. 

 In XPath semantics, for each result instance, ,node edger μ μ= , only the matches for the right 

most query element are included in the final result (e.g., for the query shown in Figure 6, only the 
matches for the query element, “grant”, are returned). 
 
Figure 6. [An example query twig]. (Put ‘Figure 6.tif’ here)  
 
XML Query Processing with Local Sources 
In this section, we first discuss major alternatives for XML query processing across local sources. 
We also present techniques used for XML query reformulation as well as source selection and 
query routing. 
 
Alternative Architectures for Query Processing with Local Sources  
Broadly speaking, there are two alternative architectures for query processing over local sources: 
the architecture shown in Figure 7(a) makes use of a global (and integrated) XML schema for 
query reformulation, while the alternative in Figure 7(b) rewrites queries purely, based on peer-
to-peer mappings (Cruz, Xiao, & Hsu, 2004; Lenzerini, 2004; McBrien & Poulovassilis, 2003). 
 

• Query processing with global schema.  The process of query processing with a global 
schema is illustrated in Figure 7(a). Through a unique interface, or application, an initial 
query, usually in the form of XPath or XQuery, is constructed on the basis of the global 
schema (obtained through a priori schema matching and merging). This initial query is 
reformulated according to the correspondences between the global schema and local 



schemas. Note that, due to the flexibilities afforded by XML, local schema is often 
described in XML (through schema extraction in Chapter “XML Data Integration: 
Schema Extraction and Mapping”) even for non-XML data sources. Next, a source 
selection manager helps identify the data sources over which the reformulated query 
should be processed. Query optimization and query execution will be performed locally 
on the selected data sources.  Finally, all results are collected from local data sources and 
combined.  Systems exploiting this architecture include MARS (Deutsch & Tannen, 
2003a), PEPSINT (Cruz et al., 2004), and Agora (Manolescu, Florescu, Kossmann, 
Xhumari, & Olteanu, 2000). 

• Query processing through peer-to-peer interactions. In the peer-to-peer integration 
approach to XML query processing, mapping rules are created between local schemas 
using the techniques presented in Chapter “XML Data Integration: Schema Extraction 
and Mapping”, but a global schema does not exist (Figure 7(b)). Again, the local schema 
is represented in XML. Therefore, the initial query is in the form of XPath or XQuery, 
described in terms of its corresponding (target) schema. A source selection manager 
helps identify the peers (sources) on which the remote query processing should be made. 
Then, according to mapping rules between target and sources, the initial query is 
translated into the query formulated in terms of the various source schemas. Systems that 
follow this approach include Piazza (A. Y. Halevy, Ives, Suciu, & Tatarinov, 2003; A. Y. 
Halevy et al., 2004), HePToX (Bonifati, Chang, Ho, Lakshmanan, & Pottinger, 2005), 
and SixP2P (Pankowski, 2008). 
 

 Query processing in a peer-to-peer setting can be treated as a special case of processing with 
global schema, if we think of the target schema as the global schema to which all other local 
(source) schemas are mapped. This, however, requires 2( )NΟ  source-to-target mappings, where 
N  is the number of peers, against ( )NΟ  for the case of the former approach. The advantage of 
the peer-to-peer setting, however, is that (unlike the global schema which may be overly lossy to 
accommodate all source schemas) the query reformulations may be more precise since it 
leverages pairwise mappings between peers. 
 
Figure 7(a). [Integration with a Global Schema]. (Put ‘Figure 7(a).tif’ here)  
Figure 7(b). [Peer-to-Peer Integration]. (Put ‘Figure 7(b).tif’ here)  
Figure 7. [Alternative architectures of query processing with local sources ]. 
 
XML Query Reformulation 
In order to process a user's query over local sources, we need to reformulate this query into 
queries which can be understood by individual data sources: Given a source schema SS, target 
schema St, a set of mapping rules, M, between SS and St, and a query qt which is defined in terms 
of St, the goal of query reformulation is to find a query qs formulated in terms of SS such that it is 
equivalent to qt according to M. Within the context of XML query processing, the initial query qt, 
can be in the form of a tree pattern (Arion, Benzaken, & Manolescu, 2007; Calvanese, Giacomo, 
Lenzerini, & Vardi, 1999; Gao, Wang, & Yang, 2007; Gu, Xu, & Chen, 2008; Lakshmanan, 
Wang, & Zhao, 2006; Xu & Özsoyoglu, 2005), XPath (Afrati et al., 2009; Balmin, Özcan, Beyer, 
Cochrane, & Pirahesh, 2004; Cautis, Deutsch, & Onose, 2008; Tang, Yu, Özsu, Choi, & Wong, 
2008), or XQuery (Deutsch & Tannen, 2003b; Lenzerini, 2002; Onose, Deutsch, 



Papakonstantinou, & Curtmola, 2006) statement. Query rewriting schemes differ from each other 
based on the underlying restrictions on schemas, summaries, and other applicable constraints 
(such as conjunctive queries only) (Arion et al., 2007; Deutsch & Tannen, 2003b; Lakshmanan et 
al., 2006). Most generally, we can classify approaches into two major classes based on the way 
the mapping rules, M, are leveraged: global-as-view (GAV, where the global schema is described 
in terms of the local schemas) and local-as-view (LAV, where each local schema is described as a 
view over the global schema).  

 
• In GAV, the initial query, stated in terms of the integrated schema S , is translated into 

queries for local schemas through “view unfolding”, where references in the input query 
to the target schema S  are eliminated and replaced by the corresponding references to 
the local schemas (Gu et al., 2008; Lenzerini, 2002). Consider Figure 8 which presents 
two local schemas ( 1S  and 2S ) and a global schema ( gS ). The correspondences among 

these schemas are presented in Table 3(d). Given these and a twig query, “ 1Q = 
//COLLEGE[NAME]//ELECTRICAL ENGINEERING”, the reformulated queries 2Q  
and 3Q  are shown in Figure 8(e). 

• In LAV, all sources are described as views over the global schema; thus query 
reformulation can be seen as answering the query using a set of views (A. Y. Halevy, 
2001). Most current work on query reformulation for XML integration belongs to this 
category (Afrati et al., 2009; Arion et al., 2007; Balmin, Özcan et al., 2004; Calvanese et 
al., 1999; Cautis et al., 2008; Deutsch & Tannen, 2003b; Gao et al., 2007; Lakshmanan et 
al., 2006; Onose et al., 2006; Tang et al., 2008; Xu & Özsoyoglu, 2005). 

 
Figure 8(a). [Local schema 1S ]. (Put ‘Figure 8(a).tif’ here)  
Figure 8(b). [Local schema 2S ]. (Put ‘Figure 8(b).tif’ here)  

Figure 8(c). [A global  schema gS ]. (Put ‘Figure 8(c).tif’ here)  

Figure 8(d).[Mapping table: each entity in gS  has a view on local schemas ]. 

1S  2S  gS  
… 
university 
(university.)name 
depart 
CSE 
EE 
… 

… 
college 
(college.)name 
department 
computer science 
electrical engineering 
… 

… 
COLLEGE 
NAME 
DEPART 
COMPUTER SCIENCE 
ELECTRICAL ENGINEERING 
… 

 
Figure 8(e). [A twig query in terms of gS , and its reformulated queries corresponding to 1S  and 

2S   respectively]. (Put ‘Figure 8(e).tif’ here)  
Figure 8. [An example of query rewriting in the GAV]. 
 
 Query reformulation schemes can also be classified into two based on the qualities of the 
resulting reformulations: 



 
• An equivalent rewriting scheme aims to find a rewriting of the initial query q with regard 

to a given view, in a way that preserves the semantics of q (Arion et al., 2007; Balmin, 
Özcan et al., 2004; Cautis et al., 2008; Deutsch & Tannen, 2003b; Onose et al., 2006; 
Tang et al., 2008; Xu & Özsoyoglu, 2005). Generally, these approaches follow a 
“generate-and-test” strategy: the initial step produces candidate rewritings, which are 
then tested to see if they are equivalent to the initial query. A common approach for 
generating candidate rewritings for conjunctive queries is the “bucket algorithm” (A. Y. 
Halevy, 2001), which first enumerates possible rewritings for each entity in the query as 
partial rewritings, then combines these partial rewritings into candidate rewritings for the 
whole query. Equivalences between the initial query and its rewritings are validated 
through an unfolding process: (a) first the views in the reformulation are unfolded to 
express these rewritings in terms of source data and (b) the equivalence between the 
initial query and these unfoldings are evaluated (Levy, Mendelzon, Sagiv, & Srivastava, 
1995). 

• Equivalent rewritings may not always exist or may be expensive to identify. An 
alternative is the maximally-contained rewriting, where the reformulated queries do not 
return all answers, but miss as few of the results as possible. The approaches presented in 
(Gao et al., 2007; Lakshmanan et al., 2006) fall under this category. (Lakshmanan et al., 
2006), for example, first identifies embeddings (i.e., partial matchings from the query to a 
view in a way preserving node tags and structural relationships) and uses these 
embeddings to formulate queries on the views. Since the embeddings are potentially 
more general than the original query, the result set is likely to contain more results than 
what an equivalent rewriting would return. 

 
 In general, even maximally-contained rewritings are not guaranteed to exist.  More recently 
Afrati et al.(2009)  proposed minimally-containing rewritings, where the results are supersets of 
those of equivalent reformulations, with only few false additions. 
 
Source Selection and XML Query Routing 
Peer-to-peer (P2P) data management systems are gaining in popularity because of their 
decentralized and distributed nature, which provides a number of advantages, such as high 
robustness, better use of the resources, better scalability, and the lack of need for integrated-
administration (Koloniari & Pitoura, 2005). In peer-to-peer settings, where the search needs to be 
done in a distributed fashion on multiple peers, being able to quickly locate peers which can help 
answer a given query is critical for efficiency. This is usually performed in one of the two ways: 
 

• Source selection: In this case, each source peer registers its metadata (e.g. schemas), 
describing its content, into the directory service of the P2P network.  In most cases, the 
registered source description is a summary of the original data or metadata (Cherukuri & 
Candan, 2008; Tajima & Fukui, 2004). Peers that have queries, then, use these source 
descriptions to identify peers in the network that have the most relevant schemas or data 
sets. Source selection approaches include centralized directories (Katsis, Deutsch, & 
Papakonstantinou, 2008; Mihaila, Raschid, & Tomasic, 2002) as well as distributed 
directory approaches (Bouchou, Alves, & Musicante, 2003; Cooper, 2004; Nguyen, Yee, 
& Frieder, 2008). 



• Query routing: Alternatively, queries are injected into the system and these queries are 
routed towards peers that have relevant schema/data by the network. The local peers 
execute queries on their local data and forward the results back to the query originator. 
Query routing approaches include (Koloniari, Petrakis, & Pitoura, 2003; Koudas, 
Rabinovich, Srivastava, & Yu, 2004; Peng & Chawathe, 2003; Suciu, 2002; Tatarinov & 
Halevy, 2004). These often rely on text- or XML-message filtering schemes (Altinel & 
Franklin, 2000; Candan, Dönderler, Qi, & Kim, 2006; Candan, Hsiung, Chen, & 
Agrawal, 2006; Diao, Altinel, Franklin, Zhang, & Fischer, 2003; Ives, Halevy, & Weld, 
2002) that can quickly route query messages towards relevant peers based on registered 
source descriptions. 
 

 Distributed directory based source selection approaches are generally built on query routing 
schemes: first, the source selection query is routed in the network towards peers that can answer 
this source selection query. These peers respond back with IDs of peers that are able to answer 
the main query. Once this phase is over, the initiating peer sends the query to these peers. 
 
Query Processing over uncertain XML data 
Uncertainties and conflicts may be introduced during the integration of XML data and metadata. 
Therefore, processing queries over integrated XML data may require more expressive query 
processing infrastructures than basic XML frameworks provide. For instance, the mapping rules 
can be probabilistic in nature and this may lead to integrated XML data which itself is 
probabilistic. Moreover, conflicts in data sources may render it harder to represent integrated data 
in tree-like forms which are common to XML; instead, it may be more suitable to leverage graph-
based models that are able to describe the inherently more complex structural uncertainty due to 
integration. 
 
Data Pre-cleaning vs. Pay-as-you-Go 
Traditionally, a consistent interpretation (i.e. a “model”) of the data or metadata with conflicts is 
defined as a maximal, self-consistent subset of the data (Bertossi, 2006; Mercer & Risch, 2003). 
Intuitively, each model is a possible world, where there are no conflicts. Data cleaning 
approaches aim to identify a maximal possible world, which keeps as many of the original 
assertions about the data (Pottinger & Bernstein, 2003). Restoration of consistency through a 
model-based interpretation leads to loss of information; thus, identifying a possible world in 
advance of query processing may be disadvantageous. In such cases, delaying possible-worlds 
analysis until after query processing might provide context within which conflicts might be 
eliminated in an informed manner. (Bonifati et al., 2005; Candan et al., 2008; A. Y. Halevy et al., 
2003; Qi, Candan, & Sapino, 2007a) and dataspace and pay-as-you-go systems (Dong, Halevy, & 
Yu, 2007; Franklin, Halevy, & Maier, 2005; A. Halevy, Rajaraman, & Ordille, 2006; Jeffery, 
Franklin, & Halevy, 2008; Sarma, Dong, & Halevy, 2008) keep alternative plausible 
interpretations during query processing and assist the user in observing alternatives through a data 
exploration process at query time. 
 
Data and Result Compatibility 
Given an uncertain XML document all results satisfying a query might not be compatible. One 
way to resolve this problem is to include in the result only those instances that are in all models of 



the data. This set is often referred to as the set of certain answers. (Arenas & Libkin, 2008) shows 
that computing the set of certain answers for a give query is coNP-complete, except for some 
special cases. In addition to being expensive to compute, limiting the result to the set of certain 
answers is often overly cautious. Instead, the quality of a result instance can be evaluated based 
on the amount of conflicts in the data from which it is extracted or based on how compatible it is 
with the other results to the given query. 
 
Data Compatibility Analysis 
As described earlier, (Kimelfeld & Sagiv, 2008) introduced probabilistic XML documents, where 
each document P indicates a set, D, of XML documents, called possible worlds. Each document 
d  in D is associated with a probability, ( )p d , where p is a function to specify the probability 
distribution of XML documents in D.  Given a twig query q, and a probabilistic XML document 
P, the evaluation of q over P leads to a set of results, R. For each answer Rr∈ , it can be an 
answer to evaluating q over multiple documents in D, and its probability (or degree of certainty in 
terms of possible worlds) is the combination of probabilities of possible worlds related to q. 
Therefore, one way to perform query processing on probabilistic XML document P is to 
enumerate all possible worlds according to P, evaluate the twig query q over each possible world 
one by one, and finally compute the probability of each answer. Enumeration however is often 
intractable,  because it is NP-complete to determine if there is a match of q in some possible 
worlds of P. Fortunately, the user usually does not need all matches and the top-K matches, which 
have largest probabilities, may be sufficient. 
 
Result Compatibility Analysis 
QUEST (Qi, Candan, Sapino, & Kintigh, 2007) captures the compatibility among result 
instances, a result instance and a set of results or among sets of result, using a reflexive and 
symmetric “≈” relation: 
 

• Given two result instances ir  and jr , ji rr ≈  if and only if the result instances considered 
together do not violate any structural constraints inherent in XML. 

• Given a result instance r ′  and a set of result instances },,,{ 21 NrrrR …= , Rr ≈′ , if 
and only if Rri ∈∀ , irr ≈′ . 

• Given two sets of result instances },,,{ 21 NrrrR …=  and },,,{ 21 MuuuU …= , UR ≈  

if and only if Rri ∈∀ , Uu j ∈∀ , ji ur ≈ . 
 

 Instead of defining the model on the data itself, QUEST focuses on models of the query 
results. Given a set of results, R , a compatibility graph, cG , is used by QUEST to capture all 
pairwise compatibility relationships. (Qi et al., 2006), then defines a model, composed of 
compatible result paths, as a maximal clique in the compatibility graph. For each pair of nodes 
(representing result paths), an edge is included between them if they are compatible.  QUEST 
provides various result exploration options to the user to enable her to obtain a high level 
understanding of the available data related to her query 
 The maximal cliques in a graph can be exponential in the number of vertices (Moon & 
Moser, 1965). There are polynomial time delay algorithms for enumeration of cliques (i.e., if the 
graph of size n contains C cliques, the time to output all cliques is bounded by ( )kn CΟ  for some 



constant k) (1988), but in general graphs, C can be exponential in n; for example as many as 33n  
in Moon-Moser's graphs (Moon & Moser, 1965). (Qi et al., 2006) also observes that it is possible 
to avoid enumeration of cliques or finding of the maximal cliques in the entire compatibility 
graph, when supporting many of the relevant exploration tasks. For instance, the task of counting 
the number of maximal cliques a path occurs in can be performed by counting those maximal 
cliques containing only its neighbors. Also defining the models on the query results as opposed to 
the data itself, (Qi, Candan, & Sapino, 2007a) is able to significantly reduce the complexity of 
model-based analysis. 
 
Data and Result Compatibility Analysis 
FICSR (Candan et al., 2008; Qi, Candan, & Sapino, 2007a) also performs model-based analysis to 
compute trust (or agreement) values associated with assertions that make up an integrated data 
representation. To efficiently compute the agreement values, during an initial off-line analysis 
process, FICSR partitions the integrated relationship graph into small-sized constraint zones, each 
consisting of a mutually-dependent set of relationship constraints. Given a zone, trust value 
associated with an assertion in this zone is defined in terms of the alternative models in which the 
assertion is valid versus the total number models of the zone. Figure 9 illustrates this process with 
an example. Figure 9(a) is a simplified version of the integrated relationship graph shown in 
Figure 4(c). In Figure 9(b) this integrated graph is split into six zones; note that the relationship 
constraints contained in each zone are mutually-dependent. For example, in zone 6, there are two 
mutually-dependent relationships both of which must exist concurrently in any model. FICSR 
first analyzes each zone individually to obtain an agreement score for each relationship 
alternative.  Figure 9(c) shows an example of this zone analysis process: in this example, the 
agreement value of the relationship between nodes “lname” and “president-name” in zone 6 is 
computed as 0.5, because this relationship is valid only in one of the two possible models of this 
zone (see Figure 9(d)). While the agreement analysis process is still NP-complete, the initial 
zone-partitioning of the graph and the per-zone nature of the agreement analysis prevent this off-
line process from becoming unacceptably costly. In FICSR, the agreement score of each result is 
computed based on the agreement scores of the relationships involved in the result; more 
specifically, given agreement values associated to the underlying assertions, the agreement of a 
result, r , consisting of assertions, ( )A r , is computed as 
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 FICSR relies on ranked query processing techniques (Qi, Candan, & Sapino, 2007b) to 
identify top-K high-agreement results to present to the user.  While assertions and result 
agreement values are based on the initial off-line analysis of the integrated data representation, 
FICSR also performs a QUEST-like run-time analysis on the results of a given query. In 
particular, given two results 1r  and 2r  and their assertions 1( )A r  and 2( )A r , the compatibility 
between the results are measures in terms of conflicts that assertions in 1( )A r  and 2( )A r  cause 
when considered together. If the results identified are found to imply conflicts when considered 
together, then this leads to the reduction of the validity assessments of these results when 
presented to the user. In particular, when the highest-agreement results are mutually conflicting 
and thus resulting in low validity, this triggers a feedback process that calls for inputs from the 
user. The results of the user feedback are reflected on the trust values associated with the 



assertions in the integrated data as well as the mappings that lead to these trust values to be 
computed in the first place. 
 
Figure 9(a). [A simplified version of the integrated relationship graph in Figure 4(c)]. (Put 
‘Figure 9(a).tif’ here)  
Figure 9(b). [The zone-graph: individual zones in the graph are highlighted with different 
shades. Note that zones are linked to each other through data/concept nodes.] (Put ‘Figure 
9(b).tif’ here)  
Figure 9(c). [After zone analysis, each edge in the integrated relationship graph has a 
corresponding agreement value.]. (Put ‘Figure 9(c).tif’ here)  
Figure 9(d). [The two models of zone 6]. (Put ‘Figure 9(d).tif’ here)  
Figure 9. [An example of the zone analysis process of FICSR]. 
 
Twig Query Processing on Graphs 
A structural summary or a merged XML document is often a directed (and weighted) graph 
instead of being a simple tree. On the other hand, in XML databases, query processors are often 
designed to exploit the tree-like structure of the XML data. In fact, many existing (binary or 
holistic) structural join operators, including TwigStack/PathStack (Bruno, Koudas, & Srivastava, 
2002), iTwigJoin (Chen, Lu, & Ling, 2005), and Stack-Tree-Desc/Anc (Al-Khalifa et al., 2002), 
are structurally-informed variants of the standard sort-merge join algorithm: they require that the 
data nodes are available in a structurally sorted order before the join operation can be performed. 
To implement structural join operations efficiently, most XML query processors rely on index 
structures based on structurally-informed node labeling schemes (such as Dietz's labeling (Dietz, 
1982), which assigns interval-labels to nodes in such a way that descendant nodes have intervals 
that are contained within the intervals of their ancestors). This enables checking the ancestor-
descendant relationships quickly.  Such structural labeling and sorting are especially feasible 
when the underlying data has a tree-structure, but becomes non-trivial when the queries have to 
be evaluated on graph-data. When data is graph structured, however, these techniques are not 
directly applicable. (Computer & Vagena, 2004) proposes techniques for evaluating twig queries 
over graph-structured data. Authors observe that, in a directed graph, the ancestor-descendant 
relationship of a tree pattern edge is satisfied if there is a path from the ancestor node to the 
descendant node. Thus, the authors rephrase the ancestor-descendant search in terms of checking 
reachability in the graph and propose a 2-hop cover based labeling scheme (based on (E. Cohen, 
Halperin, Kaplan, & Zwick, 2002)) to help answer ancestor-descendant queries efficiently 
(especially on directed acyclic graphs). 
 
Figure 10(a). [A weighted graph fragment]. (Put ‘Figure 10(a).tif’ here)  
Figure 10(b). [One result of the query]. (Put ‘Figure 10(b).tif’ here)  
Figure 10(c). [A second result of the query]. (Put ‘Figure 10(c).tif’ here)  
Figure 10. [A keyword query, {department, grant, professor}, and two matches on a sample 
weighted graph].  
  
 When data have weights, not all results are equally desirable: results need to be ranked 
according to the underlying cost model.  For instance, (Fuhr & Gro\ssjohann, 2001) presents an 
XML query language extended with IR-related features, including weighting and ranking. 
XRANK (Guo, Shao, Botev, & Shanmugasundaram, 2003) and ObjectRank (Balmin, Hristidis, & 



Papakonstantinou, 2004) compute PageRank (Brin & Page, 1998) style ranking results for 
keyword-based (IR-style) database queries. XSEarch (S. Cohen, Mamou, Kanza, & Sagiv, 2003), 
a search engine for XML data, relies on extended information retrieval techniques for ranking.  
Retrieval by information unit (RIU) (W. Li, Candan, Vu, & Agrawal, 2001), BANKS-I (Bhalotia, 
Hulgeri, Nakhe, & Sudarshan, 2002), BANKS-II (Kacholia et al., 2005), and DPBF (Ding, Yu, 
Wang, Qin, & Lin, 2007), on the other hand, recognize that in many cases a single node is not 
sufficient to answer user queries. Instead, given a query consisting of a set of keywords, these 
algorithms try to find small subtrees (in a given weighted graph) containing all the query 
keywords. An example is shown in Figure 10. In this example, the user provided three query 
keywords, {department, grant, professor} to be searched on weighted graph fragment in Figure 
10(a); here edge weights indicate the cost or penalty of the corresponding edges. In this example, 
document “a” contains keyword “grant”, document “b” contains “department” and document “c” 
contains “professor”. Figure 10(b) shows two results of this query:  The result in Figure 10(b) has 
one more document than that in Figure 10(c), but a smaller total edge cost. Finding minimal trees 
to answer keyword queries on weighted graphs is shown to be computationally expensive (W. Li 
et al., 2001). Since users are usually interested in not all but top-K results, (Bhalotia et al., 2002; 
Ding et al., 2007; Kacholia et al., 2005; W. Li et al., 2001) rely on efficient heuristics and 
approximations for progressively identifying the smallest K trees covering the given keywords. 
As we mentioned above, however, while answering keyword-based queries on graph data is 
useful in various application domains (such as XML source selection (Aboulnaga & Gebaly, 
2007)), for twig query processing, structural relationships between the data elements need to be 
considered along with keywords and tags (Qi, Candan, & Sapino, 2007b). Thus, using the 
notation in Section “Querying XML Data”, we can define the problem of top-K query processing 
over a given weighted graph G  as follows: 
 

• Given a weighted graph G , a query ( , )q q qq T V E=  and a positive integer K , top-K 
query processing over G  is to obtain a set, R , of answers to q  over G , in decreasing 
order of agreement or trust, such that (a) the size of R  is K , (b) the i -th answer has 
higher agreement than the ( 1i+ )-th answer, and (c) there are no other answers to q  over 
G  having higher agreement than any answer in R . 

  
 (Qi, Candan, & Sapino, 2007a) shows that ranked ancestor-descendant relationships (i.e., 
reachability problem) can be enumerated by applying Yen's top-K shortest loopless path 
algorithm (Yen, 1971). Executing twig queries on the weighted graph, however, requires 
combining multiple such ancestor-descendant and parent-child results. In the literature, there are a 
number of ranked-join algorithms for top-K queries (Candan, Li, & Priya, 2000; Chaudhuri, 
Gravano, & Marian, 2004; Fagin, 1996; C. Li, Chang, Ilyas, & Song, 2005). These rely on 
weight-sorted input streams for pruning unpromising matches. In particular, (Fagin, Lotem, & 
Naor, 2003; 2003) presents an NRA algorithm which (a) considers data sources which can 
provide results only in (progressively) descending order of desirability and which (b) enumerates 
top-K desirable join results without having to access all the data from these sources.  A common 
assumption behind all these algorithms, including (Fagin, Lotem et al., 2003), is that the function 
which evaluates the score of combined results is monotonic. (Qi, Candan, & Sapino, 2007b) 
develops top-K twig query evaluation algorithms for weighted data graphs. In particular, authors 
present a cost model for the query answers and prove that answering twig queries on weighted 



graphs is NP-hard. In particular, they show that, while the problem can be viewed as ranked 
structural-joins along query axises, the monotonicity property, necessary for ranked-join 
algorithms (Candan et al., 2000; Chaudhuri et al., 2004; Fagin, 1996; Fagin, Lotem et al., 2003; 
Ilyas, Aref, & Elmagarmid, 2003; C. Li, Chang, & Ilyas, 2006), is violated. This is illustrated by 
the example in Figure 11. The twig query in Figure 6 is first split into sub-queries: 
“institute//department” and “institute//professor/grant”. A match “institute/school/department” to 
“institute//department” is displayed in Figure 11(a), with cost 12; two matches 
“institute/school/professor/grant” and “institute/professor/grant” to “institute//professor/grant” are 
in Figure 11(b), with cost 10 and 9 respectively. The result in Figure 11(c), obtained by 
combining “institute/school/department” (cost=12) and “institute/school/professor/grant” 
(cost=10) has smaller overall cost (i.e., 17) than the result shown in Figure 11(d), obtained by 
combining  “institute/school/department” (cost=12) and “institute/professor/grant” (cost=9). The 
failure of monotonicity in this example is due to the overlapping path fragment “institute/school” 
between the sub-results that are being combined. Consequently, when processing twig queries, 
the very common strategy of splitting the twig query into separated path queries, evaluating each 
path query independently, and then combining sub-results (i.e., results of path queries) with 
ranked join algorithm cannot be implemented using traditional ranked join algorithms. Instead, 
authors present a sum-max monotonicity property that holds top-K twig query evaluation and they 
develop a new HR-Join algorithm for performing ranked joins efficiently to compute answers to 
twig queries. (Kimelfeld & Sagiv, 2006) also considers the problem of executing twig-patterns 
over weighted graphs and proposes polynomial delay (i.e., the time between two consecutive 
results is polynomial in the size of the input) execution strategies for ranked enumeration of 
results. 
 
Figure 11(a). [A match for sub-query “institute//department” (cost = 12)]. (Put ‘Figure 11(a).tif’ 
here)  
Figure 11(b). [Two matches for sub-query “institute//professor/grant” (cost = 10 and 9)]. (Put 
‘Figure 11(b).tif’ here)  
Figure 11(c). [A match for query “institute[//department]//professor/grant” (cost = 17)]. (Put 
‘Figure 11(c).tif’ here) 
Figure 11(d). [A match for query “institute[//department]//professor/grant” (cost = 21)]. (Put 
‘Figure 11(d).tif’ here)  
Figure 11. [An example for ranked structural-join, where the monotonicity property is not 
satisfied]. 
 
FUTURE RESEARCH DIRECTIONS 
The existing works in this area have provided promising solutions, but more challenges lay ahead. 
Pay-as-you-go is a promising strategy towards avoiding the cost of conflict resolution in XML 
integration. Still, cost of query processing is one of the most significant challenges in XML 
integration. When the number of involved data sources becomes large or when they are highly 
conflicting, query processing requires more efficient support at the levels of hardware or 
software. Parallelizing architectures can be exploited to speed up the query processing through 
data-partitioned parallel evaluation. New computing frameworks, such as MapReduce (Dean & 
Ghemawat, 2004) will certainly help in this direction.  
 Another issue to be considered here can be summarized as the “too-many-answers” problem 
(Amer-Yahia et al., 2001). When the size of the integrated relationship graph is large, there may 



be too many results of a given query. It is not possible to display all of them to the user from a 
practical point of view.  Unfortunately, the top-K strategy may not help with this problem, in that 
not all results are comparable if they do not have scores associated with. Two thoughts can lead to 
solutions to this problem: Firstly, sampling techniques, where a properly selected sample of the 
results is presented to the user, can help. Secondly, supported by relevance feedback techniques, 
query refinement can help user achieve more precise queries to quickly locate information of 
interest. (Candan et al., 2008; Qi, Candan, & Sapino, 2007a), for example, leverage user feedback 
for eliminating conflicts identified during query processing. After the system processes the query 
over data with conflicts and provides a ranked list of results along with highlights showing the 
conflicts identified within these results, the user is allowed to assess these results and conflicts. 
The user assessment can be absolute (e.g., “result X is wrong and should be eliminated”) or 
relative (e.g., “I think result X agrees more with my domain knowledge than result Y”). These 
assessments are used not only to re-rank query results, but also to re-assess (a) importance of 
constraints that lead to these conflicts, (b) the trust/agreement values associated with the merged 
data representation (used in computing the query results), and (c) the qualities of mapping rules 
(which are used for creating the merged data representation in the first place). Feedback driven 
XML query processing requires further research into (a) the design of easy-to-use interfaces for 
capturing the user’s feedback and (b) algorithms for reflecting the user feedback effectively and 
efficiently into the conflict resolution and query processing stages of the XML integration 
workflow. 
 
CONCLUSION 
Today, XML is the backbone of all contemporary Web standards and it is increasingly serving as 
the most ubiquitous data exchange format. While, due to its structural flexibility, in 90’s XML 
gained acceptance as a potential solution to the data interoperability problem, this more flexible 
nature also implies that there are fewer cues and constraints to inform the integration process. In 
other words, from one hand, having fewer constraints to deal with implies easier compatibility 
across data sources; from the other hand, this also implies that there are many more ways to put 
data together and effective integration requires support from the user. Pay-as-you-go integration, 
which is becoming more common, is a step in this direction and future research will increasingly 
focus on techniques that enable context- and user-support to eliminate uncertainties for more 
effective integration solutions. 
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