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Basic Concepts in probability theory

• 3 basic axioms of probability calculus in the Bayesian formalism

– 0 ≤ P (A) ≤ 1

– P (Sure proposition) = 1

– P (A ∨ B) = P (A) + P (B), if A and B are mutually exclusive.

∗ P (A) = P (A, B) + P (A,¬B)
(P (A, B) is short for P (A ∧ B) )

∗ If Bi, i = 1, 2, . . . , n is a set of exhaustive and mutually exclusive
propositions (called a partition or a variable), then

P (A) =
∑

i
P (A, Bi)

• Basic expression in Bayesian formalism

– Conditional probabilities of the form P (A|B)
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– means: belief in A under the assumption that B is known with
absolute certainty.

– P (A|B) = P (A) – A and B are independent.

– P (A|B, C) = P (A|C) – A and B are conditionally independent
given C.

– Dawid’s notation: (A � B|C)

– Bayesian philosophers see the conditional relationship as more basic
than that of joint events.

P (A ∧ B) = P (A|B)P (B)
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Bayesian Networks

• Goal:

– to provide convenient means of expressing substantive assumptions

– to facilitate economical representations of joint probability functions

– to facilitate efficient inferences from observations

• Idea: Directed acyclic graphs is used to represent causal or temporal
relationship

• Basic decomposition scheme

– P (A ∧ B) = P (A|B)P (B)

– P (x1, x2, x3) = P (x1 ∧ x2 ∧ x3) = P (x1|x2, x3)P (x2 ∧ x3) =
P (x1|x2, x3)P (x2|x3)P (x3)
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– In general,
P (x1, . . . , xn) =

∏

j
P (xj|x1, . . . , xj−1)

∗ Let PAj ⊆ {x1, . . . , xj−1}, such that xj is independent of
{x1, . . . , xj−1} \ PAj once we know the value of PAj.

∗ We can then write
P (xj|x1, . . . , xj−1) = P (xj|paj)

∗ If PAj is a minimal set of predecessors of Xj that renders Xj

independent of all its other predecessors, then PAj is said to be
Markovian parents of Xj.

• Markov factorization: If a probability function P admits the
factorization

P (x1, . . . , xn) =
∏

j
P (xj|parentsj)

relative to a DAG G, we say G represents P , that G and P are
compatible, or P is Markov relative to G.
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Inference with Bayesian Networks

• Prediction and abduction

– x – a set of observations

– y – a set of variables deemed important for prediction or diagnosis

– Need to compute P (y|x).

–

P (y|x) =
p(y, x)

p(x)
=

∑
s P (y, x, s)

∑
y,s P (y, x, s)

• An example:

– The Network

∗ P (tampering) = 0.02; P (fire) = 0.01

∗ Directed Edges: (tampering, alarm), (fire, alarm),
(fire, smoke), (alarm, leaving), (leaving, report)
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∗ local probability distributions:
P (alarm|fire, tampering) = 0.5;
P (alarm|fire,¬tampering) = 0.99;
P (alarm|¬fire, tampering) = 0.85;
P (alarm|¬fire,¬tampering) = 0.0001.
P (smoke|fire) = 0.9; P (smoke,¬fire) = 0.01.
P (leaving|alarm) = 0.88; P (leaving|¬alarm) = 0.001.
P (report|leaving) = 0.75; P (report|¬leaving) = 0.01.

– Different kinds of inferences

∗ Diagnostic inferences: P (fire|report)
∗ Causal inferences (prediction): P (leaving|tampering)

∗ Intercausal inferences: P (fire|alarm, tampering)

∗ Mixed inferences: P (alarm|report, fire)

– An illustration:

P (tampering|report, smoke)

= P (tampering,report,smoke)
P (report,smoke)
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=
∑

leaving,alarm,fire P (tampering=T,report=T,smoke=T,leaving,alarm,fire)
∑

tampering,leaving,alarm,fire P (report=T,smoke=T,tampering,leaving,alarm,fire)

∗ Let us compute the denominator D first.
∑

tampering,leaving,alarm,fire P (tampering) P (fire)
P (smoke = T |fire) P (alarm|tampering, fire)
P (leaving|alarm) P (report = T |leaving)
= ∑

tampering,leaving,alarm P (tampering) P (leaving|alarm)
P (report = T |leaving) ∑

fire P (fire) P (smoke = T |fire)
P (alarm|tampering, fire)

∗ Let f1(alarm, tampering) = ∑
fire P (fire) P (smoke = T |fire)

P (alarm|tampering, fire)
Now let us compute f1(alarm = T, tampering = T )
= ∑

fire P (fire) P (smoke = T |fire)
P (alarm = T |tampering = T, fire)
= P (fire = T ) P (smoke = T |fire = T )
P (alarm = T |tampering = T, fire = T ) +
P (fire = F ) P (smoke = T |fire = F )
P (alarm = T |tampering = T, fire = F )

Chitta Baral 8



CSE 591 - Fall 03. Probability, Bayes nets and Causality

= 0.01 × 0.9 × 0.5 + 0.99 × 0.01 × 0.85
Similarly, we can also compute f1(alarm = T, tampering = F ),
f1(alarm = F, tampering = T ) and
f1(alarm = F, tampering = F ).

∗ We can now write the denominator as:
∑

tampering,leaving,alarm P (tampering) P (leaving|alarm)
P (report = T |leaving) f1(alarm, tampering)
= ∑

tampering,leaving P (tampering) P (report = T |leaving) ∑
alarm

P (leaving|alarm) f1(alarm, tampering)
Let us denote ∑

alarm P (leaving|alarm) f1(alarm, tampering)
by f2(leaving, tampering). We can compute it as we compute f1

∗ The denominator can now be written as:
= ∑

tampering,leaving P (tampering) P (report = T |leaving)
f2(leaving, tampering)
= ∑

tampering P (tampering) ∑
leaving P (report = T |leaving)

f2(leaving, tampering)
Let us denote ∑

leaving P (report = T |leaving)
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f2(leaving, tampering) by f3(tampering) and compute it like
the other fis.

∗ The denominator can now be written as:
∑

tampering P (tampering) f3(tampering)

• Main Issues and challenges

– Computing the conditional probabilities efficiently

– Inference in general networks in NP-hard

– Many efficient algorithms are defined for particular kind of networks
(say for trees).

∗ Algorithm based on message passing architecture for trees.

∗ Join-tree propagation

∗ Cutset conditioning

∗ Hybrid combinations of the above two

∗ Approximation methods: stochastic simulation.
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Causal Bayesian Networks

• Motivation

– A joint distributions tells us how probable events are and how
probabilities would change with subsequent observations.

– A causal model also tells us how these probabilities would change as
a result of external interventions.

Such a change can not be deduced from a join distribution even if
fully specified.

• Importance

– Difference between observing the alarm is on, and turning the
alarm on.

– P (fire|alarm) > 0.01.

But P (fire|do(alarm = T )) = P (fire) = 0.01
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• Causal networks can predict the effect of actions. (Simple joint
distributions can not.)

• Stability and autonomy

– Autonomy: It is possible to change one parent child relationship in
the network without changing the others.

– Stability: One can predict the effect of external interventions with
minimum of extra information.

– Autonomy and intervention: Instead of specifying a new probability
function for each of the many possible interventions, we specify
merely the immediate changes implied by the intervention. Because
of autonomy, the change is local.

• Definition: Causal Bayesian network

Let P (v) be a probability distribution on a set V of variables, and let
Px(v) denote the distribution resulting from the intervention
do(X = x) which sets any subset X of variables to constants x.
Denote by P∗ the set of all interventional distributions Px(v), X ⊆ V ,
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including P (v) which represents no intervention. A DAG G is said to
be a causal Bayesian network compatible with P∗ iff the following
three conditions hold for every Px ∈ P∗.
1. Px(v) is Markov relative to G.

2. Px(vi) = 1, for all Vi ∈ X , whenever vi is consistent with X = x.

3. Px(vi|pai) = P (vi|pai) for all Vi 	∈ X , whenever pai is consistent
with X = x.

• Properties:

– for all v consistent with x:

Px(v) =
∏

{i|Vi 	∈X}
P (vi|pai)

– For all i, P (vi|pai) = Ppai
(vi)

(The above ensures, conditional probabilities with respect to
parents, corresponds to causal effects.)
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– For all i, and for every subset S of variables disjoint of {Vi, PAi} we
have: Ppai,s(vi) = Ppai

(vi)

(Expresses invariance of causality)

• Causal relationship is more stable than probabilistic relationships.

– Causal relationship remains unaltered as long as no change has
taken place in the environment, even when our knowledge about the
environment undergoes change.

∗ (season, sprinkler), (season, rain), (sprinkler, wet),
(rain, wet), (wet, slippery).

∗ S1 – Turning the sprinkler on would not affect rain

∗ S2 – The state of the sprinkler is independent of the state of the
rain.

∗ S2 changes from false to true when we learn what season it is.

∗ Given that we know the season, S2 changes from true to false
once we observe that the pavement is wet.
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∗ S1 remains true regardless of what we learn or know about the
season or the pavement.

∗ Falling barometer predicts rain, does not explain it.

Chitta Baral 15



CSE 591 - Fall 03. Probability, Bayes nets and Causality

Functional Causal Models

• Two views of non-determinism

– Laplace’s (1814) conception of natural phenomena:

Nature’s laws are deterministic, and randomness surfaces merely
due to our ignorance of the underlying boundary condition.

– Modern (quantum mechanical) conception of physics:

All relationships are inherently stochastic.

• Why Pearl’s book uses Laplace’s conception of causality

– besides the fact that it is used in genetics, econometrics and social
sciences

– It is more general.

∗ Every stochastic model can be emulated by many functional
relationships (with stochastic inputs), but not the other way
round;
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∗ Functional relationships can only be approximated as a limiting
case, using stochastic models.

– Laplacian conception is more in tune with human intuition.

– Certain important concepts can only be defined in Laplacian
framework (i.e., they can not be defined in terms of purely
stochastic models.)

∗ the probability that event B occurred due to event A.

∗ the probability that event B would have been different if it were
not for event A
(they are called counterfactuals)

• (Functional) causal model:

A causal model is a triple M = 〈U, V, F 〉 where

– U is a set of background (or exogenous, or error ) variables, that are
determined by factors outside the model.

– V is a set {V1, . . . , Vn} of variables, that are determined by the
variables in U ∪ V .
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– F is a set of functions {f1, . . . , fn} giving rise to a set of structural
equations of the form: xi = fi(pai, ui), i = 1, . . . , n

• Types of queries that can be answered using functional causal models

– Prediction: Would the pavement be slippery if we find the
sprinkler off?

– Interventions: Would the pavement be slippery if we make sure
that the sprinkler is off?

– Counterfactuals: Would the pavement be slippery had the
sprinkler been off, given that the pavement is in fact not slippery
and the sprinkler is on?

• Prediction using Markovian causal models:

– Causal diagram: A graph obtained by having edges from each
member of PAi to Xi.

– If the causal diagram is acyclic then the corresponding model is
called semi-Markovian.
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∗ the values of X variables will be uniquely determined by the U
variables.

∗ The joint distribution P (x1, . . . , xn) is determined uniquely by
the distribution P (u) of the error variables.

– If in addition the error terms are mutually independent, the model
is called Markovian.

– Theorem (Pearl and Verma): Every Markovian causal model M
induces a distribution P (x1, . . . , xn) that satisfies the Markov
condition relative to the causal diagram G associated with M , that
is each variable Xi is independent on all its non-descendants, given
its parents PAi in G.

– Theorem (Drudgel and Simon): For every Bayesian network G
characterized by a distribution P , there exists a function model that
generates a distribution identical to P .

– Advantages of doing prediction using causal-functional specification
over the probabilistic specification

∗ When organizing knowledge using Markov causal models reliable
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assertions about conditional independence can be made without
assessing numerical probabilities. (They come later when writing
what f exactly is and what the P (ui)’s are.)

∗ Functional specification is often more meaningful, natural and
yields a smaller number of parameters.

∗ Judgemental assumptions of conditional independence of
observable quantities are simplified, and made more reliable,
when cast directly as judgments about the presence or absence of
unobserved common causes. (Instead of judging whether each
variable is independent of all its nondescendants, given its
parents, we need to judge whether the parent set contains all
relevant immediate causes, namely whether two omitted factors
(say Ui and Uj) share a common cause.

∗ When some conditions in the environment undergo change, it is
simpler to reassess (judgmentally) or reestimate (statistically) the
model parameters knowing that the change is local, affecting just
a few parameters, than reestimating the whole model from
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scratch.

• Interventions and causal effects in functional models.

– Submodels of causal models:

Let M be a causal model,X be a set of variables in V , and x be a
particular realization of X . A submodel Mx of M is the causal
model Mx = 〈U, V, Fx〉, where

Fx = {fi : Vi 	∈ X} ∪ {X = x}.
– Effects of actions on a causal model: The effect of action do(X = x)

on a causal model M is given by the submodel Mx.

– Effects of actions on other variables: The potential response (or
value) of a variable Y in V after an action do(X = x) denoted by
Yx(u) is the solution for Y using the set of equations Fx.

– Advantages over stochastic models

∗ The analysis of interventions can be directly extended to cyclic
models.
(demand = f (price, income, u1); price = f ′(demand, cost, u2)
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∗ Analysis of causal effects in non-Markovian models will be greatly
simplified using functional models.
(Because: There are infinitely many conditional probabilities
P (x|pai), but only finite number of functions xi = fi(pai, ui),
among discrete variables Xi and PAi.)

• Counterfactuals

– Why we can not use causal Bayes nets.

∗ Counterfactuals involve dealing with both actions and
observations. (Effect of a drug on a patient with certain
symptoms.)

∗ The observations alter the conditional probabilities.

– An example illustrating the inadequacy of using causal Bayes nets.

∗ X denotes a treatment.

∗ Y = 0 means recovery and Y = 1 means death.

∗ Q: A certain patient Joe, took the treatment and died. Our
question is whether Joe’s death occurred due to the treatment.
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I.e., What is the probability that Joe (or any patient for that
matter) , who died under treatment (x = 1, y = 1) would have
recovered (y = 0) had he not been treated (x = 0).

∗ An extreme case: 50% of the patients recover and 50% die in
both the treatment and the control groups. (assume sample size
to be infinite.) I.e. P (y|x) = 1

2.

∗ Bayes net 0: edge-less, with P (y, x) = 0.25, for all x and y

∗ Functional model 1: x = u1, y = u2, with
P (u1 = 1) = P (u2 = 1) = 1

2.

∗ Functional model 2: x = u1, y = xu2 + (1 − x)(1 − u2), with
P (u1 = 1) = P (u2 = 1) = 1

2.

∗ Both functional model 1 and 2 correspond to the same joint
probability P (y, x) = 0.25, for all x and y. But will give different
answers.
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∗ Answering Q using model 1 and model 2

y u2 x Pmodel1(y|u2, x) Pmodel2(y|u2, x)
0 0 0 0.25 0
0 0 1 0.25 0.25
0 1 0 0 0.25
0 1 1 0 0
1 0 0 0 0.25
1 0 1 0 0
1 1 0 0.25 0
1 1 1 0.25 0.25

∗ Using model 1 the answer to Q would be 0.
Intuitively: the treatment has no effect. 50% die and 50% recover.

∗ Using model 2 the answer to Q would be 1.
Intuitively, the treatment kills 50% of the people and cures the
other 50%.
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• Answering counter-factual queries using functional models.

– Counterfactual: Let Y be a variable in V in the causal model
M = 〈U, V, F 〉. The counterfactual sentence “The value that Y
would have obtained, had X been x” is interpreted as denoting the
potential response Yx(u).

– Probabilistic causal model: Is a pair 〈M, P (u)〉, where M is a
causal model and P (u) is a probability function defined over the
domain of U .

∗ P (y) = P (Y = y) = ∑
{u|Y (u)=y} P (u)

∗ P (Yx = y) = ∑
{u|Yx(u)=y} P (u)

∗ P (Yx = y, X = x′) = ∑
{u|Yx(u)=y&X(u)=x′} P (u)

∗ P (Yx = y, Yx′ = y′) = ∑
{u|Yx(u)=y&Yx′(u)=y′} P (u)

– One purpose of counter-factuals: We want to show that the event
X = x was the cause of the event Y = y.

– So we ask the question: What is the probability that Y would not
be equal to y had X not been equal to x?
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– To answer the above we need to evaluate P (Yx′ = y′|X = x, Y = y)

– Given M , a three step procedure to evaluate the conditional
probability P (BA|e) of a counter factual sentence “If it were A then
B,”, given evidence e.

( e is X = x and Y = y. A is X 	= x.)

∗ Abduction: Update P (u) by the evidence e, to obtain P (u|e).
(explain the past (U) in light of the current evidence e.)

∗ Action: Modify M by the action do(A) to obtain MA.
(minimally bend the course of history, to comply with the
hypothetical condition X 	= x)

∗ Prediction: Use the modified model 〈MA, P (u|e)〉 to compute the
probability of B.
(predicting the future (Y ) on the basis of the above 2 steps.)
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Evaluating Counter-factuals: an example

• The Causal relationship in a 2-man firing squad:

– Nodes

∗ U : Court orders the execution.

∗ C : Captain gives a signal.

∗ A : Rifleman-A shoots.

∗ B : Rifleman-B shoots.

∗ D : Prisoner dies.

– Edges: (U, C), (C, A), (C, B), (A, D), (B, D).

• Logical structural equations

– C ⇔ U

– A ⇔ C

– B ⇔ C
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– D ⇔ A ∨ B

• Questions that we want to answer:

– (prediction) : If the rifleman did not shoot, the prisoner would be
alive.

– (abduction) : If the prisoner is alive, then the captain did not signal.

– (transduction) : If rifleman-A shot, then B shot as well.

– (action) : If the captain gave no signal and rifleman-A decides to
shoot, the prisoner will dies and B will not shoot.

– (counter-factual) : If the prisoner is dead, then even if A were not to
have shot, the prisoner would still be dead.

• Probabilistic analysis: a modification of the story

– There is a probability P (u = 1) = p that the court has ordered the
execution.

– Rifleman-A has a probability q of pulling the trigger out of
nervousness. (w = 1)
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– Rifleman-A’s nervousness is independent of U .

– We wish to compute the probability that the prisoner would be alive
if A were not to have shot, given that the prisoner is in fact dead.

– The solution steps:

∗ (abduction) : P (u, w|D)

∗ (action) :

∗ (prediction) :
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