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Invasive alien species (IAS)—species that es-
tablish and spread in ecosystems to that they
are not native—are argued to be the second-
most important cause of biodiversity loss
worldwide (Holmes). Without natural preda-
tors, parasites, and/or pathogens to help con-
trol population growth, IAS frequently out-
compete or prey on native species. They cause
or spread diseases to cultivated plants, live-
stock and human populations. They often en-
croach on, damage or degrade assets (e.g.,
power plants, boats, piers, and reservoirs). The
associated economic impacts can be significant
(Perrings, Williamson, and Dalmazzone). For
example, the zebra mussel alone is predicted
to create $5 billion in damages over the next
decade in the Great Lakes (Michigan Depart-
ment of Environmental Quality).

Human activities—particularly those associ-
ated with trade and travel—are the most com-
mon cause of IAS invasions. IAS invasions are
now more frequent than ever before, largely
due to the expansion of world trade and travel
over the past century (Heywood, Parker et al.).
For instance, at least 145 species have invaded
the Great Lakes since the 1830s, with one-third
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occurring during the past thirty years—likely
in response to increased shipping in the St.
Lawrence Seaway (Michigan Department of
Environmental Quality).

Management of IAS includes several op-
tions: prevention of new species intro-
ductions, eradication following introduction,
containment or control of IAS populations
(e.g., IPM), or adaptation. Historically, efforts
have focused on eradication and postinvasion
control. Preventive measures, including quar-
antine restrictions, import licensing by refer-
ence to “black” or “white” lists, biosecurity
shipping measures and so on are authorized
by article XX of GATT and the Sanitary and
Phytosanitary Agreement. However, compar-
atively little effort has been committed to such
measures.

We focus on preinvasion controls, treating
IAS as a form of “biological pollution.” Un-
like many conventional pollution problems,
IAS problems are difficult to handle within
a conventional risk-management framework.
There are several reasons for this: (a) Species
introductions may be an increasing function of
trade linkages and trade volumes, but the like-
lihood of establishment, spread, and damage
are thought to be extremely low (Williamson).
(b) Biological invasions frequently involve
novelty. Bioclimatic models have been de-
veloped to predict the probability of IAS
invasions. But many scientists argue that
such research is futile because a probability
density function cannot be constructed for
one-time events with no historical precedents
(Williamson). Decisions must therefore be
made under conditions of incomplete informa-
tion about the set of possible invaders, the like-
lihood of their introduction, establishment and
spread, and the potential economic damages if
they do. At the same time, the cost of invasions
can be extremely high. (c) Once a species has
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established and spread, then its introduction is
to all intents and purposes irreversible. At the
very least it involves hysteresis.

For all three reasons, decision models based
on standard expected utility theory have lim-
ited value. One problem is the insensitivity
of expected utility to low probability catas-
trophic risk (Chichilnisky). Indeed, there is ev-
idence that people treat probabilities close to
zero in a distinctive way. The probability of
“very unlikely” outcomes tends to be either
overestimated or set equal to zero. The de-
viation of the perceived from the actual risk
in these cases generally depends on the value
of the outcome. Moreover, this occurs even in
well-functioning risk markets. In liability in-
surance markets, for example, it has long been
observed that insurers demand a risk premium
that makes the rates exceed the expected losses
when dealing with highly unlikely but poten-
tially large losses. At the same time, the in-
sured are willing to pay less than predicted
by expected utility calculations (Katzman,
Farley). Given that many IAS problems exhibit
both potentially catastrophic and irreversible
consequences and involve low (but largely un-
known) probabilities, there is clearly a man-
agement problem to be addressed.

In this article, we examine the IAS preinva-
sion control problem using both ignorance and
risk-management models. We begin with the
more familiar risk-management framework,
which might be advocated in the special case of
full information. Next, we proceed using an ig-
norance (or uncertainty) framework. We indi-
cate the information required to develop such
a model, and we illustrate that rational pol-
icy design is possible under ignorance. Finally,
we make qualitative comparisons between the
two approaches.

Controlling Biological Pollution under
Full Information: Risk Management

Consider a potential “pathway” for species in-
vasions, which we may call biological pollution.
A pathway involves both a route and a carrier
or vector. We denote each potential carrier as
a firm. In many cases it will make more sense
to focus on the originating firm (the exporter),
rather than the carrier. The carrier is relevant
where species are introduced as unintentional
cargo, as is the case with the many aquatic
species introduced through the discharge of
ballast water. Each firm makes a variety of pro-
duction and biosecurity choices affecting the
likelihood of species introductions (e.g., in the

case of commercial shipping, these include the
time and effort involved with ballast water ex-
change, the number and location of stops, the
time at sea, and the use of biocides, filtering,
and heat). The ith firm’s choices are denoted
by the (1 × m) input vector xi (with jth element
xij). Biosecurity or biological pollution control
costs are ci(xi).

The biomass of species s (s = 1, . . . , S) in-
troduced in the given habitat by firm i is de-
noted by eis. A firm cannot control eis with
certainty. Introductions are random due to the
influence of stochastic variables that are not
directly under the firm’s control (e.g., environ-
mental drivers), although the probability of a
particular level of biomass emissions is con-
ditional on the firm’s biosecurity choices. The
probability that eis is introduced, conditional
on input choices and firm characteristics (bi) is
pis(eis | xi, bi).

A species that is introduced may or may
not establish and spread (invade), and cause
ecological and economic damages. Conditions,
including the control regime (which we take
here as given), must be right for a success-
ful invasion. We assume damages only occur
from a successful invasion. Such an outcome
occurs with some probability, conditional on
the scale of the introduction and also location
and habitat characteristics (e.g., predators and
food sources), denoted by w. The probability
that an introduction eis leads to a successful
invasion is denoted by Prs (survival | eis, w),
and is increasing in eis . Accordingly, the prob-
ability that introductions of species s by firm
i lead to an invasion is qis(xi , bi , w) = ∑

eis

Prs(survival | eis,w)pis(eis | xi , bi ). This specifi-
cation assumes that invasions arise via par-
ticular firms and that the probability of an
invasion via one firm is independent of intro-
ductions by other firms. This may be a sim-
plification for some cases in which the alien
population depends on a large number of in-
troductions to become established in the new
habitat. But it is realistic for species that are
fairly well suited to the new ecosystem and can
establish with only small numbers (e.g., inva-
sive pathogens).

Because a species is able to proliferate in situ
once it has invaded, we assume a species can
only invade once and that the marginal dam-
ages of further invasions of the same species
are zero. This is in contrast to many pollution
problems in which the current level of emis-
sions matters. It is analogous to pollution prob-
lems in which the marginal damage cost of
pollution falls to zero once the assimilative
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capacity of the environment has been ex-
ceeded. A species invasion is a Bernoulli event:
an invasion either occurs or it does not occur.
The probability of an invasion of species s via
any one of n firms is

Ps(x1, . . . , xn) = Ps(Zs ≥ 1)(1)

= 1 − P(Zs = 0)

= 1 − n
�
i=1

(1 − qis(xi , bi , w))

where Zs represents the number of times that
species s invades a given ecosystem. The proba-
bility Ps decreases in biosecurity measures that
make introductions less likely and increases in
biosecurity measures that make introductions
more likely. The probability Ps also increases
in the number of firms. As n → ∞, invasion be-
comes a virtual certainty (i.e., Ps → 1). This is
because IAS control depends on the least ef-
fective provider. For instance, in the case of
quarantine services, if one quarantine facility
does not contain an invasive pathogen, the fact
that all others may do so is irrelevant. The sim-
ilarity to the problem of control of commu-
nicable diseases is obvious. The public good
involved in the control of invasive species and
infectious diseases alike is a “weakest-link”
public good (Perrings et al.).

The (present value of) economic damages
due to an invasion by the sth species are
Ds(�s, �), where � s is a random variable
reflecting uncertain damage costs, and � is
the set of species that may be introduced.
The management response to the invasion is
taken as given here, although a more complete
model would consider the trade-offs between
prevention and mitigation efforts. The set �
can be thought of as a description of the state
of the world, which will change over time as
the system evolves. The state of the world is
an argument of Ds because damages might
depend on the order of species invasions as
well as interactions that may arise as new
species invade over time.

At least some of the random factors in-
fluencing the probability of survival will also
influence damages. For instance, stochastic en-
vironmental variables that affect the probabil-
ity that an introduced species will establish and
spread may also influence its impact on the eco-
logical services provided by the host system.
Denote the common (sub-) set of random vari-
ables influencing both survival and damages by
�s, and define the probability of survival, condi-
tional on the value of �s, by Ps(x1, . . . , xn | �s).

Defining E as the expectations operator over
all stochastic variables, expected damages are
given by

E{D(x1, . . . , xn, �)}(2)

=
S∑

s=1

E{Ds Ps(x1, . . . , xn | �s)}.

Ex Ante Economic Efficiency

Ex ante efficient biosecurity measures mini-
mize the expected social cost of biological pol-
lution and its control

min
xi j ∀i, j

n∑
i=1

ci (xi ) + E{D(x1, . . . , xn, �)}.(3)

The problem has been constructed in a static
context for simplicity and, hence, the state of
the world remains constant over the (single-
period) planning horizon. The necessary
conditions for an interior solution can be writ-
ten as

∂ci

∂xi j
= −E

{
∂ D

∂xi j

}
(4)

= −
S∑

s=1

[
E{Ds}E

{
∂ Ps

∂xi j

}

+ cov
{

Ds,
∂ Ps

∂xi j

}]
∀i, j.

Condition (4) states that the marginal cost of
undertaking a particular action (the left-hand
side (LHS)) optimally equals the marginal ex-
pected benefits (i.e., the reduction in damages)
of the action (the right-hand side (RHS)). The
marginal expected benefits include both mean
(the first RHS term) and risk (the second RHS
term) impacts. The risk impacts occur because
the specific choices made by each firm have
uncertain effects on the likelihood of adverse
environmental outcomes (e.g., see Shortle and
Dunn).

Condition (4) can be expanded to illustrate
the effects of redundancy

∂ci

∂xi j
= −

S∑
s=1

E
{

Ds
(
1 − P−i

s

)∂qis

∂xi j

}
∀i, j(5)

whereP−i
s = 1 − �k = i (1 − qks(• | �s)) is the ag-

gregate probability (conditional on �s) that
species s will invade from any firm other
than firm i. As P−i

s → 0 it becomes highly
unlikely that species s will invade via one of
the other firms. For P−i

s ∈ [0,1), the optimal
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degree of biosecurity actions by firm i depends
on the (firm-specific) trade-off between firm
i’s marginal likelihood of an introduction and
its marginal costs of biosecurity, as weighed by
(1 − P−i

s ). The value of P−i
s is endogenous and

is affected by the optimal choices for firm i.
For instance, if qis > 0 is optimal then P−i

s = 0
cannot be optimal. When P−i

s = 0, all firms k =
i have incurred costs to reduce the probability
of an invasion to zero, but Ps has not been re-
duced below the probability created by firm
i (qis). A reallocation of biosecurity efforts
across firms would lower costs while not in-
creasing Ps .

As P−i
s → 1, then species s is very likely

to invade via one of the other firms. In this
case the sth bracketed term on the RHS of
condition (5) becomes quite small, vanishing
when P−i

s = 1. If P−i
s = 1 ∀s, then firm i opti-

mally does not invest in biosecurity; firm i op-
timally goes unregulated. Note that P−i

s → 1
as n → ∞; a corner solution arises when there
are many firms. It is optimal either for all firms
to go unregulated so that P−i

s → 1, or for each
firm to undertake extensive controls so that
qis = 0 ∀k, s and P−i

s → 0. The results with
P−i

s → 1 are consistent with those of Simpson,
Sedjo, and Reid, who argue that the value of
habitat and species at the (current) margin is
small because there is redundancy in genetic
information. Conservation to preserve genetic
information is of little value because many
other species are still around. In the present
case, abatement is of little value when n is large
because chances are the species will invade
anyway.

A Decision Framework under Ignorance

In most cases the risk of invasion is unknown.
Even the use of subjective probabilities may be
problematic due to the unfamiliarity of IAS
invasions and incomplete knowledge of the
state space. Accordingly, a risk-management
approach like the one described above may be
infeasible. This does not invalidate the general
approach, but it does imply that decision mak-
ers may approach the evaluation of outcomes
in a rather different way.

One option is to model uncertainty and igno-
rance explicitly. Katzner’s development of the
pioneering works of Shackle and Vickers illus-
trates how (see Kelsey and Quiggin, Hamouda
and Rowley for surveys of other approaches).
Denote �i to be the set of alien species that
could potentially invade an ecosystem via firm

i. Unlike the model above, some elements of
�i remain unknown. Identifiable elements of
�i are contained in a subset of �i, denoted 	 i.
The collection of unknown outcomes is repre-
sented by the empty set, �i, with �i ⊆ �i and �i
a member of 	 i. “Hence, it is recognized that
the inconceivable may occur” (Katzner, p. 47).
Each member of 	 i is a hypothesis, which can
be thought of as an answer to the question,
“Given the choices xi, populations of which
species will invade via firm i?” Hypothesis
Ai is rival to hypothesis Bi if and only if Ai ∩
Bi = �i. Of course, �i is rival to every hypoth-
esis in 	 i.

The perceived likelihood that a hypothesis
will occur is measured by a potential surprise
function, denoted �i(Ai, xi). This is a measure
of disbelief, or the degree of surprise that indi-
viduals expect they would experience should
Ai be realized in the future (given the choices
xi). For instance, this function might be devel-
oped based on expert opinion. When �i(Ai,
xi)=0, then individuals are unable to imagine a
barrier to the occurrence of Ai; event Ai is con-
sidered very likely or, rather, perfectly possi-
ble. When �i(Ai, xi) = 1, individuals are unable
to imagine Ai occurring; event Ai is considered
very unlikely. Potential surprise functions are
therefore closely related to inverse subjective
probability density functions, although they do
not have to sum to one over events.

Each species can invade only once, but it is
useful to consider the potential surprise that
may be engendered if an IAS invasion was to
occur via any firm, denoted �(A, x), where x
represents the vector of each firm’s choices. If
Ai represents the same (collection of) species
for each i, then we have (Katzner, p. 51)

�(A, x) = �(A1 ∪ A2 ∪ . . . ∪ An ; x)(6)

= min[�1(A1, x1),

�2(A2, x2), . . . , �2(An, xn)].

Biosecurity measures taken by one firm do not
increase the potential surprise of an invasion if
all other firms do not also undertake preven-
tative actions. As above, biosecurity measures
are a weakest-link public good.

If an invasion does occur, then damages are
also uncertain. The set � therefore represents
just one of the incomplete sets of outcomes
with which we are concerned. A second hy-
pothesis set, denoted 
, and associated poten-
tial surprise functions are needed to answer the
question, “If species invasions do occur, then
what will be the economic damages (again,
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taking the management response to the in-
vasion as given)?” Here, conditionality is not
modeled by assuming the event did occur (as in
probability theory), but rather that the event
is perfectly possible. The conditional potential
surprise associated with a particular level of
damages, denoted by an event z, given that
event A ⊆ � is thought to be perfectly possi-
ble, is denoted �(z | �(A, x) = 0). But ex ante,
it is not known whether the species will invade.
The potential surprise associated with a partic-
ular level of damages therefore also depends
on the potential surprise of an invasion. Fol-
lowing Shackle, the potential surprise associ-
ated with outcome z is

�(z, x) = min
A

{max{�(z | �(A, x)(7)

= 0), �(A, x)}}.
Hence, potential surprise is endogenous, to a
point. The level of disbelief may increase as
biosecurity measures are increased. But this
only occurs to the extent that the disbelief as-
sociated with possible invasions is greater than
the disbelief associated with damages when
the introductions are considered perfectly
possible.

The major insight of this approach to de-
cision making is the following. While several
possible outcomes z may be associated with
each value of x, a decision maker will not focus
on all possible outcomes. Instead, when eval-
uating x, a decision maker will focus on “the
least unbelievable conjectured losses or gains
from the activity” x (Perrings, p. 109). Focusing
on losses in the present case, this means that,
for a given x, the decision maker focuses exclu-
sively on those pairs (z, �(z, x)) that maximize
the attractiveness of losses—the focus loss, de-
fined as [z−(x), �(z−(x), x)] (see Katzner for
derivations). Hence, when the decision maker
evaluates x, his/her attention is drawn to only
z−(x), which is the endpoint “of a closed inter-
val of outcomes for x having ‘minimal’ poten-
tial surprise” (Katzner, p. 128).

To calculate the optimal choice of x, note
that the focus loss components are functions
of x. So all that is required to choose x opti-
mally is knowledge of how the decision maker
values the focus loss components. Just as ex-
pected damages are a decision index based on
damage levels and their probabilities of occur-
rence, define Q to be a decision index based on
the focus loss components (Vickers, Katzner),
that is,

Q(x) = Q(z−(x), �(z−(x), x)).(8)

The index Q is an inverse measure of wel-
fare and therefore increases in damages, that
is, ∂ Q/∂z− > 0. Assume the decision maker is
uncertainty averse, placing a negative value on
greater uncertainty associated with desirable
outcomes. Alternatively, the decision maker
values greater uncertainty associated with the
focus loss, that is, ∂ Q/∂�(z−, x) < 0. This is
analogous to having convex damages in the
risk-management case.

We now incorporate Q into the more general
problem of minimizing the social costs of bio-
logical pollution and its control. Following Per-
rings, we combine traditional economic wel-
fare measures with an appropriately defined
decision index Q:

min
xi j ∀i, j

n∑
i=1

ci (xi ) + Q(x).(9)

If Q is differentiable, then the necessary con-
ditions for this problem are

∂ci

∂xi j
= −

[
∂ Q

∂z−
∂z−

∂xi j
+ ∂ Q

∂�−
∂�−

∂xi j

]
∀i, j.(10)

Condition (10) indicates that a firm’s marginal
cost of using an input (the LHS) optimally
equals the marginal impact of the input on
the damage index (the RHS). Similar to con-
dition (4) in the risk-management case, the
RHS of (10) consists of two components. The
first term is the marginal impact of the input
on the focus loss (analogous to the mean im-
pacts in the risk-management case). The sec-
ond term is the marginal impact of the input
on the potential surprise associated with the
focus loss (analogous to the risk impacts in the
risk-management case). This second term mea-
sures the uncertainty impacts from the use of
the input: the marginal cost of an input should
increase when the use of the input increases
the uncertainty associated with the focus loss.

But as it turns out, Q may not be differen-
tiable at the optimum. To see this, consider the
allocation of uncertainty impacts across firms.
Suppose that firm i adopts sufficient biosecu-
rity measures that the surprise of an introduc-
tion by firm i is greater than the surprise of an
introduction by at least one other firm k, that
is,

�i (A′, xi ) > �k(A′, xk).(11)

In this case, condition (6) implies that
∂z−/∂xi j = ∂�−/∂xi j = 0, which in combination
with condition (10) means that ∂ci/∂xi j =
0 ∀ j . That is, the firm should not adopt any
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biosecurity measures, which is in contrast to
the assumption that firm i has adopted the most
stringent pollution controls. Therefore, condi-
tion (11) cannot hold in the optimum condi-
tion. If biosecurity measures by one firm have
no impact on the potential surprise of an in-
vasion, it is not optimal for firm i to have a
greater potential surprise of an introduction
than any other firm. Instead, it is optimal for
�i (A′, xi ) = �k(A′, xk) ∀i,k. As a result, equa-
tion (6) may be kinked for small changes in
any xi j , and so Q may not be differentiable
when n > 1. The solution to (9) still requires
balancing costs with the decision index Q, al-
though with the xi j ’s being chosen from the set
 = {xi j | �i (A′, xi ) = �k(A′, xk) ∀i, k}.

Implications of Uncertainty for the
Management of Invasion Risks

The critical point in the theory of decision mak-
ing under uncertainty is that decision makers
form impressions about the likelihood of fu-
ture events in ways that are either nonprob-
abilistic or that modify the underlying proba-
bility distribution of future outcomes. Shackle
suggested that under uncertainty the focus
loss and focus gain of a decision attract the
decision maker’s attention, without necessar-
ily representing any particular moment of an
underlying probability distribution. The em-
pirical evidence on decision making under
incomplete information confirms that in the
absence of full information people do weight
probabilities both as a function of their con-
fidence in the data and the value of the out-
come. The form of the weighting function
and even the existence of explicit weights are
empirical matters. But all nonprocedural ap-
proaches to decision making under uncertainty
can in fact be represented in this way. Subjec-
tive probability (Savage), insufficient reason
(Arrow and Hurwicz), weighted expected
utility (Fishburn), and potential surprise
(Shackle) all assume that the focus of the deci-
sion maker’s attention is something other than
the expected utility of the outcome.

We examine how uncertainty may mod-
ify risk-management decisions (assuming the
state space is known and subjective prob-
abilities could be constructed) by mapping
the focus of decision makers’ attention into
expected utility. Because Q is not differen-
tiable for multiple firms, we consider the case
of n = 1. There exists a probability weight-
ing function that equates the uncertainty deci-

sion index Q(z−(x), �(z−(x), x)) with the ex-
pected damages of the same set of actions,
E{D(x, �)}. Specifically, there exists a weight-
ing function Gs (x, �) such that the weighted
probability function �s (Ps, Gs) (∂�s/∂Gs >
0, ∂�s/∂ Ps > 0) ensures that the following re-
lation holds:

Q(z−(x), �(z−(x), x))(12)

=
S∑

s=1

E{Ds�s(Ps, Gs)}.

As an example of how a weighting func-
tion might map focus loss into expected
value, consider a rank-dependent transforma-
tion of the general form of that suggested
by Lattimore, Baker, and Witte: �s(Gs, Ps) =
Gs P�

s /[Gs P�
s + ∑S

r=1,r =s P�
r ]. As above, Gs is

an outcome-specific weight. If � = 1 and Gs =
1 ∀s, then �s is identically equal to the un-
weighted expected value. If Gs is greater or less
than unity, the weighted probability is greater
or less than the unweighted probability. We
would expect the outcomes that constitute the
focus loss of an action (the reference point for
the decision) to be weighted at greater than
unity. All other outcomes would be weighted
at less than unity. Note that the sum of the
weighted probabilities need not equal one.

The parameter � has the effect of weighting
small changes in the neighborhood of the ref-
erence point more (if � < 1) or less (if � > 1)
heavily than large changes elsewhere. This cap-
tures a well-recognized empirical observation
about people’s perceptions of losses or gains
relative to a reference point (Tversky and
Kahneman). Starmer and Sugden, for exam-
ple, suggest that the probability weighting
function might be concave for gains and con-
vex for losses around a reference point.

Using (12), the ignorance problem (9) can
be written as a risk-management problem

min
x j ∀ j

c(x) +
S∑

s=1

E{Ds�s(Ps, Gs)}(13)

with first-order necessary conditions

∂c

∂x j
= −

S∑
s=1

[
E{Ds}E

{
∂�s

∂Gs

∂Gs

∂x j
(14)

+ ∂�s

∂ Ps

∂ Ps

∂x j

}

+ cov
{

Ds,
∂�s

∂xi j

}]
∀ j.
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Because condition (12) holds, ∀x, the solution
to (14) will be equivalent to that of (10). The
results of the uncertainty model can then be
compared with the risk-management model by
comparing conditions (14) and (4). Relative
to (4), the weighting function in (14) changes
the expected marginal reduction in damages
due to biosecurity measures. As in (4), the
expected marginal reduction in damages in
(14) includes both mean and risk impacts.
Uncertainty increases (decreases) the mean
and risk impacts as a function of the value
of particular outcomes as ∂Gs/∂xi j < (>) 0.
Therefore, when operating under uncertainty,
it is optimal to devote more resources to con-
fronting high-damage events that are consid-
ered possible (low potential surprise) even if
the probability is low, and to allocate few or no
resources to confronting events that are
considered less possible (higher potential
surprise)—regardless of the expected damages
of those events. Similar results might be ex-
pected for multiple firms.

Finally, recall that ∂ Ps/∂xi j → 0 as n → ∞,
so that the RHS of (4) vanishes and no biose-
curity measures are adopted. This may not be
the case under ignorance as the effect of n on
Gs is also relevant. Because Gs weights large
damages having low potential surprise more
heavily, a decision maker may be more willing
to incur the larger abatement costs that might
arise when regulating larger numbers of firms.
This is somewhat speculative since it may not
be possible to construct Gs for n > 1. Hence,
numerical simulations might be useful to see
how increases in n might affect the results.

Discussion

Under both risk and uncertainty, the optimal
strategy for preventive measures to control
IAS is to equate the marginal costs and ben-
efits of biosecurity measures. However, the
marginal benefits of biosecurity measures may
be quite different where decisions are based
on the focus loss rather than the expected
value of an action. If there is no uncertainty,
focus loss and expected value may be iden-
tical. If there is uncertainty, however, low-
probability extreme outcomes that are consid-
ered possible (low potential surprise) will be
“overweighted” relative to an expected value
approach. They will attract more attention in
the decision process, and more resources will
be committed to avoiding them. This is con-
sistent with a precautionary attitude to irre-

versible, low-probability events having high-
cost consequences (catastrophes) to the extent
that these events have low potential surprise.
But if catastrophic events have a high poten-
tial surprise, then such events do not factor into
the focus loss even if the potential damages are
high.

For both the risk and uncertainty models,
optimal prevention efforts are found by weigh-
ing the costs and benefits of control efforts.
However, uncertainty changes the manner in
which the marginal impacts by different firms
are valued. As a result we find that the types of
choices and associated policy implications aris-
ing under ignorance could be substantially dif-
ferent than those that would arise if the infor-
mation on probabilities and state spaces were
available. For instance, the risk-management
model implies that the expected value of abate-
ment might be small when there are many
firms. A similar result does not necessarily
emerge from the ignorance model due to the
large weights attached to outcomes involving
extensive losses. Significant abatement efforts
might be recommended under the ignorance
model even with many firms, while a risk-
management structure might indicate the op-
posite extreme—that no abatement efforts are
warranted.

Another policy implication stems from the
result that the potential surprise values are
optimally equated across firms (at least, in
the weakest-link case modeled here), while
the probability of an introduction is optimally
firm-specific in the risk-management model.
This difference affects policy choices, partic-
ularly to the extent that policies are based on
some measure of performance. The ideal per-
formance measure is emissions. However, in
the present case it is not possible to monitor
emissions or to control them with certainty.
An alternative measure of performance is the
likelihood of a species invasion, either the
probability of invasion or potential surprise,
depending on the decision framework. Un-
der risk management, such performance-
based incentives or limits would optimally be
firm specific, complicating the administration
of such programs. Under uncertainty, such
performance-based limits (but not incentives)
could be set uniformly across firms. Moreover,
because of the discontinuities involved, a limit
may appear more desirable because it does not
give firms the flexibility to adjust their biose-
curity choices. Under an incentive system one
firm could reduce its potential surprise of an in-
vasion relative to the other firms if this became
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a profitable endeavor. Such a move would de-
crease the overall potential surprise of an in-
vasion since this depends on the minimum po-
tential surprise value across firms. This would
adversely affect the decision criterion Q.
Moreover, at the new level of overall potential
surprise, all other firms over-invest in biosecu-
rity; their extra efforts have no impact on over-
all performance. Thus, management under
ignorance may support current policy initia-
tives that are based mainly on uniform technol-
ogy mandates as a way of limiting uncertainty
uniformly across firms.
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