CSE 591 - FALL 03.

Chitta Baral

Department of Computer Science and Engineering Arizona State University Tempe, AZ 85287-5406 USA chitta@asu.edu

http://www.public.asu.edu/~cbaral/cse571-f99/

October 12, 2003

PROBABILITY, BAYES NETS AND CAUSALITY

Probability, Bayes nets and Causality

Basic Concepts in probability theory

 \bullet 3 basic axioms of probability calculus in the Bayesian formalism

 $-0 \le P(A) \le 1$

- -P(Sure proposition) = 1
- $-P(A \lor B) = P(A) + P(B)$, if A and B are mutually exclusive.

*
$$P(A) = P(A, B) + P(A, \neg B)$$

($P(A, B)$) is short for $P(A \land B)$

* If B_i , i = 1, 2, ..., n is a set of exhaustive and mutually exclusive propositions (called a partition or a variable), then

$$P(A) = \sum_{i} P(A, B_i)$$

 \bullet Basic expression in Bayesian formalism

- Conditional probabilities of the form P(A|B)

- means: belief in A under the assumption that B is known with absolute certainty.
- -P(A|B) = P(A) A and B are independent.
- -P(A|B,C) = P(A|C) A and B are conditionally independent given C.
- Dawid's notation: $(A \amalg B | C)$
- Bayesian philosophers see the conditional relationship as more basic than that of joint events.

 $P(A \wedge B) = P(A|B)P(B)$

Probability, Bayes nets and Causality

Bayesian Networks

- Goal:
 - to provide convenient means of expressing substantive assumptions
 - to facilitate economical representations of joint probability functions
 - to facilitate efficient inferences from observations
- Idea: Directed acyclic graphs is used to represent causal or temporal relationship
- Basic decomposition scheme

$$- P(A \land B) = P(A|B)P(B) - P(x_1, x_2, x_3) = P(x_1 \land x_2 \land x_3) = P(x_1|x_2, x_3)P(x_2 \land x_3) = P(x_1|x_2, x_3)P(x_2|x_3)P(x_3)$$

Probability, Bayes nets and Causality

- In general,
 P(x₁,...,x_n) = ∏_j P(x_j|x₁,...,x_{j-1})
 * Let PA_j ⊆ {x₁,...,x_{j-1}}, such that x_j is independent of {x₁,...,x_{j-1}} \ PA_j once we know the value of PA_j.
 * We can then write P(x_j|x₁,...,x_{j-1}) = P(x_j|pa_j)
 * If PA_j is a minimal set of predecessors of X_j that renders X_j independent of all its other predecessors, then PA_j is said to be Markovian parents of X_j.
- \bullet Markov factorization: If a probability function P admits the factorization

$$P(x_1,\ldots,x_n) = \prod_j P(x_j | parents_j)$$

relative to a DAG G, we say G represents P, that G and P are compatible, or P is Markov relative to G.

Probability, Bayes nets and Causality

Inference with Bayesian Networks

- Prediction and abduction
 - -x a set of observations

-y – a set of variables deemed important for prediction or diagnosis

- Need to compute P(y|x).

$$P(y|x) = \frac{p(y,x)}{p(x)} = \frac{\sum_{s} P(y,x,s)}{\sum_{y,s} P(y,x,s)}$$

- An example:
 - The Network

* P(tampering) = 0.02; P(fire) = 0.01

* Directed Edges: (tampering, alarm), (fire, alarm), (fire, smoke), (alarm, leaving), (leaving, report)

CSE 591 - FALL 03.

Probability, Bayes nets and Causality

* local probability distributions: P(alarm|fire, tampering) = 0.5; $P(alarm|fire, \neg tampering) = 0.99;$ $P(alarm | \neg fire, tampering) = 0.85;$ $P(alarm | \neg fire, \neg tampering) = 0.0001.$ $P(smoke|fire) = 0.9; P(smoke, \neg fire) = 0.01.$ $P(leaving|alarm) = 0.88; P(leaving|\neg alarm) = 0.001.$ $P(report|leaving) = 0.75; P(report|\neg leaving) = 0.01.$

- Different kinds of inferences

* Diagnostic inferences: P(fire|report)

* Causal inferences (prediction): P(leaving|tampering)

* Intercausal inferences: P(fire|alarm, tampering)

* Mixed inferences: P(alarm|report, fire)

– An illustration:

P(tampering | report, smoke)

 $= \frac{P(tampering, report, smoke)}{P(report, smoke)}$

Probability, Bayes nets and Causality

$$= \frac{\sum_{leaving, alarm, fire} P(tampering=T, report=T, smoke=T, leaving, alarm, fire)}{\sum_{tampering, leaving, alarm, fire} P(report=T, smoke=T, tampering, leaving, alarm, fire)} * Let us compute the denominator D first.
$$\sum_{tampering, leaving, alarm, fire} P(tampering) P(fire) P(smoke = T | fire) P(alarm | tampering, fire) P(leaving | alarm) P(report = T | leaving) = \sum_{tampering, leaving, alarm} P(tampering) P(leaving | alarm) P(report = T | leaving) \sum_{fire} P(fire) P(smoke = T | fire) P(alarm | tampering, fire) * Let f_1(alarm, tampering) = \sum_{fire} P(fire) P(smoke = T | fire) P(alarm | tampering, fire) Now let us compute f_1(alarm = T, tampering = T) = \sum_{fire} P(fire) P(smoke = T | fire) P(alarm = T | tampering = T, fire) = P(fire = T) P(smoke = T | fire = F) P(alarm = T | tampering = T, fire = F) P(alarm = T | tampering = T, fire = F)$$$$

 $= 0.01 \times 0.9 \times 0.5 + 0.99 \times 0.01 \times 0.85$ Similarly, we can also compute $f_1(alarm = T, tampering = F)$ $f_1(alarm = F, tampering = T)$ and $f_1(alarm = F, tampering = F).$ * We can now write the denominator as: $\Sigma_{tampering, leaving, alarm} P(tampering) P(leaving|alarm)$ $P(report = T | leaving) f_1(alarm, tampering)$ $= \sum_{tampering, leaving} P(tampering) P(report = T | leaving) \sum_{alarm}$ $P(leaving|alarm) f_1(alarm, tampering)$ Let us denote Σ_{alarm} P(leaving|alarm) $f_1(alarm, tampering)$ by $f_2(leaving, tampering)$. We can compute it as we compute f_1 * The denominator can now be written as: $= \sum_{tampering, leaving} P(tampering) P(report = T | leaving)$ $f_2(leaving, tampering)$ $= \sum_{tampering} P(tampering) \sum_{leaving} P(report = T | leaving)$ $f_2(leaving, tampering)$ Let us denote $\Sigma_{leaving} P(report = T | leaving)$

 $f_2(leaving, tampering)$ by $f_3(tampering)$ and compute it like the other f_i s.

- * The denominator can now be written as: $\Sigma_{tampering} P(tampering) f_3(tampering)$
- Main Issues and challenges
 - Computing the conditional probabilities efficiently
 - Inference in general networks in NP-hard
 - Many efficient algorithms are defined for particular kind of networks (say for trees).
 - * Algorithm based on message passing architecture for trees.
 - * Join-tree propagation
 - * Cutset conditioning
 - * Hybrid combinations of the above two
 - \ast Approximation methods: stochastic simulation.

Probability, Bayes nets and Causality

Causal Bayesian Networks

- Motivation
 - A joint distributions tells us how probable events are and how probabilities would change with subsequent observations.
 - A causal model also tells us how these probabilities would change as a result of external interventions.
 - Such a change can not be deduced from a join distribution even if fully specified.
- Importance
 - Difference between **observing** the alarm is on, and **turning** the alarm on.
 - $$\begin{split} &-P(fire|alarm)>0.01.\\ &\text{But}\ P(fire|do(alarm=T))=P(fire)=0.01 \end{split}$$

Probability, Bayes nets and Causality

- Causal networks can predict the effect of actions. (Simple joint distributions can not.)
- Stability and autonomy
 - Autonomy: It is possible to change one parent child relationship in the network without changing the others.
 - Stability: One can predict the effect of external interventions with minimum of extra information.
 - Autonomy and intervention: Instead of specifying a new probability function for each of the many possible interventions, we specify merely the immediate changes implied by the intervention. Because of autonomy, the change is local.
- Definition: Causal Bayesian network

Let P(v) be a probability distribution on a set V of variables, and let $P_x(v)$ denote the distribution resulting from the intervention do(X = x) which sets any subset X of variables to constants x. Denote by P* the set of all interventional distributions $P_x(v), X \subseteq V$,

including P(v) which represents no intervention. A DAG G is said to be a **causal Bayesian network** compatible with P* iff the following three conditions hold for every $P_x \in P*$.

- 1. $P_x(v)$ is Markov relative to G.
- 2. $P_x(v_i) = 1$, for all $V_i \in X$, whenever v_i is consistent with X = x.
- 3. $P_x(v_i|pa_i) = P(v_i|pa_i)$ for all $V_i \notin X$, whenever pa_i is consistent with X = x.
- Properties:
 - for all v consistent with x:

$$P_x(v) = \prod_{\{i | V_i \notin X\}} P(v_i | pa_i)$$

- For all i, $P(v_i|pa_i) = P_{pa_i}(v_i)$

(The above ensures, conditional probabilities with respect to parents, corresponds to causal effects.)

Probability, Bayes nets and Causality

- For all *i*, and for every subset *S* of variables disjoint of $\{V_i, PA_i\}$ we have: $P_{pa_i,s}(v_i) = P_{pa_i}(v_i)$ (Expresses invariance of causality)
- Causal relationship is more stable than probabilistic relationships.
 - Causal relationship remains unaltered as long as no change has taken place in the environment, even when our knowledge about the environment undergoes change.
 - * (season, sprinkler), (season, rain), (sprinkler, wet), (rain, wet), (wet, slippery).
 - * S_1 Turning the sprinkler on would not affect rain
 - * S_2 The state of the sprinkler is independent of the state of the rain.
 - * S_2 changes from false to true when we learn what season it is.
 - * Given that we know the season, S_2 changes from true to false once we observe that the pavement is wet.

Probability, Bayes nets and Causality

- * S_1 remains true regardless of what we learn or know about the season or the pavement.
- * Falling barometer predicts rain, does not explain it.

Probability, Bayes nets and Causality

CSE 591 - Fall 03.

Functional Causal Models

- Two views of non-determinism
 - Laplace's (1814) conception of natural phenomena:
 Nature's laws are deterministic, and randomness surfaces merely due to our ignorance of the underlying boundary condition.
 - Modern (quantum mechanical) conception of physics:
 All relationships are inherently stochastic.
- Why Pearl's book uses Laplace's conception of causality
 - besides the fact that it is used in genetics, econometrics and social sciences
 - It is more general.
 - * Every stochastic model can be emulated by many functional relationships (with stochastic inputs), but not the other way round;

- * Functional relationships can only be approximated as a limiting case, using stochastic models.
- Laplacian conception is more in tune with human intuition.
- Certain important concepts can only be defined in Laplacian framework (i.e., they can not be defined in terms of purely stochastic models.)
 - * the probability that event B occurred *due to* event A.
 - * the probability that event B would have been different if it were not for event A
 - (they are called counterfactuals)
- (Functional) causal model:

A causal model is a triple $M = \langle U, V, F \rangle$ where

- $-\;U$ is a set of background (or exogenous, or error) variables, that are determined by factors outside the model.
- -V is a set $\{V_1, \ldots, V_n\}$ of variables, that are determined by the variables in $U \cup V$.

Probability, Bayes nets and Causality

- F is a set of functions $\{f_1, \ldots, f_n\}$ giving rise to a set of structural equations of the form: $x_i = f_i(pa_i, u_i), i = 1, \ldots, n$
- Types of queries that can be answered using functional causal models
 - Prediction: Would the pavement be slippery if we *find* the sprinkler off?
 - **Interventions**: Would the pavement be slippery if we *make sure* that the sprinkler is off?
 - **Counterfactuals**: Would the pavement be slippery *had* the sprinkler been off, given that the pavement is in fact not slippery and the sprinkler is on?
- Prediction using Markovian causal models:
 - Causal diagram: A graph obtained by having edges from each member of PA_i to X_i .
 - If the causal diagram is acyclic then the corresponding model is called semi-Markovian.

- \ast the values of X variables will be uniquely determined by the U variables.
- * The joint distribution $P(x_1, \ldots, x_n)$ is determined uniquely by the distribution P(u) of the error variables.
- If in addition the error terms are mutually independent, the model is called *Markovian*.
- Theorem (Pearl and Verma): Every Markovian causal model M induces a distribution $P(x_1, \ldots, x_n)$ that satisfies the Markov condition relative to the causal diagram G associated with M, that is each variable X_i is independent on all its non-descendants, given its parents PA_i in G.
- Theorem (Drudgel and Simon): For every Bayesian network G characterized by a distribution P, there exists a function model that generates a distribution identical to P.
- Advantages of doing prediction using causal-functional specification over the probabilistic specification
 - * When organizing knowledge using Markov causal models reliable

assertions about conditional independence can be made without assessing numerical probabilities. (They come later when writing what f exactly is and what the $P(u_i)$'s are.)

- * Functional specification is often more meaningful, natural and yields a smaller number of parameters.
- * Judgemental assumptions of conditional independence of observable quantities are simplified, and made more reliable, when cast directly as judgments about the presence or absence of *unobserved* common causes. (Instead of judging whether each variable is independent of all its nondescendants, given its parents, we need to judge whether the parent set contains *all* relevant immediate causes, namely whether two omitted factors (say U_i and U_j) share a common cause.
- * When some conditions in the environment undergo change, it is simpler to reassess (judgmentally) or reestimate (statistically) the model parameters knowing that the change is local, affecting just a few parameters, than reestimating the whole model from

scratch.

- Interventions and causal effects in functional models.
 - Submodels of causal models:

Let M be a causal model, X be a set of variables in V, and x be a particular realization of X. A submodel M_x of M is the causal model $M_x = \langle U, V, F_x \rangle$, where $F_x = \{f_i : V_i \notin X\} \cup \{X = x\}.$

- Effects of actions on a causal model: The effect of action do(X = x) on a causal model M is given by the submodel M_x .
- Effects of actions on other variables: The potential response (or value) of a variable Y in V after an action do(X = x) denoted by $Y_x(u)$ is the solution for Y using the set of equations F_x .
- Advantages over stochastic models
 - * The analysis of interventions can be directly extended to cyclic models.

 $(demand = f(price, income, u_1); price = f'(demand, cost, u_2)$

* Analysis of causal effects in non-Markovian models will be greatly simplified using functional models. (Because: There are infinitely many conditional probabilities $P(x|pa_i)$, but only finite number of functions $x_i = f_i(pa_i, u_i)$, among discrete variables X_i and PA_i .)

• Counterfactuals

– Why we can not use causal Bayes nets.

* Counterfactuals involve dealing with both actions and observations. (Effect of a drug on a patient with certain symptoms.)

 \ast The observations alter the conditional probabilities.

- An example illustrating the inade quacy of using causal Bayes nets.

 $\ast \; X$ denotes a treatment.

- * Y = 0 means recovery and Y = 1 means death.
- * Q: A certain patient Joe, took the treatment and died. Our question is whether Joe's death occurred *due* to the treatment.

I.e., What is the probability that Joe (or any patient for that matter), who died under treatment (x = 1, y = 1) would have recovered (y = 0) had he not been treated (x = 0).

- * An extreme case: 50% of the patients recover and 50% die in both the treatment and the control groups. (assume sample size to be infinite.) I.e. $P(y|x) = \frac{1}{2}$.
- * Bayes net 0: edge-less, with P(y, x) = 0.25, for all x and y
- * Functional model 1: $x = u_1, y = u_2$, with $P(u_1 = 1) = P(u_2 = 1) = \frac{1}{2}$.
- * Functional model 2: $x = u_1$, $y = xu_2 + (1 x)(1 u_2)$, with $P(u_1 = 1) = P(u_2 = 1) = \frac{1}{2}$.
- * Both functional model 1 and 2 correspond to the same joint probability P(y, x) = 0.25, for all x and y. But will give different answers.

Probability, Bayes nets and Causality

\ast Answering Q using model 1 and model 2

y	u_2	x	$P_{model1}(y u_2, x)$	$P_{model2}(y u_2,x)$
0	0	0	0.25	0
0	0	1	0.25	0.25
<u>0</u>	<u>1</u>	<u>0</u>	<u>0</u>	0.25
0	1	1	0	0
1	0	0	0	0.25
1	<u>0</u>	<u>1</u>	0	0
1	1	0	0.25	0
1	1	1	0.25	0.25

- * Using model 1 the answer to Q would be 0. Intuitively: the treatment has no effect. 50% die and 50% recover.
- * Using model 2 the answer to Q would be 1. Intuitively, the treatment kills 50% of the people and cures the other 50%.

- Answering counter-factual queries using functional models.
 - Counterfactual: Let Y be a variable in V in the causal model $M = \langle U, V, F \rangle$. The counterfactual sentence "The value that Y would have obtained, had X been x" is interpreted as denoting the potential response $Y_x(u)$.
 - Probabilistic causal model: Is a pair $\langle M, P(u) \rangle$, where M is a causal model and P(u) is a probability function defined over the domain of U.

$$P(y) = P(Y = y) = \sum_{\{u|Y(u)=y\}} P(u)$$

$$P(Y_x = y) = \sum_{\{u|Y_x(u)=y\}} P(u)$$

$$P(Y_x = y, X = x') = \sum_{\{u|Y_x(u)=y\&X(u)=x'\}} P(u)$$

$$P(Y_x = y, Y_{x'} = y') = \sum_{\{u|Y_x(u)=y\&Y_{x'}(u)=y'\}} P(u)$$

- One purpose of counter-factuals: We want to show that the event X = x was the cause of the event Y = y.
- So we ask the question: What is the probability that Y would not be equal to y had X not been equal to x?

 $\rm CSE~591$ - Fall 03.

- To answer the above we need to evaluate $P(Y_{x'} = y' | X = x, Y = y)$
- Given M, a three step procedure to evaluate the conditional probability $P(B_A|e)$ of a counter factual sentence "If it were A then B,", given evidence e.
 - $(e \text{ is } X = x \text{ and } Y = y. A \text{ is } X \neq x.)$
 - * Abduction: Update P(u) by the evidence e, to obtain P(u|e). (explain the past (U) in light of the current evidence e.)
 - * Action: Modify M by the action do(A) to obtain M_A . (minimally bend the course of history, to comply with the hypothetical condition $X \neq x$)
 - * Prediction: Use the modified model $\langle M_A, P(u|e) \rangle$ to compute the probability of B.

(predicting the future (Y) on the basis of the above 2 steps.)

Probability, Bayes nets and Causality

Evaluating Counter-factuals: an example

- The Causal relationship in a 2-man firing squad:
 - Nodes
 - $\ast~U$: Court orders the execution.
 - $\ast~C$: Captain gives a signal.
 - * A: Rifleman-A shoots.
 - * B: Rifleman-B shoots.
 - * D : Prisoner dies.
 - Edges: (U, C), (C, A), (C, B), (A, D), (B, D).
- Logical structural equations

$$-C \Leftrightarrow U$$
$$-A \Leftrightarrow C$$
$$-B \Leftrightarrow C$$

Probability, Bayes nets and Causality

 $-D \Leftrightarrow A \lor B$

- Questions that we want to answer:
 - (prediction) : If the rifleman did not shoot, the prisoner would be alive.
 - (abduction) : If the prisoner is alive, then the captain did not signal.
 - (transduction) : If rifleman-A shot, then B shot as well.
 - (action) : If the captain gave no signal and rifleman-A decides to shoot, the prisoner will dies and B will not shoot.
 - (counter-factual) : If the prisoner is dead, then even if A were not to have shot, the prisoner would still be dead.
- Probabilistic analysis: a modification of the story
 - There is a probability P(u = 1) = p that the court has ordered the execution.
 - Rifleman-A has a probability q of pulling the trigger out of nervousness. (w = 1)

- Rifleman-A's nervousness is independent of U.
- We wish to compute the probability that the prisoner would be alive if A were not to have shot, given that the prisoner is in fact dead.
- The solution steps:
 - * (abduction) : P(u, w | D)
 - * (action) :
 - \ast (prediction) :