
XML Data Integration: Merging,
Query Processing and Conflict

Resolution

Yan Qi#1, Huiping Cao#2, K Selçuk Candan#3, Maria Luisa Sapino*1

#Department of Computer Science and Engineering, Arizona State University, Tempe,
Arizona, USA

1yan.qi@asu.edu, 2hcao11@asu.edu, 3candan@asu.edu
*Dipartimento di Informatica, University of Torino, Torino, Italy

1mlsapino@di.unito.it

ABSTRACT
In XML Data Integration, data/metadata merging and query processing are indispensable.
Specifically, merging integrates multiple disparate (heterogeneous and autonomous) input data
sources together for further usage, while query processing is one main reason why the data need
to be integrated in the first place. Besides, when supported with appropriate user feedback
techniques, queries can also provide contexts in which conflicts among the input sources can be
interpreted and resolved. The flexibility of XML structure provides opportunities for alleviating
some of the difficulties that other less flexible data types face in the presence of uncertainty; yet,
this flexibility also introduces new challenges in merging multiple sources and query processing
over integrated data. In this chapter, we discuss two alternative ways XML data/schema can be
integrated: conflict-eliminating (where the result is cleaned from any conflicts that the different
sources might have with each other) and conflict-preserving (where the resulting XML data or
XML schema captures the alternative interpretations of the data). We also present techniques for
query processing over integrated, possibly imprecise, XML data, and cover strategies that can be
used for resolving underlying conflicts.

KEYWORDS
Data Translation, Merging, Conflict-elimination, Conflict-Preserving Integration,
Query processing, conflict resolution, query reformulation, compatibility
analysis, twig query, feedback

INTRODUCTION
One of the primary motivations behind the development of eXtensible Markup Language (XML)
was to create a framework that can support interoperability between businesses and other
enterprises. In short time, the simplicity and flexibility of XML led to many new applications,
including peer-to-peer (P2P) applications (Koloniari & Pitoura, 2005; Pankowski, 2008),
bioinformatics (Achard, Vaysseixm, & Barillot, 2001), and semantic web (Decker et al., 2000).

As we have seen in Chapter titled “XML Data Integration: Schema Extraction and Mapping”, the
simple, flexible, and self-describing data representation of XML provides unique opportunities to
support data integration. On the other hand, these same properties, especially the flexibility of the
structure of the data and the possibility for each data contributor and user to have their own
schemas also introduce many new challenges in the integration process. Figure 1 provides an
overview of the major steps underlying the XML data integration process:

Figure 1. [Overview of the XML data integration process]. (Put ‘Figure 1.tif’ here)

• Schema extraction: A particular challenge introduced by XML is that not all XML data
come with an associated schema. While this enables the use of XML as a flexible
messaging and integration medium, when the integration process is schema-aware, it also
necessitates a process to extract schemas that can be used during integration.

• Matching and mapping: Finding mappings between data components is a common
problem in almost all integration domains. XML data can often be represented using trees
or tree-like graphs (Goldman & Widom, 1997). This impacts solutions for finding
mappings between XML data.

• XML data/metadata merging: Once the mappings are discovered, the next step in the
process is to integrate the XML data or metadata, depending on whether the system is
operating on data- or schema-level. This is often done through a transform-and-merge
process.

• Query processing and conflict resolution: The results of the merge process, however,
may not always be a valid XML data or schema. In these cases, in order to be able to use
the resulting merged data in query processing, we either need to apply conflict resolution
strategies or develop new query processing techniques that can operate on more relaxed
data structures, such as graphs.
In fact, conflict resolution process can be integrated with query processing to support an
incremental approach to cleaning the conflicts: as the user explores the integrated data
(and conflicts) within the context of her queries, she can provide more informed conflict
resolution feedback to the system.

 In Chapter “XML Data Integration: Schema Extraction and Mapping” we have discussed the

first two bullets in detail. In this chapter, we focus on merging and query processing over
integrated XML data, and cover strategies that can be used for resolving conflicts with the user’s
help. The running example we use in this chapter is from the same domain (universities and
research institutes) as Chapter “XML Data Integration: Schema Extraction and Mapping”.

MERGING
Once the mappings between the sources are discovered through the matching process, the input
sources can be merged into a logical “global” view for further use in integrated data processing.
The merge process takes as input (a) a set of sources and (b) the mappings among them, and
generates an integrated (target) data or schema.

Handling Conflicts during the Merge Process
Due to the imperfectness of the matching process and possible incompatibilities among the input
sources, inputs cannot always be merged perfectly. According to way conflicts are handled, we
can classify the merge integration algorithms into two broad categories:

• Conflict-elimination strategies: conflicts are resolved during the integration process and
one unified target schema is generated (Pottinger & Bernstein, 2003).

• Conflict-preserving strategies: all interpretations of the data are preserved in one unified
representation (Candan, Cao, Qi, & Sapino, 2008; Qi, Candan, & Sapino, 2007a) and
conflicts are left to be resolved through user feedback during query processing.

Generalized Mappings
In this section, we will use a more general form of mappings than the one we have used in
Chapter titled “XML Data Integration: Schema Extraction and Mapping”. Without loss of
generality, let us denote each source as a node and edge labeled directed graph, S(V,E), where
each node, v∈V, corresponds to a labeled element, attribute, or value, and each edge, e∈E
between two nodes corresponds to a named relationship between the corresponding data
elements. Given this, a mapping over two sources S1 (V1,E1) and S2 (V2, E2) is a pair M (C, M)
where

• C (CM, EM) describes any knowledge that is not directly obtainable from the input
sources, such as elements not covered in either source but needed to properly unify the
input sources; and

• each element μ∈M is in the form of 〈Vi, Vj, map_name, τ〉 where Vi ⊆V1∪C.CM, Vj ⊆
V2∪C.CM, and map_name denotes the type of the correspondence (e.g. “equality”,
“subsumption”, or “similarity”) between Vi and Vj, and τ is the confidence value
associated to this mapping element.

Note that this general mapping definition corresponds to the basic mapping rules defined in

the previous section when (a) C.CM and C.EM are all empty and (b) for μ∈M, both Vi and Vj
contain one element respectively and map_name is always “equality”.

Conflict-Elimination Strategies
In (Pottinger & Bernstein, 2003), Pottinger and Bernstein analyze generic merge requirements for
schema integration (or merging), including preserving the elements, relationships, constraints,
and properties. More specifically, they present a Merge operator for schema integration which
satisfies these requirements. The operator works for schemas conforming to a general model,
thus can be adapted to XML schemas as well. The algorithm takes as input two source schemas
S1, S2, and the mapping M12 between them. The output is a unified schema S which keeps all the
elements and relationships in the input models and the input mapping.

M12 is a general mapping as described above, with some limitations:
• First, no confidence value is attached to mapping elements.
• Secondly, Vi and Vj are singleton; i.e., the mapping rules are defined over element pairs.

• The correspondence types are limited to “equality” and “similarity”. “Equality” means
that two elements are semantically equal, whereas, “similarity” denotes that two elements
are related but not completely equal.

As discussed in Section “Generalized Mappings”, given a correspondence μ:〈v1,v2〉, both v1
and v2 do not have to belong to S1 or S2; but they may be some new concept/element defined in
M12. This is, for instance, very useful in representing a mapping correspondence where an
element in one schema equals to a combination of several elements in another. As an example, let
us consider a scenario where a name element in one model refers to two elements firstName and
lastName in another model. This can be represented using three correspondences μ1:〈c,name〉,
μ2:〈c1,firstName〉, and μ3:〈c2,lastName〉, where c, c1, and c2 are new elements introduced, such that
c has parent-child relationships with c1 and c2.

Given S1, S2, and M12, the outline of the Merge process is as follows:
1. First, the Merge operator initializes the integrated schema S with an empty schema.
2. Then, elements are created and added to S. To do this, the elements in S1, S2, and M12 are

grouped, in such a way that there is one group for each mapping condition μ:〈vi, vj〉.
3. For each group, a new element is created in S to represent this group of elements. The

properties of each new element “c” is the union of the properties of the group that c
represents.

4. Next, new relationships are inserted into S. Two cases need to be considered in inserting
relationships between two elements ci and cj in S, where ci and cj represent two distinct
groups gi and gj, respectively.

o First case is when gi and gj do not contain elements with “similarity” type of
correspondence. In this case, if there is a correspondence μ:〈vi', vj'〉 (vi'∈gi,
vj'∈gj) of type T and with cardinality l, a new relationship Rel(ci,cj) with the same
type and same cardinality is created in S for ci and cj.

o If some elements in gi and gj have “similarity” type correspondence, then a new
similarity mapping element, c, is created and every mapping relationship
originating from c is replaced by a “parent-child” relationship.

Figure 2(a). [(a) Two source schemas and the mapping between them]. (Put ‘Figure 2(a).tif’ here)
Figure 2(b). [(b)The integrated schema]. (Put ‘Figure 2(b).tif’ here)
Figure 2. [Example of the Merge process (Pottinger & Bernstein, 2003). Note the edge between
two elements denotes the parent-child relationship between them. They are implicit in the
graphs.].

Figure 2 shows an example execution of the Merge operator. In this example, the element

‘edu-university’ in Figure 2(b) merges the nodes ‘edu’, ‘university’, and ‘μ0’ in the source
schemas and the mapping. Similarly, ‘pname’ in Figure 2(b) incorporates the nodes ‘pname’ and
‘μ3’ in Figure 2(a). The mapping μ6 is reflected by creating a new node ‘all-bios’ with two
children in the original schemas.

Different from (Pottinger & Bernstein, 2003), which eliminates the conflicts and maintains
only one merged consistent schema, (Chiticariu, Kolaitis, & Popa, 2008) creates multiple such
schemas while one is to be selected in later stages through user interaction. The algorithm first
creates a unified representation, where correspondences between elements are represented by
mapping-edges. In the second phase, for each compatible subset of mapping-edges, a different

merge result is obtained. To cope with the inherent cost of enumerating different mapping
strategies, the algorithm uses several heuristics to identify and eliminate redundant strategies.

Conflict-Preserving Strategies
Attempting to resolve conflicts at the merging time may limit the future usage of data: if only one
integrated schema is generated by enforcing only some constraints, this integrated target schema
obviously misses some of the information in the input sources. In contrast, Candan et al. (Candan
et al., 2008; Qi, Candan, Sapino, & Kintigh, 2006; Qi, Candan, & Sapino, 2007a) propose to
merge sources (schemas or data instances) by preserving the possible different interpretations in
the integrated target graph (schema or data instance) and attempt to resolve conflicts only when
needed (e.g., in query processing).

A value-null in databases is said to occur when the value cannot be determined for certain. A
value-null can be of type “existential” (the value exists, but is not known), “maybe” (the value
may or may not exist), “place holder” (the value is known not to exist, so a dummy symbol is
used as a place holder), or “partial” (the value is known to be in a given set) (Candan, Grant, &
Subrahmanian, 1997). For example,

• “Node &5's tag can be 4, 6, or 9.”
is a value null.
Qi et al. (2006) introduce structure-nulls, which occur when the structural relationship

between the data nodes cannot be determined in certain. For example,
• “Node &5 is a child of node &3 or &4”.
• “Either node &5 or &6 is a child of node &3”.

are structure nulls. A structure-null can also be of type “existential” (the structural relationship
exists, but is not known), “maybe” (structural relationship may or may not exist), “place holder”
(the structural relationship is known not to exist), or “partial” (the structural relationship is
known to be in a given set of alternatives). An early attempt at modeling semistructured data with
missing and partial data is presented in (Liu & Ling, 2000); authors use an object-based model,
where null, or-valued, and partial set objects are used to handle partial and missing knowledge in
semi-structured data. Although it is richer than standard semistructured data models, such as
Object Exchange Model (OEM) (Buneman, Fan, & Weinstein, 1999; McHugh, Abiteboul,
Goldman, & Widom, 1997), and Document Object Model (DOM), this model is more focused on
value nulls and does not capture inconsistencies and missing knowledge in the structure of the
data. Qi et al. (2006) present an assertion-based data model, QUEST, that captures both value-
based and structure-based “nulls” in data.

Candan et al. in (2008) extend this framework to capture more general relationships (e.g.,
WORKS-AT) in addition to XML parent-child relationships. They also extend the assertions with
trust values describing how trustable each assertion is. The trust value represents the user's source
preference, assessment of mapping certainty, and the amount of agreement among different
sources on this assertion. Candan et al. (Candan et al., 2008; Qi, Candan, & Sapino, 2007a) also
introduce new coordination constructs that represent constraints that the integration process
imposes on the various source relationships. The six basic constructs introduced in (Candan et al.,
2008; Qi, Candan, & Sapino, 2007a), as part of their FICSR framework, are shown in Figure 3.
Constructs (a)-(c) coordinate multiple relationships from a single element, while constructs (d)-(f)
coordinate relationships from multiple elements to a single one. Candan et al. (2008) also show
how to combine these constructs to obtain more complex and richer coordination semantics
among a set of elements. Enriching the integrated graph with these coordination constructs (used

along with the original source relationships) allows FICSR to preserve the multiple possible
worlds (i.e., different interpretations) in the integrated graph. Thus, instead of having to enforce
these constraints during the integration time, FICSR is able to defer the resolution process to a
later stage in processing. In what follows, we roughly present FICSR's integration process. This
work differs in several ways from other integration algorithms, which generally take as input only
the source graphs and a mapping. FICSR takes as input, in addition to the source graphs, the
following rules:

Figure 3(a). [(a) Negatively coordinate the destinations of w: either Rel(w,u) or Rel(w,v) holds,
but not both.]. (Put ‘Figure 3(a).tif’ here)
Figure 3(b). [(b) Positively coordinate the destinations of w: both Rel(w,u) and Rel(w,v) needs to
hold.]. (Put ‘Figure 3(b).tif’ here)
Figure 3(c). [(c) Implication of the destinations of w: if Rel(w,v) holds, then Rel(w,u) must
hold.]. (Put ‘Figure 3(c).tif’ here)
Figure 3(d). [(d) Negatively coordinate the sources of w: either Rel(u,w) or Rel(v,w) holds, but
not both.]. (Put ‘Figure 3(d).tif’ here)
Figure 3(e). [(e) Positively coordinate the sources of w: both Rel(u,w) and Rel(v,w) holds
together.]. (Put ‘Figure 3(e).tif’ here)
Figure 3(f). [(f) Implication of the sources of w: if Rel(v,w) holds, then Rel(u,w) must hold.]. (Put
‘Figure 3(f).tif’ here)

Figure 3. [Choice and coordination constructs with (a), (b), (c) destination coordination and
(d), (e), (f) source coordination]. (Adapted from (Candan et al., 2008; Qi, Candan, & Sapino,
2007a))

• mapping rules: FICSR uses a general mapping rule format; each mapping rule μ: 〈Vi, Vj,
map_name, τ〉 consists of subsets, Vi ⊆ V1 and Vj ⊆ V2, of elements from the sources S1
and S2, a correspondence name map_name, and a confidence τ.

• embedding rules: embedding rules of the form ρ:〈c1, c2, rel_name,τ〉 describe how
elements that do not belong to any of the sources (but might be created during the
integration process) relate to each other. Here, c1 or c2 can be either an element created
during the integration process or an element in V1∪V2 (but at least one of them is a new
element).

• co-validity rules: co-validity rules of the form γ:〈E,τ〉 represent the inter-dependence of
various relationships in the source graphs; i.e., the relationships in E either all hold
together or none holds.

Given mappings and above rules, the merge algorithm integrates the sources by incorporating

these mappings and rules:
• For each mapping rule μ:〈Vi,Vj,map_name,τ〉, a new element ck with the name map_name

is created. Then, each element in Vi, Vj is linked to ck with positively coordinated edges.
During this process, the edges to ck from the elements in Vi (or Vj) are positively
coordinated with each other;

• When incorporating an embedding rule ρ: 〈c1, c2, rel_name, τ〉 into the integrated graph,
if the relationship rel_name has no arity constraint, an edge with label rel_name is
created from the concept c1 to c2. Otherwise, the edge may need to be negatively
coordinated with other edges. For example, if the edge describes the parent-child

relationship where an element can have only one parent, the edge from c1 to c2 with label
“parent” needs to be coordinated with the other edges coming out of c1 and going to other
concepts.

• To incorporate a co-validity rule of the form γ:〈E,τ〉, all the maximal subsets E' ⊆ E with
the same source and destinations are detected and all these subsets are positively
coordinated. The remaining co-validity requirements are recorded as integrity constraints
to be enforced separately.

We use Figure 4 as an example to illustrate the integration algorithm.
Let us consider the following integration rules:
• mapping rules:

 μ1: 〈{lname, fname}, {pname}, president-name,∞〉
 μ2: 〈{edu}, {university}, edu(university), ∞〉
 μ3: 〈{name}, {name}, uni-name, ∞〉
• embedding rules:

 ρ1: 〈president-name, president, parent-child, ∞〉
 ρ2: 〈president-name, university, parent-child, 1〉
 ρ3: 〈uni-name, edu(university), parent-child, 1〉
• no co-validity rules.

While incorporating the three mapping rules, FICSR introduces positive coordinate constructs
to connect the source elements to the new concepts.

For example, for μ1, before coordinating the elements in {lname,fname} {pname}, they are
first positively coordinated among themselves. For the embedding rules, FICSR incorporates
three corresponding edges in the graph (from president-name to president, from president-name
to university, from uni-name to edu(university)).

Figure 4(c) shows the full integrated graph.
Note that in the resulting graph, potential conflicts among the input schemas have not been

resolved; the identification and resolution of any such conflict is deferred to query processing
phase.

Figure 4(a). [(a) First source graph]. (Put ‘Figure 4(a).tif’ here)
Figure 4(b). [(b) Second source graph]. (Put ‘Figure 4(b).tif’ here)
Figure 4(c). [(c) Integrated full graph]. (Put ‘Figure 4(c).tif’ here)

Figure 4. [Example of the FICSR integration process].

While, FICSR data model can capture more general relationships, rich conflicts, and

coordination semantics, Kimelfeld & Sagiv (2008) focus on tree structured data. In particular,
(Kimelfeld & Sagiv, 2008) introduces probabilistic XML data representation, where XML data
are represented in the form of tree structures composed of two types of nodes: ordinary nodes and
distributional nodes. Ordinary nodes follow the definition of nodes in the traditional XML model;
distributional nodes, however, specify the probabilistic process of generating a random document.
Depending upon the semantics indicated by its distribution, a distributional node can be one of
the following five types (Kimelfeld & Sagiv, 2008):

• ind - the probability of choosing one of its children is independent of that of choosing
any other;

• det - all of its children are deterministically chosen;

• mux - the probabilities of choosing different children are mutually exclusive;
• exp - the probability of choosing any of its children is explicitly given;
• cie - the probability of choosing a child is determined by the conjunction of a set of

independent random Boolean variables, called events.

Kimelfeld et al. (2008) classify probabilistic XML models based on the types of distributional

nodes they contain. For instance, PrXML{ind} represents probabilistic XML models which use only
ind distributional nodes. An example of PrXML{ind,mux} is shown in Figure 5. There are three
distributional nodes: two of them are of type ind and the third is of type mux. Note that, since
they are exclusive with each other, the sum of the probabilities of the two choices under the third
distributional node is 1.0.

Figure 5. [An Example of Probabilistic XML Document]. (Put ‘Figure 5.tif’ here)

QUERY PROCESSING
Query processing over integrated XML data shares many of the key difficulties, which other
types of integrated data also pose. For instance, often some form of XML query reformulation is
necessary in order to process queries over local data sources. Similarly, when data sources in the
XML integration system are autonomous, query processing (even routing (Zhuge, Liu, Feng, &
He, 2004)) needs to be performed without the support of a central mechanism, completely
through peer-to-peer interaction. Since uncertainty and imperfections can be introduced during
source matching and merging, special mechanisms that can handle inconsistency during query
processing may be needed. While the special, relatively more flexible structure of XML provides
opportunities for alleviating some of the difficulties that other less flexible data types face during
integration, it also poses new challenges in that existing XML query processing techniques are
often not directly applicable.

 As in any integration system, there are two major ways to execute an XML query over data
that initially exist in different sources. The first approach is to reformulate the query for each
source, execute them independently at these sources, collect results, and integrate these results
into a single unified answer. The second approach is to use mappings discovered in the previous
steps to integrate the data in a common form and process the query over this integrated data. In
this chapter, we discuss both of these two approaches. But, first we provide a brief overview of
how queries over XML data are formulated. In Section “XML Query Processing with Local
Sources”, we discuss major approaches to XML query processing across local sources. Then, in
Section “Query Processing over uncertain XML data” we discuss challenges associated to query
processing with uncertain data due to imprecise integration.

Querying XML Data
XPath (1999) and XQuery (2006), two popular query languages for querying XML documents,
rely on path expressions -- which express the desired characteristics of the paths on the
underlying data graph -- as building blocks. These path expressions combine requirements about
values (such as the element tags of an XML document) with requirements about the structural
organization of the elements of interest. Path expressions of type, {/,//,*}P , are composed of query
steps, each consisting of an axis (parent/child “/” or ancestor/descendant “//”) test between data

elements and a label test (including “*” wildcard which can match any element or tag). Often,
multiple path expressions are combined into twigs (i.e., tree patterns (Amer-Yahia, Cho,
Lakshmanan, & Srivastava, 2001; Jagadish et al., 2002)) by using path expressions of type

{[],/,//,*}P , where “ [] ” denotes any predicate including sub-path expressions; as illustrated in
Figure 6), such tree patterns can be visualized as trees, where nodes correspond to tag-predicates
and edges correspond to a parent-child or ancestor-descendant axis. Thus, a twig query, q , can be
represented in the form of a node- and edge-labeled tree, (,)q q qT V E . The query q may be
attached with tag and edge predicates tag_pred(qv) and axis_pred(qe), where tag_pred(qv)
denotes the tag predicate corresponding to the vertex qqv V∈ and axis_pred(qe) denotes the axis

predicate associated with the edge qqe E∈ . An answer to q over data graph G is a pair,

,node edger μ μ= , of mappings:

• nodeμ is a mapping from the nodes of the query tree to the nodes of the data graph, such

that given qqv V∈ and the corresponding data node, ()node qvμ , (())nodetag qvμ
satisfies tag_pred(qv).

• edgeμ is a mapping from the edges of the query tree to simple paths in the data graph,

such that given ,i j qqe qv qv E= ∈ , the path qeμ , from ()node iqvμ to ()node jqvμ ,

satisfies axis_pred(qe). Note that a path consisting of a single edge can satisfy both
parent-child and ancestor-descendant axis, while a multi-edge path can satisfy only
ancestor-descendant axis.

 In XPath semantics, for each result instance, ,node edger μ μ= , only the matches for the right

most query element are included in the final result (e.g., for the query shown in Figure 6, only the
matches for the query element, “grant”, are returned).

Figure 6. [An example query twig]. (Put ‘Figure 6.tif’ here)

XML Query Processing with Local Sources
In this section, we first discuss major alternatives for XML query processing across local sources.
We also present techniques used for XML query reformulation as well as source selection and
query routing.

Alternative Architectures for Query Processing with Local Sources
Broadly speaking, there are two alternative architectures for query processing over local sources:
the architecture shown in Figure 7(a) makes use of a global (and integrated) XML schema for
query reformulation, while the alternative in Figure 7(b) rewrites queries purely, based on peer-
to-peer mappings (Cruz, Xiao, & Hsu, 2004; Lenzerini, 2004; McBrien & Poulovassilis, 2003).

• Query processing with global schema. The process of query processing with a global
schema is illustrated in Figure 7(a). Through a unique interface, or application, an initial
query, usually in the form of XPath or XQuery, is constructed on the basis of the global
schema (obtained through a priori schema matching and merging). This initial query is
reformulated according to the correspondences between the global schema and local

schemas. Note that, due to the flexibilities afforded by XML, local schema is often
described in XML (through schema extraction in Chapter “XML Data Integration:
Schema Extraction and Mapping”) even for non-XML data sources. Next, a source
selection manager helps identify the data sources over which the reformulated query
should be processed. Query optimization and query execution will be performed locally
on the selected data sources. Finally, all results are collected from local data sources and
combined. Systems exploiting this architecture include MARS (Deutsch & Tannen,
2003a), PEPSINT (Cruz et al., 2004), and Agora (Manolescu, Florescu, Kossmann,
Xhumari, & Olteanu, 2000).

• Query processing through peer-to-peer interactions. In the peer-to-peer integration
approach to XML query processing, mapping rules are created between local schemas
using the techniques presented in Chapter “XML Data Integration: Schema Extraction
and Mapping”, but a global schema does not exist (Figure 7(b)). Again, the local schema
is represented in XML. Therefore, the initial query is in the form of XPath or XQuery,
described in terms of its corresponding (target) schema. A source selection manager
helps identify the peers (sources) on which the remote query processing should be made.
Then, according to mapping rules between target and sources, the initial query is
translated into the query formulated in terms of the various source schemas. Systems that
follow this approach include Piazza (A. Y. Halevy, Ives, Suciu, & Tatarinov, 2003; A. Y.
Halevy et al., 2004), HePToX (Bonifati, Chang, Ho, Lakshmanan, & Pottinger, 2005),
and SixP2P (Pankowski, 2008).

 Query processing in a peer-to-peer setting can be treated as a special case of processing with
global schema, if we think of the target schema as the global schema to which all other local
(source) schemas are mapped. This, however, requires 2()NΟ source-to-target mappings, where
N is the number of peers, against ()NΟ for the case of the former approach. The advantage of
the peer-to-peer setting, however, is that (unlike the global schema which may be overly lossy to
accommodate all source schemas) the query reformulations may be more precise since it
leverages pairwise mappings between peers.

Figure 7(a). [Integration with a Global Schema]. (Put ‘Figure 7(a).tif’ here)
Figure 7(b). [Peer-to-Peer Integration]. (Put ‘Figure 7(b).tif’ here)
Figure 7. [Alternative architectures of query processing with local sources].

XML Query Reformulation
In order to process a user's query over local sources, we need to reformulate this query into
queries which can be understood by individual data sources: Given a source schema SS, target
schema St, a set of mapping rules, M, between SS and St, and a query qt which is defined in terms
of St, the goal of query reformulation is to find a query qs formulated in terms of SS such that it is
equivalent to qt according to M. Within the context of XML query processing, the initial query qt,
can be in the form of a tree pattern (Arion, Benzaken, & Manolescu, 2007; Calvanese, Giacomo,
Lenzerini, & Vardi, 1999; Gao, Wang, & Yang, 2007; Gu, Xu, & Chen, 2008; Lakshmanan,
Wang, & Zhao, 2006; Xu & Özsoyoglu, 2005), XPath (Afrati et al., 2009; Balmin, Özcan, Beyer,
Cochrane, & Pirahesh, 2004; Cautis, Deutsch, & Onose, 2008; Tang, Yu, Özsu, Choi, & Wong,
2008), or XQuery (Deutsch & Tannen, 2003b; Lenzerini, 2002; Onose, Deutsch,

Papakonstantinou, & Curtmola, 2006) statement. Query rewriting schemes differ from each other
based on the underlying restrictions on schemas, summaries, and other applicable constraints
(such as conjunctive queries only) (Arion et al., 2007; Deutsch & Tannen, 2003b; Lakshmanan et
al., 2006). Most generally, we can classify approaches into two major classes based on the way
the mapping rules, M, are leveraged: global-as-view (GAV, where the global schema is described
in terms of the local schemas) and local-as-view (LAV, where each local schema is described as a
view over the global schema).

• In GAV, the initial query, stated in terms of the integrated schema S , is translated into

queries for local schemas through “view unfolding”, where references in the input query
to the target schema S are eliminated and replaced by the corresponding references to
the local schemas (Gu et al., 2008; Lenzerini, 2002). Consider Figure 8 which presents
two local schemas (1S and 2S) and a global schema (gS). The correspondences among

these schemas are presented in Table 3(d). Given these and a twig query, “ 1Q =
//COLLEGE[NAME]//ELECTRICAL ENGINEERING”, the reformulated queries 2Q
and 3Q are shown in Figure 8(e).

• In LAV, all sources are described as views over the global schema; thus query
reformulation can be seen as answering the query using a set of views (A. Y. Halevy,
2001). Most current work on query reformulation for XML integration belongs to this
category (Afrati et al., 2009; Arion et al., 2007; Balmin, Özcan et al., 2004; Calvanese et
al., 1999; Cautis et al., 2008; Deutsch & Tannen, 2003b; Gao et al., 2007; Lakshmanan et
al., 2006; Onose et al., 2006; Tang et al., 2008; Xu & Özsoyoglu, 2005).

Figure 8(a). [Local schema 1S]. (Put ‘Figure 8(a).tif’ here)
Figure 8(b). [Local schema 2S]. (Put ‘Figure 8(b).tif’ here)

Figure 8(c). [A global schema gS]. (Put ‘Figure 8(c).tif’ here)

Figure 8(d).[Mapping table: each entity in gS has a view on local schemas].

1S 2S gS
…
university
(university.)name
depart
CSE
EE
…

…
college
(college.)name
department
computer science
electrical engineering
…

…
COLLEGE
NAME
DEPART
COMPUTER SCIENCE
ELECTRICAL ENGINEERING
…

Figure 8(e). [A twig query in terms of gS , and its reformulated queries corresponding to 1S and

2S respectively]. (Put ‘Figure 8(e).tif’ here)
Figure 8. [An example of query rewriting in the GAV].

 Query reformulation schemes can also be classified into two based on the qualities of the
resulting reformulations:

• An equivalent rewriting scheme aims to find a rewriting of the initial query q with regard

to a given view, in a way that preserves the semantics of q (Arion et al., 2007; Balmin,
Özcan et al., 2004; Cautis et al., 2008; Deutsch & Tannen, 2003b; Onose et al., 2006;
Tang et al., 2008; Xu & Özsoyoglu, 2005). Generally, these approaches follow a
“generate-and-test” strategy: the initial step produces candidate rewritings, which are
then tested to see if they are equivalent to the initial query. A common approach for
generating candidate rewritings for conjunctive queries is the “bucket algorithm” (A. Y.
Halevy, 2001), which first enumerates possible rewritings for each entity in the query as
partial rewritings, then combines these partial rewritings into candidate rewritings for the
whole query. Equivalences between the initial query and its rewritings are validated
through an unfolding process: (a) first the views in the reformulation are unfolded to
express these rewritings in terms of source data and (b) the equivalence between the
initial query and these unfoldings are evaluated (Levy, Mendelzon, Sagiv, & Srivastava,
1995).

• Equivalent rewritings may not always exist or may be expensive to identify. An
alternative is the maximally-contained rewriting, where the reformulated queries do not
return all answers, but miss as few of the results as possible. The approaches presented in
(Gao et al., 2007; Lakshmanan et al., 2006) fall under this category. (Lakshmanan et al.,
2006), for example, first identifies embeddings (i.e., partial matchings from the query to a
view in a way preserving node tags and structural relationships) and uses these
embeddings to formulate queries on the views. Since the embeddings are potentially
more general than the original query, the result set is likely to contain more results than
what an equivalent rewriting would return.

 In general, even maximally-contained rewritings are not guaranteed to exist. More recently
Afrati et al.(2009) proposed minimally-containing rewritings, where the results are supersets of
those of equivalent reformulations, with only few false additions.

Source Selection and XML Query Routing
Peer-to-peer (P2P) data management systems are gaining in popularity because of their
decentralized and distributed nature, which provides a number of advantages, such as high
robustness, better use of the resources, better scalability, and the lack of need for integrated-
administration (Koloniari & Pitoura, 2005). In peer-to-peer settings, where the search needs to be
done in a distributed fashion on multiple peers, being able to quickly locate peers which can help
answer a given query is critical for efficiency. This is usually performed in one of the two ways:

• Source selection: In this case, each source peer registers its metadata (e.g. schemas),
describing its content, into the directory service of the P2P network. In most cases, the
registered source description is a summary of the original data or metadata (Cherukuri &
Candan, 2008; Tajima & Fukui, 2004). Peers that have queries, then, use these source
descriptions to identify peers in the network that have the most relevant schemas or data
sets. Source selection approaches include centralized directories (Katsis, Deutsch, &
Papakonstantinou, 2008; Mihaila, Raschid, & Tomasic, 2002) as well as distributed
directory approaches (Bouchou, Alves, & Musicante, 2003; Cooper, 2004; Nguyen, Yee,
& Frieder, 2008).

• Query routing: Alternatively, queries are injected into the system and these queries are
routed towards peers that have relevant schema/data by the network. The local peers
execute queries on their local data and forward the results back to the query originator.
Query routing approaches include (Koloniari, Petrakis, & Pitoura, 2003; Koudas,
Rabinovich, Srivastava, & Yu, 2004; Peng & Chawathe, 2003; Suciu, 2002; Tatarinov &
Halevy, 2004). These often rely on text- or XML-message filtering schemes (Altinel &
Franklin, 2000; Candan, Dönderler, Qi, & Kim, 2006; Candan, Hsiung, Chen, &
Agrawal, 2006; Diao, Altinel, Franklin, Zhang, & Fischer, 2003; Ives, Halevy, & Weld,
2002) that can quickly route query messages towards relevant peers based on registered
source descriptions.

 Distributed directory based source selection approaches are generally built on query routing
schemes: first, the source selection query is routed in the network towards peers that can answer
this source selection query. These peers respond back with IDs of peers that are able to answer
the main query. Once this phase is over, the initiating peer sends the query to these peers.

Query Processing over uncertain XML data
Uncertainties and conflicts may be introduced during the integration of XML data and metadata.
Therefore, processing queries over integrated XML data may require more expressive query
processing infrastructures than basic XML frameworks provide. For instance, the mapping rules
can be probabilistic in nature and this may lead to integrated XML data which itself is
probabilistic. Moreover, conflicts in data sources may render it harder to represent integrated data
in tree-like forms which are common to XML; instead, it may be more suitable to leverage graph-
based models that are able to describe the inherently more complex structural uncertainty due to
integration.

Data Pre-cleaning vs. Pay-as-you-Go
Traditionally, a consistent interpretation (i.e. a “model”) of the data or metadata with conflicts is
defined as a maximal, self-consistent subset of the data (Bertossi, 2006; Mercer & Risch, 2003).
Intuitively, each model is a possible world, where there are no conflicts. Data cleaning
approaches aim to identify a maximal possible world, which keeps as many of the original
assertions about the data (Pottinger & Bernstein, 2003). Restoration of consistency through a
model-based interpretation leads to loss of information; thus, identifying a possible world in
advance of query processing may be disadvantageous. In such cases, delaying possible-worlds
analysis until after query processing might provide context within which conflicts might be
eliminated in an informed manner. (Bonifati et al., 2005; Candan et al., 2008; A. Y. Halevy et al.,
2003; Qi, Candan, & Sapino, 2007a) and dataspace and pay-as-you-go systems (Dong, Halevy, &
Yu, 2007; Franklin, Halevy, & Maier, 2005; A. Halevy, Rajaraman, & Ordille, 2006; Jeffery,
Franklin, & Halevy, 2008; Sarma, Dong, & Halevy, 2008) keep alternative plausible
interpretations during query processing and assist the user in observing alternatives through a data
exploration process at query time.

Data and Result Compatibility
Given an uncertain XML document all results satisfying a query might not be compatible. One
way to resolve this problem is to include in the result only those instances that are in all models of

the data. This set is often referred to as the set of certain answers. (Arenas & Libkin, 2008) shows
that computing the set of certain answers for a give query is coNP-complete, except for some
special cases. In addition to being expensive to compute, limiting the result to the set of certain
answers is often overly cautious. Instead, the quality of a result instance can be evaluated based
on the amount of conflicts in the data from which it is extracted or based on how compatible it is
with the other results to the given query.

Data Compatibility Analysis
As described earlier, (Kimelfeld & Sagiv, 2008) introduced probabilistic XML documents, where
each document P indicates a set, D, of XML documents, called possible worlds. Each document
d in D is associated with a probability, ()p d , where p is a function to specify the probability
distribution of XML documents in D. Given a twig query q, and a probabilistic XML document
P, the evaluation of q over P leads to a set of results, R. For each answer Rr∈ , it can be an
answer to evaluating q over multiple documents in D, and its probability (or degree of certainty in
terms of possible worlds) is the combination of probabilities of possible worlds related to q.
Therefore, one way to perform query processing on probabilistic XML document P is to
enumerate all possible worlds according to P, evaluate the twig query q over each possible world
one by one, and finally compute the probability of each answer. Enumeration however is often
intractable, because it is NP-complete to determine if there is a match of q in some possible
worlds of P. Fortunately, the user usually does not need all matches and the top-K matches, which
have largest probabilities, may be sufficient.

Result Compatibility Analysis
QUEST (Qi, Candan, Sapino, & Kintigh, 2007) captures the compatibility among result
instances, a result instance and a set of results or among sets of result, using a reflexive and
symmetric “≈” relation:

• Given two result instances ir and jr , ji rr ≈ if and only if the result instances considered
together do not violate any structural constraints inherent in XML.

• Given a result instance r ′ and a set of result instances },,,{ 21 NrrrR …= , Rr ≈′ , if
and only if Rri ∈∀ , irr ≈′ .

• Given two sets of result instances },,,{ 21 NrrrR …= and },,,{ 21 MuuuU …= , UR ≈

if and only if Rri ∈∀ , Uu j ∈∀ , ji ur ≈ .

 Instead of defining the model on the data itself, QUEST focuses on models of the query
results. Given a set of results, R , a compatibility graph, cG , is used by QUEST to capture all
pairwise compatibility relationships. (Qi et al., 2006), then defines a model, composed of
compatible result paths, as a maximal clique in the compatibility graph. For each pair of nodes
(representing result paths), an edge is included between them if they are compatible. QUEST
provides various result exploration options to the user to enable her to obtain a high level
understanding of the available data related to her query
 The maximal cliques in a graph can be exponential in the number of vertices (Moon &
Moser, 1965). There are polynomial time delay algorithms for enumeration of cliques (i.e., if the
graph of size n contains C cliques, the time to output all cliques is bounded by ()kn CΟ for some

constant k) (1988), but in general graphs, C can be exponential in n; for example as many as 33n
in Moon-Moser's graphs (Moon & Moser, 1965). (Qi et al., 2006) also observes that it is possible
to avoid enumeration of cliques or finding of the maximal cliques in the entire compatibility
graph, when supporting many of the relevant exploration tasks. For instance, the task of counting
the number of maximal cliques a path occurs in can be performed by counting those maximal
cliques containing only its neighbors. Also defining the models on the query results as opposed to
the data itself, (Qi, Candan, & Sapino, 2007a) is able to significantly reduce the complexity of
model-based analysis.

Data and Result Compatibility Analysis
FICSR (Candan et al., 2008; Qi, Candan, & Sapino, 2007a) also performs model-based analysis to
compute trust (or agreement) values associated with assertions that make up an integrated data
representation. To efficiently compute the agreement values, during an initial off-line analysis
process, FICSR partitions the integrated relationship graph into small-sized constraint zones, each
consisting of a mutually-dependent set of relationship constraints. Given a zone, trust value
associated with an assertion in this zone is defined in terms of the alternative models in which the
assertion is valid versus the total number models of the zone. Figure 9 illustrates this process with
an example. Figure 9(a) is a simplified version of the integrated relationship graph shown in
Figure 4(c). In Figure 9(b) this integrated graph is split into six zones; note that the relationship
constraints contained in each zone are mutually-dependent. For example, in zone 6, there are two
mutually-dependent relationships both of which must exist concurrently in any model. FICSR
first analyzes each zone individually to obtain an agreement score for each relationship
alternative. Figure 9(c) shows an example of this zone analysis process: in this example, the
agreement value of the relationship between nodes “lname” and “president-name” in zone 6 is
computed as 0.5, because this relationship is valid only in one of the two possible models of this
zone (see Figure 9(d)). While the agreement analysis process is still NP-complete, the initial
zone-partitioning of the graph and the per-zone nature of the agreement analysis prevent this off-
line process from becoming unacceptably costly. In FICSR, the agreement score of each result is
computed based on the agreement scores of the relationships involved in the result; more
specifically, given agreement values associated to the underlying assertions, the agreement of a
result, r , consisting of assertions, ()A r , is computed as

∏
∈

=
)(

).()(
rAa

i
i

aagrragr

 FICSR relies on ranked query processing techniques (Qi, Candan, & Sapino, 2007b) to
identify top-K high-agreement results to present to the user. While assertions and result
agreement values are based on the initial off-line analysis of the integrated data representation,
FICSR also performs a QUEST-like run-time analysis on the results of a given query. In
particular, given two results 1r and 2r and their assertions 1()A r and 2()A r , the compatibility
between the results are measures in terms of conflicts that assertions in 1()A r and 2()A r cause
when considered together. If the results identified are found to imply conflicts when considered
together, then this leads to the reduction of the validity assessments of these results when
presented to the user. In particular, when the highest-agreement results are mutually conflicting
and thus resulting in low validity, this triggers a feedback process that calls for inputs from the
user. The results of the user feedback are reflected on the trust values associated with the

assertions in the integrated data as well as the mappings that lead to these trust values to be
computed in the first place.

Figure 9(a). [A simplified version of the integrated relationship graph in Figure 4(c)]. (Put
‘Figure 9(a).tif’ here)
Figure 9(b). [The zone-graph: individual zones in the graph are highlighted with different
shades. Note that zones are linked to each other through data/concept nodes.] (Put ‘Figure
9(b).tif’ here)
Figure 9(c). [After zone analysis, each edge in the integrated relationship graph has a
corresponding agreement value.]. (Put ‘Figure 9(c).tif’ here)
Figure 9(d). [The two models of zone 6]. (Put ‘Figure 9(d).tif’ here)
Figure 9. [An example of the zone analysis process of FICSR].

Twig Query Processing on Graphs
A structural summary or a merged XML document is often a directed (and weighted) graph
instead of being a simple tree. On the other hand, in XML databases, query processors are often
designed to exploit the tree-like structure of the XML data. In fact, many existing (binary or
holistic) structural join operators, including TwigStack/PathStack (Bruno, Koudas, & Srivastava,
2002), iTwigJoin (Chen, Lu, & Ling, 2005), and Stack-Tree-Desc/Anc (Al-Khalifa et al., 2002),
are structurally-informed variants of the standard sort-merge join algorithm: they require that the
data nodes are available in a structurally sorted order before the join operation can be performed.
To implement structural join operations efficiently, most XML query processors rely on index
structures based on structurally-informed node labeling schemes (such as Dietz's labeling (Dietz,
1982), which assigns interval-labels to nodes in such a way that descendant nodes have intervals
that are contained within the intervals of their ancestors). This enables checking the ancestor-
descendant relationships quickly. Such structural labeling and sorting are especially feasible
when the underlying data has a tree-structure, but becomes non-trivial when the queries have to
be evaluated on graph-data. When data is graph structured, however, these techniques are not
directly applicable. (Computer & Vagena, 2004) proposes techniques for evaluating twig queries
over graph-structured data. Authors observe that, in a directed graph, the ancestor-descendant
relationship of a tree pattern edge is satisfied if there is a path from the ancestor node to the
descendant node. Thus, the authors rephrase the ancestor-descendant search in terms of checking
reachability in the graph and propose a 2-hop cover based labeling scheme (based on (E. Cohen,
Halperin, Kaplan, & Zwick, 2002)) to help answer ancestor-descendant queries efficiently
(especially on directed acyclic graphs).

Figure 10(a). [A weighted graph fragment]. (Put ‘Figure 10(a).tif’ here)
Figure 10(b). [One result of the query]. (Put ‘Figure 10(b).tif’ here)
Figure 10(c). [A second result of the query]. (Put ‘Figure 10(c).tif’ here)
Figure 10. [A keyword query, {department, grant, professor}, and two matches on a sample
weighted graph].

 When data have weights, not all results are equally desirable: results need to be ranked
according to the underlying cost model. For instance, (Fuhr & Gro\ssjohann, 2001) presents an
XML query language extended with IR-related features, including weighting and ranking.
XRANK (Guo, Shao, Botev, & Shanmugasundaram, 2003) and ObjectRank (Balmin, Hristidis, &

Papakonstantinou, 2004) compute PageRank (Brin & Page, 1998) style ranking results for
keyword-based (IR-style) database queries. XSEarch (S. Cohen, Mamou, Kanza, & Sagiv, 2003),
a search engine for XML data, relies on extended information retrieval techniques for ranking.
Retrieval by information unit (RIU) (W. Li, Candan, Vu, & Agrawal, 2001), BANKS-I (Bhalotia,
Hulgeri, Nakhe, & Sudarshan, 2002), BANKS-II (Kacholia et al., 2005), and DPBF (Ding, Yu,
Wang, Qin, & Lin, 2007), on the other hand, recognize that in many cases a single node is not
sufficient to answer user queries. Instead, given a query consisting of a set of keywords, these
algorithms try to find small subtrees (in a given weighted graph) containing all the query
keywords. An example is shown in Figure 10. In this example, the user provided three query
keywords, {department, grant, professor} to be searched on weighted graph fragment in Figure
10(a); here edge weights indicate the cost or penalty of the corresponding edges. In this example,
document “a” contains keyword “grant”, document “b” contains “department” and document “c”
contains “professor”. Figure 10(b) shows two results of this query: The result in Figure 10(b) has
one more document than that in Figure 10(c), but a smaller total edge cost. Finding minimal trees
to answer keyword queries on weighted graphs is shown to be computationally expensive (W. Li
et al., 2001). Since users are usually interested in not all but top-K results, (Bhalotia et al., 2002;
Ding et al., 2007; Kacholia et al., 2005; W. Li et al., 2001) rely on efficient heuristics and
approximations for progressively identifying the smallest K trees covering the given keywords.
As we mentioned above, however, while answering keyword-based queries on graph data is
useful in various application domains (such as XML source selection (Aboulnaga & Gebaly,
2007)), for twig query processing, structural relationships between the data elements need to be
considered along with keywords and tags (Qi, Candan, & Sapino, 2007b). Thus, using the
notation in Section “Querying XML Data”, we can define the problem of top-K query processing
over a given weighted graph G as follows:

• Given a weighted graph G , a query (,)q q qq T V E= and a positive integer K , top-K
query processing over G is to obtain a set, R , of answers to q over G , in decreasing
order of agreement or trust, such that (a) the size of R is K , (b) the i -th answer has
higher agreement than the (1i+)-th answer, and (c) there are no other answers to q over
G having higher agreement than any answer in R .

 (Qi, Candan, & Sapino, 2007a) shows that ranked ancestor-descendant relationships (i.e.,
reachability problem) can be enumerated by applying Yen's top-K shortest loopless path
algorithm (Yen, 1971). Executing twig queries on the weighted graph, however, requires
combining multiple such ancestor-descendant and parent-child results. In the literature, there are a
number of ranked-join algorithms for top-K queries (Candan, Li, & Priya, 2000; Chaudhuri,
Gravano, & Marian, 2004; Fagin, 1996; C. Li, Chang, Ilyas, & Song, 2005). These rely on
weight-sorted input streams for pruning unpromising matches. In particular, (Fagin, Lotem, &
Naor, 2003; 2003) presents an NRA algorithm which (a) considers data sources which can
provide results only in (progressively) descending order of desirability and which (b) enumerates
top-K desirable join results without having to access all the data from these sources. A common
assumption behind all these algorithms, including (Fagin, Lotem et al., 2003), is that the function
which evaluates the score of combined results is monotonic. (Qi, Candan, & Sapino, 2007b)
develops top-K twig query evaluation algorithms for weighted data graphs. In particular, authors
present a cost model for the query answers and prove that answering twig queries on weighted

graphs is NP-hard. In particular, they show that, while the problem can be viewed as ranked
structural-joins along query axises, the monotonicity property, necessary for ranked-join
algorithms (Candan et al., 2000; Chaudhuri et al., 2004; Fagin, 1996; Fagin, Lotem et al., 2003;
Ilyas, Aref, & Elmagarmid, 2003; C. Li, Chang, & Ilyas, 2006), is violated. This is illustrated by
the example in Figure 11. The twig query in Figure 6 is first split into sub-queries:
“institute//department” and “institute//professor/grant”. A match “institute/school/department” to
“institute//department” is displayed in Figure 11(a), with cost 12; two matches
“institute/school/professor/grant” and “institute/professor/grant” to “institute//professor/grant” are
in Figure 11(b), with cost 10 and 9 respectively. The result in Figure 11(c), obtained by
combining “institute/school/department” (cost=12) and “institute/school/professor/grant”
(cost=10) has smaller overall cost (i.e., 17) than the result shown in Figure 11(d), obtained by
combining “institute/school/department” (cost=12) and “institute/professor/grant” (cost=9). The
failure of monotonicity in this example is due to the overlapping path fragment “institute/school”
between the sub-results that are being combined. Consequently, when processing twig queries,
the very common strategy of splitting the twig query into separated path queries, evaluating each
path query independently, and then combining sub-results (i.e., results of path queries) with
ranked join algorithm cannot be implemented using traditional ranked join algorithms. Instead,
authors present a sum-max monotonicity property that holds top-K twig query evaluation and they
develop a new HR-Join algorithm for performing ranked joins efficiently to compute answers to
twig queries. (Kimelfeld & Sagiv, 2006) also considers the problem of executing twig-patterns
over weighted graphs and proposes polynomial delay (i.e., the time between two consecutive
results is polynomial in the size of the input) execution strategies for ranked enumeration of
results.

Figure 11(a). [A match for sub-query “institute//department” (cost = 12)]. (Put ‘Figure 11(a).tif’
here)
Figure 11(b). [Two matches for sub-query “institute//professor/grant” (cost = 10 and 9)]. (Put
‘Figure 11(b).tif’ here)
Figure 11(c). [A match for query “institute[//department]//professor/grant” (cost = 17)]. (Put
‘Figure 11(c).tif’ here)
Figure 11(d). [A match for query “institute[//department]//professor/grant” (cost = 21)]. (Put
‘Figure 11(d).tif’ here)
Figure 11. [An example for ranked structural-join, where the monotonicity property is not
satisfied].

FUTURE RESEARCH DIRECTIONS
The existing works in this area have provided promising solutions, but more challenges lay ahead.
Pay-as-you-go is a promising strategy towards avoiding the cost of conflict resolution in XML
integration. Still, cost of query processing is one of the most significant challenges in XML
integration. When the number of involved data sources becomes large or when they are highly
conflicting, query processing requires more efficient support at the levels of hardware or
software. Parallelizing architectures can be exploited to speed up the query processing through
data-partitioned parallel evaluation. New computing frameworks, such as MapReduce (Dean &
Ghemawat, 2004) will certainly help in this direction.
 Another issue to be considered here can be summarized as the “too-many-answers” problem
(Amer-Yahia et al., 2001). When the size of the integrated relationship graph is large, there may

be too many results of a given query. It is not possible to display all of them to the user from a
practical point of view. Unfortunately, the top-K strategy may not help with this problem, in that
not all results are comparable if they do not have scores associated with. Two thoughts can lead to
solutions to this problem: Firstly, sampling techniques, where a properly selected sample of the
results is presented to the user, can help. Secondly, supported by relevance feedback techniques,
query refinement can help user achieve more precise queries to quickly locate information of
interest. (Candan et al., 2008; Qi, Candan, & Sapino, 2007a), for example, leverage user feedback
for eliminating conflicts identified during query processing. After the system processes the query
over data with conflicts and provides a ranked list of results along with highlights showing the
conflicts identified within these results, the user is allowed to assess these results and conflicts.
The user assessment can be absolute (e.g., “result X is wrong and should be eliminated”) or
relative (e.g., “I think result X agrees more with my domain knowledge than result Y”). These
assessments are used not only to re-rank query results, but also to re-assess (a) importance of
constraints that lead to these conflicts, (b) the trust/agreement values associated with the merged
data representation (used in computing the query results), and (c) the qualities of mapping rules
(which are used for creating the merged data representation in the first place). Feedback driven
XML query processing requires further research into (a) the design of easy-to-use interfaces for
capturing the user’s feedback and (b) algorithms for reflecting the user feedback effectively and
efficiently into the conflict resolution and query processing stages of the XML integration
workflow.

CONCLUSION
Today, XML is the backbone of all contemporary Web standards and it is increasingly serving as
the most ubiquitous data exchange format. While, due to its structural flexibility, in 90’s XML
gained acceptance as a potential solution to the data interoperability problem, this more flexible
nature also implies that there are fewer cues and constraints to inform the integration process. In
other words, from one hand, having fewer constraints to deal with implies easier compatibility
across data sources; from the other hand, this also implies that there are many more ways to put
data together and effective integration requires support from the user. Pay-as-you-go integration,
which is becoming more common, is a step in this direction and future research will increasingly
focus on techniques that enable context- and user-support to eliminate uncertainties for more
effective integration solutions.

References

Aboulnaga, A., & Gebaly, K. E. (2007). μBE: User guided source selection and schema

mediation for internet scale data integration. ICDE, 186-195.

Achard, F., Vaysseixm, G., & Barillot, E. (2001). XML, bioinformatics and data integration.

Bioinformatics, 17(2), 115-125.

Afrati, F., Chirkova, R., Gergatsoulis, M., Kimelfeld, B., Pavlaki, V., & Sagiv, Y. (2009). On

rewriting XPath queries using views. EDBT '09: Proceedings of the 12th International

Conference on Extending Database Technology, Saint Petersburg, Russia. 168-179.

Al-Khalifa, S., Jagadish, H. V., Patel, J. M., Wu, Y., Koudas, N., & Srivastava, D. (2002).

Structural joins: A primitive for efficient XML query pattern matching. ICDE, 141.

Altinel, M., & Franklin, M. J. (2000). Efficient filtering of XML documents for selective

dissemination of information. VLDB '00: Proceedings of the 26th International Conference

on very Large Data Bases, 53-64.

Amer-Yahia, S., Cho, S., Lakshmanan, L. V. S., & Srivastava, D. (2001). Minimization of tree

pattern queries. SIGMOD Conference, 497-508.

Arenas, M., & Libkin, L. (2008). XML data exchange: Consistency and query answering. Journal

of the ACM (JACM), 55(2)

Arion, A., Benzaken, V., & Manolescu, I. a. P.,Yannis. (2007). Structured materialized views for

XML queries. VLDB '07: Proceedings of the 33rd International Conference on very Large

Data Bases, Vienna, Austria. 87-98.

Balmin, A., Hristidis, V., & Papakonstantinou, Y. (2004). ObjectRank: Authority-based keyword

search in databases. VLDB, 564-575.

Balmin, A., Özcan, F., Beyer, K. S., Cochrane, R. J., & Pirahesh, H. (2004). A framework for

using materialized XPath views in XML query processing. VLDB '04: Proceedings of the

Thirtieth International Conference on very Large Data Bases, Toronto, Canada. 60-71.

Bertossi, L. E. (2006). Consistent query answering in databases. SIGMOD Record, 35(2), 68-76.

Bhalotia, G., Hulgeri, A., Nakhe, C., & Sudarshan, S. C. a. S. (2002). Keyword searching and

browsing in databases using BANKS. ICDE, 431-440.

Bonifati, A., Chang, E. Q., Ho, T., Lakshmanan, L. V. S., & Pottinger, R. (2005). HePToX:

Marrying XML and heterogeneity in your P2P databases. VLDB, 1267-1270.

Bouchou, B., Alves, M. H. F., & Musicante, M. A. (2003). Tree automata to verify XML key

constraints. WebDB, 37-42.

Brin, S., & Page, L. (1998). The anatomy of a large-scale hypertextual web search engine.

Computer Networks, 30(1-7), 107-117.

Bruno, N., Koudas, N., & Srivastava, D. (2002). Holistic twig joins: Optimal XML pattern

matching. SIGMOD Conference, 310-321.

Buneman, P., Fan, W., & Weinstein, S. (1999). Query optimization for semistructured data using

path constraints in a deterministic data model. DBPL, 208-223.

Calvanese, D., Giacomo, G. D., Lenzerini, M., & Vardi, M. Y. (1999). Answering regular path

queries using views. In Proc. of the 16th IEEE Int. Conf. on Data Engineering (ICDE 2000,

389-398.

Candan, K. S., Cao, H., Qi, Y., & Sapino, M. L. (2008). System support for exploration and

expert feedback in resolving conflicts during integration of metadata. VLDB J., 17(6), 1407-

1444.

Candan, K. S., Dönderler, M. E., Qi, Y. a. R.,Jaikannan, & Kim, J. W. (2006). FMware:

Middleware for efficient filtering and matching of XML messages with local data.

Middleware '06: Proceedings of the ACM/IFIP/USENIX 2006 International Conference on

Middleware, Melbourne, Australia. 301-321.

Candan, K. S., Grant, J., & Subrahmanian, V. S. (1997). A unified treatment of null values using

constraints. Inf.Sci., 98(1-4), 99-156.

Candan, K. S., Hsiung, W., Chen, S. a. T.,Junichi, & Agrawal, D. (2006). AFilter: Adaptable

XML filtering with prefix-caching suffix-clustering. VLDB '06: Proceedings of the 32nd

International Conference on very Large Data Bases, Seoul, Korea. 559-570.

Candan, K. S., Li, W., & Priya, M. L. (2000). Similarity-based ranking and query processing in

multimedia databases. Data Knowl.Eng., 35(3), 259-298.

Cautis, B., Deutsch, A., & Onose, N. (2008). XPath rewriting using multiple views: Achieving

completeness and efficiency. WebDB,

Chaudhuri, S., Gravano, L., & Marian, A. (2004). Optimizing top-k selection queries over

multimedia repositories. IEEE Trans.Knowl.Data Eng., 16(8), 992-1009.

Chen, T., Lu, J., & Ling, T. W. (2005). On boosting holism in XML twig pattern matching using

structural indexing techniques. SIGMOD Conference, 455-466.

Cherukuri, V. S., & Candan, K. S. (2008). Propagation-vectors for trees (PVT): Concise yet

effective summaries for hierarchical data and trees. LSDS-IR '08: Proceeding of the 2008

ACM Workshop on Large-Scale Distributed Systems for Information Retrieval, Napa Valley,

California, USA. 3-10.

Chiticariu, L., Kolaitis, P. G., & Popa, L. (2008). Interactive generation of integrated schemas.

SIGMOD Conference, 833-846.

Cohen, E., Halperin, E., Kaplan, H., & Zwick, U. (2002). Reachability and distance queries via 2-

hop labels. SODA, 937-946.

Cohen, S., Mamou, J., Kanza, Y., & Sagiv, Y. (2003). XSEarch: A semantic search engine for

XML. VLDB, 45-56.

Computer, Z. V., & Vagena, Z. (2004). Twig query processing over graph-structured XML data.

In WEBDB, Paris, Frence, 43-48.

Cooper, B. F. (2004). Guiding queries to information sources with InfoBeacons. Middleware '04:

Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middleware,

Toronto, Canada. 59-78.

Cruz, I. F., Xiao, H., & Hsu, F. (2004). Peer-to-peer semantic integration of XML and RDF data

sources. AP2PC, 108-119.

Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters.

OSDI'04: Proceedings of the 6th Conference on Symposium on Opearting Systems Design

\& Implementation, San Francisco, CA. 10-10.

Decker, S., Harmelen, F. V., Broekstra, J., Erdmann, M., Fensel, D., Horrocks, I., et al. (2000).

The semantic web - on the respective roles of XML and RDF. IEEE Internet Computing, 4,

http://www.ontoknow.

Deutsch, A., & Tannen, V. (2003a). MARS: A system for publishing XML from mixed and

redundant storage. VLDB '2003: Proceedings of the 29th International Conference on very

Large Data Bases, Berlin, Germany. 201-212.

Deutsch, A., & Tannen, V. (2003b). Reformulation of XML queries and constraints. ICDT, 225-

241.

Diao, Y., Altinel, M., Franklin, M. J., Zhang, H., & Fischer, P. (2003). Path sharing and predicate

evaluation for high-performance XML filtering. ACM Trans.Database Syst., 28(4), 467-516.

Dietz, P. F. (1982). Maintaining order in a linked list. STOC, 122-127.

Ding, B., Yu, J. X., Wang, S., Qin, L., & Lin, X. Z. a. X. (2007). Finding top-k min-cost

connected trees in databases. ICDE, 836-845.

DOM. Http://www.w3.org/DOM

Dong, X. L., Halevy, A. Y., & Yu, C. (2007). Data integration with uncertainty. VLDB, 687-698.

Fagin, R. (1996). Combining fuzzy information from multiple systems. PODS, 216-226.

Fagin, R., Kolaitis, P. G., & Popa, L. (2003). Data exchange: Getting to the core. PODS, 90-101.

Fagin, R., Lotem, A., & Naor, M. (2003). Optimal aggregation algorithms for middleware.

J.Comput.Syst.Sci., 66(4), 614-656.

Franklin, M. J., Halevy, A. Y., & Maier, D. (2005). From databases to dataspaces: A new

abstraction for information management. SIGMOD Record, 34(4), 27-33.

Fuhr, N., & Gro\ssjohann, K. (2001). XIRQL: A query language for information retrieval in XML

documents. SIGIR, 172-180.

Gao, J., Wang, T., & Yang, D. (2007). MQTree based query rewriting over multiple XML views.

DEXA, 562-571.

Goldman, R., & Widom, J. (1997). DataGuides: Enabling query formulation and optimization in

semistructured databases. VLDB}'97, 436-445.

Gu, J., Xu, B., & Chen, X. (2008). An XML query rewriting mechanism with multiple ontologies

integration based on complex semantic mapping. Inf.Fusion, 9(4), 512-522.

Guo, L., Shao, F., Botev, C., & Shanmugasundaram, J. (2003). XRANK: Ranked keyword search

over XML documents. SIGMOD Conference, 16-27.

Halevy, A. Y. (2001). Answering queries using views: A survey. VLDB J., 10(4), 270-294.

Halevy, A. Y., Ives, Z. G., Madhavan, J., Mork, P., Suciu, D., & Tatarinov, I. (2004). The piazza

peer data management system. IEEE Trans.Knowl.Data Eng., 16(7), 787-798.

Halevy, A. Y., Ives, Z. G., Suciu, D., & Tatarinov, I. (2003). Schema mediation in peer data

management systems. In ICDE, 505-516.

Halevy, A., Rajaraman, A., & Ordille, J. (2006). Data integration: The teenage years. VLDB}, 9.

Ilyas, I. F., Aref, W. G., & Elmagarmid, A. K. (2003). Supporting top-k join queries in relational

databases. VLDB, 754-765.

Ives, Z. G., Halevy, A. Y., & Weld, D. S. (2002). An XML query engine for network-bound data.

VLDB J., 11(4), 380-402.

Jagadish, H. V., Al-Khalifa, S., Chapman, A., Lakshmanan, L. V. S., Nierman, A., Paparizos, S.,

et al. (2002). TIMBER: A native XML database. VLDB J., 11(4), 274-291.

Jeffery, S. R., Franklin, M. J., & Halevy, A. Y. (2008). Pay-as-you-go user feedback for

dataspace systems. SIGMOD '08: Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, Vancouver, Canada. 847-860.

Johnson, D. S., Papadimitriou, C. H., & Yannakakis, M. (1988). On generating all maximal

independent sets. Inf.Process.Lett., 27(3), 119-123.

Kacholia, V., Pandit, S., Chakrabarti, S., Sudarshan, S., Desai, R., & Karambelkar, H. (2005).

Bidirectional expansion for keyword search on graph databases. VLDB, 505-516.

Katsis, Y., Deutsch, A., & Papakonstantinou, Y. (2008). Interactive source registration in

community-oriented information integration. Proc.VLDB Endow., 1(1), 245-259.

Kimelfeld, B., & Sagiv, Y. (2006). Twig patterns: From XML trees to graphs. WebDB,

Kimelfeld, B., & Sagiv, Y. (2008). Modeling and querying probabilistic XML data. SIGMOD

Rec., 37(4), 69-77.

Koloniari, G., Petrakis, Y., & Pitoura, E. (2003). Content-based overlay networks for XML peers

based on multi-level bloom filters. DBISP2P, 232-247.

Koloniari, G., & Pitoura, E. (2005). Peer-to-peer management of XML data: Issues and research

challenges. SIGMOD Rec., 34(2), 6-17.

Koudas, N., Rabinovich, M., Srivastava, D., & Yu, T. (2004). Routing XML queries. ICDE, 844.

Lakshmanan, L. V. S., Wang, H., & Zhao, Z. (2006). Answering tree pattern queries using views.

VLDB '06: Proceedings of the 32nd International Conference on very Large Data Bases,

Seoul, Korea. 571-582.

Lenzerini, M. (2002). Data integration: A theoretical perspective. PODS '02: Proceedings of the

Twenty-First ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, Madison, Wisconsin. 233-246.

Lenzerini, M. (2004). Principles of P2P data integration. DIWeb, 7-21.

Levy, A. Y., Mendelzon, A. O., Sagiv, Y., & Srivastava, D. (1995). Answering queries using

views. PODS, 95-104.

Li, C., Chang, K. C., & Ilyas, I. F. (2006). Supporting ad-hoc ranking aggregates. SIGMOD

Conference, 61-72.

Li, C., Chang, K. C., Ilyas, I. F., & Song, S. (2005). RankSQL: Query algebra and optimization

for relational top-k queries. SIGMOD Conference, 131-142.

Li, W., Candan, K. S., Vu, Q., & Agrawal, D. (2001). Retrieving and organizing web pages by

``information unit''. WWW, 230-244.

Liu, M., & Ling, T. W. (2000). A data model for semistructured data with partial and inconsistent

information. EDBT, 317-331.

Manolescu, I., Florescu, D., Kossmann, D., Xhumari, F., & Olteanu, D. (2000). Agora: Living

with XML and relational. VLDB '00: Proceedings of the 26th International Conference on

very Large Data Bases, 623-626.

McBrien, P., & Poulovassilis, A. (2003). Defining peer-to-peer data integration using both as

view rules. DBISP2P, 91-107.

McHugh, J., Abiteboul, S., Goldman, R., & Widom, D. Q. a. J. (1997). Lore: A database

management system for semistructured data. SIGMOD Record, 26(3), 54-66.

Mercer, R. E., & Risch, V. (2003). Properties of maximal cliques of a pair-wise compatibility

graph for three nonmonotonic reasoning system. Answer Set Programming,

Mihaila, G. A., Raschid, L., & Tomasic, A. (2002). Locating and accessing data repositories with

WebSemantics. The VLDB Journal, 11(1), 47-57.

Moon, J. W., & Moser, L. (1965). On cliques in graphs. Israel Journal of Mathematics, 3(1), 23-

28.

Nguyen, L. T., Yee, W. G., & Frieder, O. (2008). Adaptive distributed indexing for structured

peer-to-peer networks. CIKM '08: Proceeding of the 17th ACM Conference on Information

and Knowledge Management, Napa Valley, California, USA. 1241-1250.

Onose, N., Deutsch, A., Papakonstantinou, Y., & Curtmola, E. (2006). Rewriting nested XML

queries using nested views. SIGMOD '06: Proceedings of the 2006 ACM SIGMOD

International Conference on Management of Data, Chicago, IL, USA. 443-454.

Pankowski, T. (2008). XML data integration in SixP2P: A theoretical framework. Intl. Workshop

on Data Management in Peer-to-Peer Systems, 11-18.

Peng, F., & Chawathe, S. S. (2003). Streaming XPath queries in XSQ. ICDE, 780-782.

Pottinger, R. A., & Bernstein, P. A. (2003). Merging models based on given correspondences.

VLDB,

Qi, Y., Candan, K. S., & Sapino, M. L. (2007a). FICSR: Feedback-based inconsistency resolution

and query processing on misaligned data sources. SIGMOD, 151-162.

Qi, Y., Candan, K. S., & Sapino, M. L. (2007b). Sum-max monotonic ranked joins for evaluating

top-K twig queries on weighted data graphs. VLDB, 507-518.

Qi, Y., Candan, K. S., Sapino, M. L., & Kintigh, K. W. (2006). QUEST: QUery-driven

exploration of semistructured data with ConflicTs and partial knowledge. CleanDB,

Qi, Y., Candan, K. S., Sapino, M. L., & Kintigh, K. W. (2007). Integrating and querying

taxonomies with quest in the presence of conflicts. SIGMOD '07: Proceedings of the 2007

ACM SIGMOD International Conference on Management of Data, Beijing, China. 1153-

1155.

Sarma, A. D., Dong, X., & Halevy, A. (2008). Bootstrapping pay-as-you-go data integration

systems. SIGMOD '08: Proceedings of the 2008 ACM SIGMOD International Conference

on Management of Data, Vancouver, Canada. 861-874.

Suciu, D. (2002). Distributed query evaluation on semistructured data. ACM Trans.Database

Syst., 27(1), 1-62.

Tajima, K., & Fukui, Y. (2004). Answering XPath queries over networks by sending minimal

views. VLDB, 48-59.

Tang, N., Yu, J. X., Özsu, M. T., Choi, B., & Wong, K. (2008). Multiple materialized view

selection for XPath query rewriting. ICDE, 873-882.

Tatarinov, I., & Halevy, A. (2004). Efficient query reformulation in peer data management

systems. SIGMOD '04: Proceedings of the 2004 ACM SIGMOD International Conference

on Management of Data, Paris, France. 539-550.

XML. Extensible markup language: Http://www.w3.org/XML/

Xpath. (1999). Http://www.w3.org/TR/xpath

Xquery. (2006).

Xu, W., & Özsoyoglu, Z. M. (2005). Rewriting XPath queries using materialized views. VLDB

'05: Proceedings of the 31st International Conference on very Large Data Bases,

Trondheim, Norway. 121-132.

Yen, J. Y. (1971). Finding the K shortest loopless paths in a network. MANAGEMENT SCIENCE,

17(11), 712-716.

Zhuge, H., Liu, J., Feng, L., & He, C. (2004). Semantic-based query routing and heterogeneous

data integration in peer-to-peer semantic link networks. ICSNW, 91-107.

