Using Ayllu and the Amigobot

Required:

Visual C++ 5.0 or greater

Windows 98

Ayllu is a library that is used to make controlling the Amigobot easier. It is written in C, like the code for the Legobot. Programming the Amigobot is quite different from programming the Legobot. The Amigobot is controlled by your computer at all times, instead of storing the code in its own memory.

Important: Due to an unknown bug, you may need to run Saphira and connect / disconnect from the robot in order to get Ayllu programs to run. You may need to do this every time you reset or turn on the robot.
To make the robot go once a program is executing, you must press the black button on the Amigobot.

Ayllu comes with a project file, ayllu.dsw. It’s preconfigured to make a file called griptest.exe. Double click on it to open it in Visual C++. To change the file that it compiles, select Project > Settings, and choose the Link tab. Change the output file from griptest.exe to whatever you want. To change the .c file compiled, put it into the File List shown on the left.

Note that all Ayllu files must include the file “ayllu.h”.

The Amigobot uses a series of behaviors and processes to determine its actions. A behavior is a collection of processes running in a common environment. For a simple example of how the Amigobot runs, open straightline.c in the AylluDemos subdirectory. In this program, we want to make the robot move in a straight line and not hit anything directly in front of it. If the robot sees something in front of it, it will slow down as a function of its distance from the object. If it hits something, it should back up. We’ll follow this pseudocode algorithm:

if min_sonar_dist > backup_dist (in millimeters)

velocity = min(scale * min_sonar_dist, max_speed) mm/second

else velocity = -100 mm/second
Look at the implementation of this pseudocode in straightline.c:

ayDefProcess(SetSafeVelProc)

{

 ayLocalPort minsonar, velocity, scale, maxspeed, backupdist;

 int closest, safevel;

 if ((closest=ayReadIntPort(minsonar)) > ayReadIntPort(backupdist))

 ayWriteIntPort(velocity, min(ayReadFloatPort(scale) * closest,

 ayReadIntPort(maxspeed)));

 else

 ayWriteIntPort(velocity, -100);

 ayWriteIntPort(minsonar, 5000);

}
Note that we are defining a process that will run inside of a behavior.

Type ayLocalPort is a register that can hold a single value of a specific type, be it integer, floating point, or character array. It can be accessed by other behaviors, unlike a slot, which only the containing behavior can access. In this process, five ports are defined. Ports can be connected to devices on the bot like distance finders or motors. By reading from a port you can read devices like distance finders; by writing to the port, you can control a motor. The two integers are accessible by this process only.

We are reading values from minsonar and backupdist without yet seeing how they are assigned. To do that, we need to look at the behavior that SetSafeVelProc belongs to, and the the main procedure.

ayDefBehaviorClass(SafeVelocity)

{ ayINTERFACE {

ayIntMinPort(minsonar, 5000);

/* all of these ports */

ayIntPort(velocity, 0);

/* can be accessed from */

ayFloatPort(scale, 0.3);

/* outside the behavior */

ayIntPort(maxspeed, 500);

ayIntPort(backupdist, 400);

 }

 ayPROCESSES {

ayInitProcess(SetSafeVelProc, ratepersecond(20));

 }

/* the process defined */

}

/* as SetSafeVel will */

/* run 20 times/sec */

In this behavior, we set the ports to initial values. ayIntMinPort is a port that chooses a minimum value from several readings, and the rest should be self-explanatory. We also set this behavior to have one process SetSafeVelProc that is called 20 times a second.

Lastly, we initialize the robot and connect the ports to devices.

void main(void)

{

 ayInitPioControl("modem");

 ayInitBehavior(SafeVelocity, Safety);

 ayConnect(USI, Front, Safety, minsonar);

 ayConnect(USI, LeftFront, Safety, minsonar);

 ayConnect(USI, RightFront, Safety, minsonar);

 ayConnect(Safety, velocity, PBC, Velocity);

 ayRunBehaviors();

}

Note that you need to change the control device from “modem” to “COM1” or the COM port you are using. “modem” is the default, and is used for the Macintosh only.

We initialize the behavior SafeVelocity into an instance called Safety, using the function ayInitBehavior.

ayConnect has this prototype: ayConnect(srcbeh, srcport, destbeh, destport). Srcbeh and destbeh are behavior instances; srcport and destport are port instances.

Then, we connect the front, left front, and right front sonar detectors to the minsonar port. The minimum of the three sonar readings will be written to the minsonar port when a sample is read. USI is a sonar-interpreting behavior. Next, the Safety behavior reads the property velocity (set by SafeVelocity), and tells the motors to go at that velocity. PBC is a base-controlling behavior. PBC, USI, and other predefined behaviors are defined in chapter 5 of the Ayllu manual.

Obviously, ayRunBehaviors tells all behaviors to begin running. This concludes the introduction to programming with Ayllu.

