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Abstract

In this paper we discuss several representation issues
that we came across while modelling molecular inter-
actions in cells of living organisms. One of the issues
was that the triggering of events inside cells, an impor-
tant modelling component, are not necessarily immedi-
ate, leading to multiple evolution models in the absence
of additional information. Second, often an action or a
trigger at one level of granularity of representation can
be elaborated and refined. We show the problem that ex-
isting representation and modelling formalisms have in
dealing with the above issues. We then present an action
language which builds up on a previous language, and
has the ability to express event ordering knowledge. We
show that our language is able to adequately address the
above-mentioned issues.

Motivation and Introduction
In this paper our goal is to use the action language approach
for reasoning about actions to specify knowledge about var-
ious interactions inside cells of living beings, and to reason
about these interactions. Inside the cell various interactions
take place between genes, proteins and other biochemical
molecules. These interactions influence most visible proper-
ties of cells and tissues, such as cells dying, cells proliferat-
ing, and cells becoming cancerous.

As done in (Tran & Baral 2004; Baralet al. 2004), the
interactions can be modelled to some extent as triggered ac-
tions. A theory of the cell specifies effects of actions and
how actions are triggered or inhibited. Such a specification
dictates how the cell evolves (i.e. changes through time). An
evolution of the cell starts from a state which triggers certain
actions; these actions change the state, which may trigger
further actions; and so on.

In this paper we delve deeper into the interaction process.
To start with, unlike controllers in artificial domains such as
softbots, or robots, triggers inside the cell do not necessarily
fire immediately. For example, if a cell specification has the
trigger “f triggers a ” and the trigger “f triggers b ”, it
is not always the case that in a state wheref is true botha
andb immediately occur. One does not have the luxury of
specifying exactly how long it takes before a trigger fires, as
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that information is usually not available and it may not even
be a deterministic duration. In some cases, there is insuffi-
cient knowledge for one to say with certainty which ofa and
b occurs before the other. This is an example of a common
phenomenon in interaction networks calledspecificity: a net-
work can respond in different ways to the same input (Tan &
Kim 1999). In other cases, some form of ordering between
triggered action occurrences is known. Thus a representation
and reasoning mechanism should model specificity as well
as model event ordering information when appropriate.

A related issue in modelling cell behavior is that one
can (and often needs to) model at different granularities. As
more details are known, an action or trigger at one level of
granularity can be shown to consist of triggers and actions
at a lower level of granularity. In this case, it is important
that the reasoning mechanism, which has been able to rea-
son correctly by incorporating observations about the cell
behavior, does not make mistakes when an action or a trig-
ger is replaced by its finer decomposition.

The following hypothetical example illustrates some of
the above points and shows the problem that one has without
using event ordering information, as done in (Tran & Baral
2004) and in almost all other approaches (Reddy, Liebman,
& Mavrovouniotis 1996; Peleg, Yeh, & Altman 2002; Regev,
Silverman, & Shapiro 2001; Giordano, Martelli, & Schwind
2001; Khanet al. 2003; Talcottet al. 2004; Chabrieret al.
2004; Giunchigliaet al. 2004; Calvanese, de Giacomo, &
Vardi. 2002; Fukuda & Takagi 2001; Reiter 1996).
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Figure 1:Different interpretations of the same process. (A) Orig-
inal interpretation, regardless the details of¬f,¬g triggers a in
dashed lines. (B) New interpretation, considering the details.



Consider a cell specification in the languageA0
T (Tran &

Baral 2004) given as follows.

Dafg = {¬f,¬g triggers a; a causesf ;
¬g triggers b; b causesg}

The semantics ofA0
T dictates that if an action is triggered at

time t then it has to occur at timet. Assume thatf andg are
false at time0, then botha andb occur at time0. The oc-
currence ofa makesf become trueat time1. Now imagine
that the trigger¬f,¬g triggers a is refined by the following
more elaborated knowledge:

¬f ,¬f ′ triggers a′ (1)

a′ causesf ′ (2)

f ′,¬g triggers a (3)

That is, the triggering of the actiona by ¬f ∧ ¬g is medi-
ated by some new actiona′ and fluentf ′ (dashed lines in
Fig. 1A). Given the same initial condition off andg being
false at time0, a different conclusion about the final value of
f would be drawn from the refined interaction specification
(Fig. 1B). The argument goes as follows. Iff ′ is true at time
0, thena′ (hence,a) will not be triggered; thusf remains
false. On the other hand, iff ′ is false at time0 then the ac-
tionsa′ andb occur at time0, which results in¬f andg at
time1. Then no additional action can be triggered from time
1 onwards, sof is always false. Thus the new conclusion
(aboutf ) contradicts the previous prediction from the old
specificationDafg. Intuitively, this non-monotonicity with
respect to refinement is not acceptable. Since the detailed
knowledge represented by the statements (1)-(3) is about
what happens “inside” the trigger ofa, the consequence of
the trigger itself should not be affected, provided everything
“outside” remains intact.

The above example illustrates a challenging elaboration
tolerance issue in representing interaction networks, as often
new details about various intracellular mechanisms emerge,
and the modelling and reasoning mechanism should be able
to accommodate the refinement without breaking down.

The rest of the paper is organized as follows. In the next
section we will discuss a real example of molecular interac-
tions that motivated our work in this paper. We then propose
a languageA∞T that can gracefully address the modelling
problems posed by this real example. Finally, we present
formal results on elaboration tolerance ofA∞T , which gen-
eralizes all the special cases discussed in the paper.

Challenges in Modelling the p53 Network
We came across this example when we were modelling in-
teractions of the p53 protein network. The example poses the
following modelling challenges: (1) elaboration of more re-
fined knowledge that is correct with respect to reasoning; (2)
representing and reasoning about non-deterministic cellular
behaviors calledspecificity; and (3) incorporation of event
ordering knowledge into representing and reasoning about
interactions in cells.

First, let us review the special case ofA0
T language that

does not involve exogenous actions (Tran & Baral 2004).

Brief overview of A0
T

The alphabet of the languageA0
T (without exogenous ac-

tions) consists of two nonempty disjoint sets of symbols: a
set ofactionsand a set offluents. A fluent is a propositional
symbol. A fluent literal is a fluent or its negation. A set of
fluent literals isconsistentif it does not contain both a fluent
and its negation. A state is an interpretation of the fluents
(i.e. a maximal consistent set of fluent literals).

A domain descriptionD in A0
T is a set of statements of

the following forms:

a causesf if f1, . . . , fn (4)

g1, . . . , gm triggers b (5)

h1, . . . , hl inhibits c (6)

wherefi, gj , hk andf andg are fluent literals anda, b, c
are individual actions. (4) is adynamic causal rule, which
says thatf is to be true in the state succeeding a state where
a occurs and all thef1, . . . , fn hold. (5) is atrigger rule,
which says that actionb is to occur if it is not inhibited and
if all the literalsg1, . . . , gm hold. (6) is aninhibition rule,
which says that actionc can not happen (i.e. isinhibited) if
all the literalsh1, . . . , hl hold.

A state transitionis a change of one state to another state
due to effects of some actions. The effect of an actiona in a
states is the setE(a, s) = { f | a causesf if f1, . . . fn ∈
D and{f1, . . . , fn} ⊆ s }. The effect of a setA of actions in
a states is the setE(A, s) =

⋃
a∈A E(a, s). Let ¬¬g = g

and¬E(A, s) = {¬g|g ∈ E(A, s)}. A set A of actions
transforms a states to the stateΦ(A, s) defined as:
• Φ(∅, s) = s;
• if A 6= ∅ andE(A, s) is consistent, then

Φ(A, s) = (s \ ¬E(A, s)) ∪ E(A, s) ;
• otherwiseΦ(A, s) is undefined.

The functionΦ is also called the transition function ofD.
A transition sequenceτ is a sequence of the formτ =

〈s0, A0, s1, A1, . . .〉; wheresi’s are states andAj ’s are sets
of actions inD, such thatsi+1 = Φ(Ai, si) for all i.
Throughout the rest of the paper we will use the nota-
tion that si(τ) = si and Ai(τ) = Ai. Moreover, if τ is
such thatAi 6= ∅, Aj = ∅ for all j > i, then we write
τ = 〈s0, A0, s1, A1 . . . Ai, si〉.

A trajectory is a transition sequenceτ whereAi(τ) is
the set of all the actions that are triggered but not inhib-
ited in statesi(τ). Observationsare statements of the form
“ f at i ” or of the form “ a occurs at j ”, where i andj
are non-negative integers. The former statement means that
the fluent literalf is observed to be true at timei. The lat-
ter means that the actiona is observed to occur at timej. A
trajectoryτ satisfies “f at i ” iff f ∈ si(τ); andτ satisfies
“ a occurs at j ” iff a ∈ Aj(τ).

A theoryis a pair(D,O) whereD is a domain description
andO is a set of observations. Amodelof a theory(D,O) is
a trajectory ofD that satisfies all the observations ofO and
is minimal with respect to the following partial order≤0 .
Definition 1. Let τ and τ ′ be trajectories wheres0(τ) =
s0(τ ′). Thenτ ≤0 τ ′ iff there exists a sequence0 ≤ i0 <
i1 < . . . < in < . . . such that for everyk ≥ 0, Ak(τ) ⊆
Aik

(τ ′). 2



We are now ready to discuss the interaction network of the
p53 protein. In the network description , “adjective” pred-
icates denote fluent symbols and “verb” predicates denote
action symbols.

Issues in modelling the p53 network
The p53 protein is a tumor suppressor that plays a key role
in the regulation of the cell growth and cell death. It is es-
timated that about one half of human cancers contain mu-
tant p53. It is also predicted that the p53 network is affected
in the majority of the remaining tumors. Normally, a wild-
type (i.e. not mutant) p53 functions to prevent cancer as fol-
lows (the solid lines in Fig. 2). Stimuli such as UV, ioniz-
ing radiation or chemical carcinogens can induce DNA dam-
age. DNA damage will lead to genomic instability, which in
turn triggers uncontrolled cell growth (i.e. tumor formation).
However, the stimuli also upregulate the gene expression of
wild-type p53. The upregulated gene expression produces
high levels of p53 concentration, which suppresses abnor-
mal cell growth thus preventing cancer (Frei 2003).

The initial knowledge base The p53 network can be rep-
resented inA0

T as follows.

Dp53 = { high(UV ),¬unstable(cells) triggers damage(DNA)

damage(DNA) causesunstable(cells)

unstable(cells),¬tumorous triggers proliferate(cells)

proliferate(cells) causestumorous

high(UV ),¬high(p53) triggers upregulate(p53)

upregulate(p53) causeshigh(p53)

high(53) inhibits proliferate(cells)}
Given that only high(UV ) is true at time0, actions

damage(DNA) andupregulate(p53) will occur at time0.
Thenunstable(cells) becomes true at time1, which trig-
gersproliferate(cells). However, this action cannot happen,
because it is inhibited byhigh(p53) at the same time. As
expected, the domainDp53 predicts the p53 prevention of
cancer (Fig. 2).

damage(DNA)

high(p53)

translate(p53)proliferate(cells)

high(p53), ¬ high(mRNA)tumorous

high(p53)

high(mRNA)

upregulate(mRNA)upregulate(p53)

high(mRNA)

¬ high(p53)
high(UV)

¬ unstable(cells)
high(UV)

unstable(cells)

unstable(cells), ¬ tumorous

Figure 2:Detailed knowledge of p53 upregulation predicts cancer.

Elaboration of more detailed knowledge Each of
the actions damage(DNA), proliferate(cells) and
upregulate(p53) represents a complex biological process.

For example, let us update the network with the following
refinement of the process of p53 upregulation (Frei 2003).
The process first starts with the upregulation of the p53
mRNA, which causes a high level of mRNA. The high
mRNA level induces translation of p53, which increases the
quantity of p53 protein. Thus, to specify at a finer level, we
replace the trigger

high(UV ),¬high(p53) triggers upregulate(p53)
with the trigger

high(UV ),¬high(p53) triggers upregulate(mRNA)
We then replace the causal rule

upregulate(p53) causeshigh(p53)
with the following:

upregulate(mRNA) causeshigh(mRNA)
high(mRNA) triggers translate(p53)
translate(p53) causeshigh(p53),¬high(mRNA)

(The refinement is drawn in dashed lines in Fig. 2).
But unlikeDp53, the updated domain description, which

we refer to asD+
p53, does not predict that p53 prevents can-

cer. Assuminghigh(UV ) is true at0, the actions occur-
ring at 0 are damage(DNA) and upregulate(mRNA).
Then high(p53) remains false whileunstable(cells) be-
comes true at time 1. Thusproliferate(cells) is triggered
at time1, and it does occur at time1 because it is not in-
hibited by high(p53) as in the previous case before the
refinement. Whenhigh(p53) becomes true at time2, it is
“too late” to block the occurrence ofproliferate(cells). This
illustrates that the existing formalism does not gracefully
deal with elaboration of a causal rule describing effects of
upregulate(p53).

Reasoning about specificity of cellular interactions
With doubts sown in our mind, we wondered whether the
original knowledge base and its conclusion is itself intu-
itively correct or not. Our biologist colleagues pointed us
to the phenomenon in interaction networks calledspecificity
(Tan & Kim 1999), and suggested to us that with the avail-
able information, one should not make a definite conclusion
about cancer with respect to the original knowledge base.
In particular, with high level UV, both the outcomes (cancer
and non-cancer) are possible with respect to the p53 net-
work. Thus we need a representation that allows for both
the cancer and non-cancer scenarios from both (original and
updated) knowledge bases.

Necessity of event ordering knowledge Biologically,
there are many possible mechanisms that provide specificity
of cellular interactions, which includes: (1) tissue or cell-
line specific responses; (2) kinetics that alter the duration of
interacting components; (3) integration of multiple interac-
tion networks (Tan & Kim 1999). Since we want to explain
about specificity with respect to the same precondition, we
do not consider alternative (1). We noticed that event order-
ing underlies both alternatives (2) and (3). Event ordering
can be represented implicitly by duration of events. How-
ever, exact knowledge about physical durations are normally
not available for biological systems. Hence, we decided to
allow for explicit event ordering information which is more
commonly available.

As hinted in the earlier examples, the main problem with



A0
T semantics is that the “temporal distance” between a trig-

gering precondition and its associated triggered action is
bounded (i.e. constant0). In the following, we propose a new
languageA∞T in which the temporal distance is not bounded
(hence the superscript∞).

Action LanguageA∞
T

The only features thatA∞T inherits fromA0
T are: the def-

inition of fluents, actions and states; thesyntaxof domain
descriptions (rules (4)-(6)); the definition of state transition
(i.e. the transition functionΦ) and transition sequences.

Syntax
A theory in A∞T is a triple (D, E , I), whereD is an do-
main description, E is anevent ordering specification, and
I is an initial state observation. A domain description in
A∞T is a set of statements of the forms (4)-(6). An ini-
tial state observation is a set of statements of the form

initially f1, . . . , fn

where eachfi is a fluent literal.
An event is a set of fluent literals (i.e.state event),

or a set of actions (i.e.action event). A state event is
said to happen when its elements hold. An event order-
ing specificationE is a set ofevent orderingsof the form

E restricts E1 op E2

whereE, E1 andE2 are events, andop ∈ {≺ , ‖ ,¹}. The
statement encodes that ifE happens, then the earliest hap-
pening ofE1 andE2 after E must obey the orderingop.
Here ≺ meansearlier, ‖ meansat the same timeand¹
means either≺ or ‖ .

Queries in A∞T are propositional linear temporal logic
(LTL) formulas of fluents without operator “next”.1

Semantics
We define the semantics ofA∞T in the following steps. First,
we definetrajectoriesof a domain description inA∞T . Next,
we defineinterpretationsof a theory(D, E , I): an interpre-
tation is a trajectory ofD that satisfies certain properties with
respect toE andI. Finally, we show how amodelof a theory
is chosen among its interpretations.

Trajectories in a domain Informally, a trajectory of a do-
mainD is a transition sequence ofD such that:(a) actions
must happen if dictated by the rules in the domain;(b) no
action happens without being supported by some rules; and
(c) the set of actions in any state transition is minimal.

Formally, a trajectory is a transition sequenceτ that satisfies
all the following conditions:
• If Aj(τ) = ∅, thenAk(τ) = ∅ for all k ≥ j.
• For all rulesf1, . . . , fm triggers a of D, for all i, if

f1, . . . , fm hold insi(τ), anda is not inhibited insi(τ),
then there existsj ≥ i such thata ∈ Aj(τ).

• For all j and for alla ∈ Aj(τ), there existsi ≤ j and
a rulef1, . . . , fm triggers a of D such thatf1, . . . , fm

hold in statesi(τ) anda is not inhibited insi(τ).

1The notion of “next” events is not modelled inA∞T .

• There exists no transition sequenceτ ′ 6= τ such that
τ ′ also satisfies all the above conditions,τ ′ starts from
the same initial state asτ (i.e. s0(τ) = s0(τ ′)), and
Ai(τ ′) ⊆ Ai(τ) for all i.

Now let us consider an example of trajectories.

Example 1. Let a domain descriptionD consist of rules:
f triggers a; f triggers b; andb causes¬f . There is an
infinite number of trajectories ofD, such as:

τ = 〈{f}, {b}, {¬f}, {a}, {¬f}〉
τ0 = 〈{f}, {a, b}, {¬f}〉
τ1 = 〈{f}, {a}, {f}, {a, b}, {¬f}〉
... = . . . . . .
τn = 〈{f}, {a}, . . . , {f}, {a}, {f}, {a, b}, {¬f}〉
... = . . . . . .

The sequence〈{f}, {b}, {¬f}〉 is not a trajectory, because
a does not occur despite the rulef triggers a. The sequence
〈{¬f}, {b}, {¬f}〉 is not a trajectory, because (with respect
to this sequence) no trigger rule supports the occurrence of
b. The sequenceτ ′′ = 〈{f}, {a, b}, {¬f}, {a}, {¬f}〉 is not
a trajectory, sinces0(τ0) = s0(τ ′′) andAi(τ0) ⊆ Ai(τ ′′). 2

Interpretations of a theory Let τ be a trajectory. An event
E is said to happen ati with respect toτ if E ⊆ si(τ) ∪
Ai(τ). The smallesti > j at which an eventE happens with
respect toτ is denotedfirst(E, τ, j). If E does not happen
after j then first(E, τ, j) = ∞. Also, let us define that
i < ∞, ∀i.
Intuitively, an interpretation of a theory(D, E , I) is a tra-
jectoryτ that satisfies the specificationE and starts from an
initial state described byI. Formally, an interpretation of a
theory(D, E , I) is a trajectoryτ such that:
• For all initially f1, . . . , fn of I, for all i: fi ∈ s0(τ).
• For all event orderingE restricts E1 ≺ E2 in the

specificationE , if E happens ati with respect toτ , then
first(E1, τ, i) < first(E2, τ, i).

• For all event orderingE restricts E1 ‖ E2 in the
specificationE , if E happens ati with respect toτ , then
first(E1, τ, i) = first(E2, τ, i).

• For all event orderingE restricts E1 ¹ E2 in the
specificationE , if E happens ati with respect toτ , then
first(E1, τ, i) ≤ first(E2, τ, i).

Example 2. Let us continue with Example 1. LetI =
{ initially f}. It can be verified that there exists no inter-
pretation of(D, {f restricts a ≺ b}, I). The trajectories
τ andτ0 are interpretations of(D, {f restricts b ≺ a}, I)
and(D, {f restricts a ‖ b}, I) respectively. 2

Models of a theory An interpretationτ of (D, E , I) is a
model of(D, E , I) iff there exists no interpretationτ ′ 6= τ
such thatτ ′ ≤∞ τ , where≤∞ is the following partial order.

Definition 2. Let τ and τ ′ be trajectories wheres0(τ) =
s0(τ ′). Thenτ ≤∞ τ ′ iff there exists a sequence0 = i0 <
i1 < i2 < . . . < in < . . . such that for every0 ≤ k,
Ak(τ) ⊆ ⋃ik+1−1

j=ik
Aj(τ ′). 2

In Example 2, the trajectoriesτ and τ0 are the unique
models of the theories(D, {f restricts b ≺ a}, I) and



(D, {f restricts a ‖ b}, I) respectively. Note thatτ0 is also
the unique model of(D, ∅, I).

The semantics based on≤∞ captures the intuition that if
an actiona is triggered by a state eventE then: (i) the action
a happens at most once afterE has happened, unless being
triggered by events different fromE; and (ii) the actiona
happens as early as possible after the happening ofE.

Query entailment Let τ be a trajectory model of a theory
(D, E , I). A query Q is entailed byτ iff Q is entailed by
the sequence of states〈s0(τ), s1(τ), . . . , si(τ), . . .〉 by the
standard LTL semantics (Emerson 1990).
A theory (D, E , I) is calledconsistentif it has at least one
model. A queryQ is weakly entailedby a consistent the-
ory (D, E , I) if it is entailed by a model of (D, E , I). The
weak entailment is denoted(D, E , I) |=W Q. The queryQ
is strongly entailedby a consistent theory(D, E , I) if it is
entailed by all the models of(D, E , I). The strong entail-
ment is denoted(D, E , I) |= Q.

Example 3. Let D+
afg be the elaborated version of the do-

mainDafg in Section 1 (based on the rules (1)-(3)).
D+

afg = { ¬f,¬f ′ triggers a′ ; a′ causesf ′ ;
f ′,¬g triggers a ; a causesf ;

¬g triggers b ; b causesg }
Let I+ = { initially ¬f,¬f ′,¬g}. Then the theoryH1 =
(D+

afg, ∅, I+) has the trajectory models
τ1 = 〈{¬f,¬f ′,¬g}, {a′, b}, {¬f, f ′, g}〉
τ2 = 〈{¬f,¬f ′,¬g}, {a′}, {¬f, f ′,¬g}, {a, b}, {f, f ′, g}〉

It follows thatH1 |=W 3 2 f andH1 |=W 2 3 ¬f . Now
let H2 = (D+

afg, {{¬f,¬g} restricts a′ ≺ b}, I+). Then
H2 has the unique modelτ2. It follows thatH2 |= 3 2 f .

Reasoning inA∞
T

Elaboration tolerance We have shown howA∞T is moti-
vated by elaboration tolerance issues with specific examples.
We now present our general results.

Definition 3 (Elaboration of triggers). Let r be the rule
g1, . . . , gm triggers b. An elaboration ofr is any the-
ory (R, ∅, I) such that:(i) the theoryH = (R, ∅, I ∪
{ initially g1, . . . , gm}) is consistent;(ii) any model ofH
has the form〈s0, A0, . . . , Ai−1, si, {b}, si+1〉, whereb 6∈
Aj for all 0 ≤ j ≤ i− 1. 2

For example, letR consist of the rules (1)-(3) andI be
{ initially ¬f ′}, then(R, ∅, I) is an elaboration of the rule
¬f,¬g triggers a. This elaboration is “tolerated” byA∞T ,
which is a corollary of the following theorem.

Theorem 1. Let (D, E , I) be anA∞T theory. Letr ∈ D
be the ruleg1, . . . , gm triggers b. Assume thatD contains
only one causal rule for a fluentfb, which isb causesfb ;
and thatD contains only one inhibition rule ofb, which is
fb inhibits b. Let(R, ∅, I) be an elaboration ofr such that:

• all the common symbols (fluents and actions) ofR andD
are the symbols found inr; and

• the domainR does not contain inhibition rules; and
• no action inR affects any fluent in{g1, . . . , gm}.
LetD+ beD \ {r} ∪R, and let initially ¬fb ∈ I. Then:

(a) If a query Q is weakly entailed by(D, E , I) then Q is
weakly entailedby (D+, E , I ∪ I).

(b) If a queryQ is strongly entailed by(D, E , I) thenQ is
strongly entailedby the theory(D+, E ∪E, I ∪ I); where
E is the ordering{{¬fb, g1, . . . , gm} restricts (AR \
b) ≺ AD} with AR, AD being the set of the actions in
R andD respectively.

Proof (sketch). DenoteG = {g1, . . . , gm};H = (D, E , I);
I+ = I ∪I andH+ = (D+, E , I+). Let τ be a model ofH,
and letτr be a model of(R, ∅, I∪{ initially g1, . . . , gm}). It
can be verified thatb occurs at most once inτ . Intuitively, we
will construct a transition sequenceτ+ of D+ by “merging”
τ and τr. The construction goes as follows. Denotes0 =
s0(τr) \G. If b is not triggered byG in τ , then letsi(τ+) =
si(τ)∪s0 andAj(τ+) = Aj(τ), for all i, j. Now assume that
G ⊆ sN (τ), fb 6∈ sN (τ) andb ∈ AM (τ) (whereN ≤ M ).
By Definition 3, there existsL such thatAL−1(τr) = {b}.
Let si(τ+) = si(τ)∪s0 for all 0 ≤ i < N , and letAj(τ+) =
Aj(τ) for all 0 ≤ j < N . Let sN+i(τ+) = si(τr) ∪ sN (τ)
andAN+j(τ+) = Aj(τr), for all 0 ≤ i, j < L − 1. Then
let sL+i−1(τ+) = si(τr) ∪ sL−1(τr) for N ≤ i ≤ M , and
let sL+j−1(τ+) = sj(τ) ∪ sL(τr) for all j > M . Finally, let
AL+i−1(τ+) = Ai(τ) for all i ≥ N .
In the case(a), the constructedτ+ is a model ofH+ which
entailsQ. In (b), all sequencesτ+ constructed from all the
pairs of(τ, τr) are all the models of(D+, E ∪ E, I+). 2

We have a similar result on elaboration of causal rules.

Proposition 1. Let (D, E , I) be anA∞T theory. Letr ∈ D
be the rule:a causesf if f1. Let g, g1, g2 be fluents and
b be action that are not inD. Let R consist of the trigger
g, g2 triggers b and the causal rulesa causesg if f1, g1 ;
and b causesf, ¬g. LetI = { initially ¬g, g1, g2}. Then:

(a) If a query Q is weakly entailed by(D, E , I) then Q is
weakly entailedby (D \ {r} ∪R, E , I ∪ I).

(b) If a queryQ is strongly entailed by(D, E , I) thenQ is
strongly entailedby (D \ {r} ∪ R, E ∪ E, I ∪ I); where
E is the ordering{{a, f1} restricts b ≺ AD} with AD
being the set of the actions inD.

Reasoning about exogenous interventionsIt is impor-
tant to be able to reason about effects of external agent ac-
tions on triggered evolutions of a system; for example, we
want to know how to intervene to alter the cell behavior in
desirable ways. SinceA∞T does not represent explicit time,
we cannot specify an execution of an exogenous action by
explicitly setting a time for it (e.g. exogenous actions with
time steps (Tran & Baral 2004)), or implicitly setting the ex-
ecution time using ordering (e.g. a plan as a sequence of ac-
tions). However, we can combine the modelled system (e.g.
an interaction network) together with the agent control (e.g.
a scientist) into one system and reason about the exogenous
actions of the agent as triggers in the combined system.
Formally, we consider external interventions as conditional
actions of the form:

α = do a if f1, f2, . . . , fn,
wherea is an action, andf1, f2, . . . , fn are fluent literals.
Given a conditional actionα of the above form, we de-
notetrig(α) = f1, f2, . . . , fn triggers a andact(α) = a.



Given a setC of conditional actions, we denotetrig(C) =
{trig(α) | α ∈ C} andact(C) = {act(α) | α ∈ C}.
An agent controlcan be represented as a pair(C,L), where
C is a set of conditional actions andL is a set of dynamic
causal laws describing effects of the actions inact(C). Let
(D, E , I) be a theory inA∞T and(C,L) be an agent control.
We can assume that the actions ofact(C) are not inD. Then
we say that(D, E , I) entailsa queryQ given(C,L) iff:

(D ∪ L ∪ trig(C), E , I) |= Q .
Planningfor a goalQ is to find a subsetP ⊆ C such that:

(D ∪ L ∪ trig(P ), E , I) |= Q .

Application to the p53 network LetD+
p53 be the updated

version ofDp53 in Section 2. LetI be an initial state obser-
vation that onlyhigh(UV ) is true.

First, we have that(Dp53, ∅, I) |= 2 ¬tumorous. This
corresponds to the fact that the presence of high UV does
not cause cancer. Next, letH0 = (D+

p53, ∅, I). We have
that(D+

p53, ∅, I) |=W 3 ¬tumorous and(D+
p53, ∅, I) |=W

3 tumorous. Thus the theoryH0 captures the specificity
phenomenon of the p53 network.

Now letE be the event ordering
high(UV ),¬high(p53) restricts

high(p53) ¹ unstable(cells).
This event ordering knowledge has a known biological coun-
terpart. It is known that in a healthy cellular environment,
the upregulation of p53 is triggered rapidly in the presence
of high level UV and before the cell becomes unstable.
Now let H1 = (D+

p53, E , I), thenH1 |= 2 ¬tumorous.
Thus one can make more specific predictions by incorporat-
ing event orderings.

Conclusion
In this paper we describe several interesting issues that we
encountered while modelling cellular interactions, and that
are not appropriately modelled in existing languages and
systems. We then build up on an existing language, and give
the semantics of our language. We show that using our lan-
guage one can express the specificity issue in cell signaling,
can correctly reason when actions or triggers are elaborated,
and can express and reason with event ordering knowledge.

In terms of related work, there have been several pro-
posal for modelling cell behavior and cellular interaction,
including proposals such as the use of Petri nets (Peleg,
Yeh, & Altman 2002), process algebra (Regev, Silverman,
& Shapiro 2001) and many others mentioned in (Baralet
al. 2004). Most of these methods are more focussed towards
simulation than about reasoning, and can not do explanation
or reasoning. Even for prediction, they do not address the
issues of specificity, elaboration and refinement, and do not
allow for specification of event ordering. There exist action
formalisms for representing triggered events and concurrent
actions, such as situation calculus with natural actions (Re-
iter 1996), the languageE (Kakas & Miller 1998), the lan-
guage C+ (Giunchigliaet al. 2004), and (Thielscher 2000),
but none of them address the issues studied in this paper,
in particular the issue of elaboration of actions and triggers
at one granularity via more detailed description at a finer

granularity. The work of (Fukuda & Takagi 2001) addresses
presentation of hierarchical knowledge, however it does not
support reasoning about triggers and concurrent actions.

Acknowledgments
We acknowledge the support of NSF under grants numbered
0412000 and 0070463 and thank Dr. Vinay Nagaraj for stim-
ulating and insightful discussion on the p53 network.

References
Baral, C.; Chancellor, K.; Tran, N.; Tran, N.; and Berens, M.
2004. A knowledge based approach for representing and rea-
soning about signaling networks.Bioinformatics 20 (Suppl 1)
i15–i22.

Calvanese, D.; de Giacomo, G.; and Vardi., M. 2002. Reasoning
about actions and planning in LTL action theories. InProc. of KR
2002, 593–602.

Chabrier, N.; Chiaverini, M.; Danos, V.; Fages, F.; and Schachter,
V. 2004. Modeling and querying biomolecular interaction net-
works. Theoretical Computer Science325(1):25–44.
Emerson, E. 1990. Temporal and modal logic. In van Leeuwen,
J., ed.,Handbook of Theoretical Computer Science, Volume B,
997–1072.

Frei, H. 2003.Cancer Medicine.
Fukuda, K., and Takagi, T. 2001. Knowledge representation of
signal transduction pathways.Bioinformatics17(9):829–37.

Giordano, L.; Martelli, M.; and Schwind, C. 2001. Reasoning
about actions in dynamic linear time temporal logic.Journal of
the IGPL9(2):289–303.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and Turner,
H. 2004. Nonmonotonic causal theories.Artificial Intelligence
153(1-2):49–104.

Kakas, A., and Miller, R. 1998. Reasoning about actions, narra-
tives and ramifications.ETAI1:39–72.
Khan, S.; Decker, K.; Gillis, W.; and Schmidt, C. 2003. A multi-
agent system-driven AI planning approach to biological pathway
discovery. InProc. of ICAPS 2003.

Peleg, M.; Yeh, I.; and Altman, R. B. 2002. Modelling biological
processes using workflow and petri net models.Bioinformatics
18(6):825–837.
Reddy, V. N.; Liebman, M. N.; and Mavrovouniotis, M. L. 1996.
Qualitative analysis of biochemical reaction systems.Computers
in Biology and Medicine26:9–24.

Regev, A.; Silverman, W.; and Shapiro, E. 2001. Representation
and simulation of biochemical processes usingπ-calculus process
algebra. InProc. of PSB 2001, 459–470.
Reiter, R. 1996. Natural actions, concurrency and continuous
time in the situation calculus. InProc. of KR 1996, 2–13.

Talcott, C.; Eker, S.; Knapp, M.; Lincoln, P.; and Laderoute, K.
2004. Pathway logic modeling of protein functional domains in
signal transduction. InProc. of PSB 2004, 568–580.
Tan, P. B., and Kim, S. K. 1999. Signaling specificity: the
RTK/RAS/MAP kinase pathway in metazoans.Trends in Genet-
ics 15(4):145–149.

Thielscher, M. 2000. Representing the knowledge of a robot. In
Proc. of KR 2000, 109–120.
Tran, N., and Baral, C. 2004. Reasoning about triggered actions
in AnsProlog and its application to molecular interactions in cells.
In Proc. of KR 2004, 554–563.


