Proceedings of the Symposium on Logic Programming

EXTENSION TABLES: MEMO RELATIONS IN LOGIC PROGRAMMING

Suzanne Wagner Dietrich

Computer Science Department
State University of New York at Stony Brook
Stony Brook, NY 11794

Abstract

- Memo-ization is a useful optimization technique whose
application to functional programming has been well ex-
plored {1],[2],[3]. The memo facility employs a dynamic
programming approach to computation in which inter-
mediate results are saved and later reused to avoid re-

dundant work. This paper explores the application of

this principle to Horn clause programming. The table in
which the intermediate results.of computation are saved
is known as an ertension table since the set of tuples that
satisfy a predicate, its extension, is stored in the table.

Because of the nondeterminism in logic programming, an

eztension table facility improves the termination and com-
pleteness characteristics of depth-first evaluation methods
in the presence of recursion, and thus the consequences of
memo-izing in a relational system are much more inter-
esting and far-reaching than in functional environments.

1 Introduction

Logic programming systems use a declarative specifi-
cation of programs which provide a separation of program
logic from the control of the execution of that program.
Unfortunately, this separation of logic from control may
lead to programs whose execution may be very inefficient.
In addition, logically correct programs may not terminate
due to the underlying execution method.

One solution is to make the programmer responsible
for efficient program execution using impure features of
the logic programming language. This solution is unde-
sirable since the declarative reading of the program is ob-
scured by the specification of control. Some researchers
have considered an alternative that separates the speci-
fication language from the control language [4]. Unfor-
tunately, both of these approaches give the programmer

~the responsibility for cleverly directing the execution of
the program.

Another solution is to make the system responsible
for the efficient execution of a logically correct program.

CH2472-9/87/0000/0264$01.00 © 1987 IEEE

One alternative is to use optimizing compilers to improve
the performance of programs on the underlying execution -
method. Program transformation is often used to me-
chanically transform programs into equivalent ones which
are executed more efficiently [5]. Another alternative is
to use improved execution methods for the evaluation of
a program specification [6], [7]. Instead of altering the
program specification, an evaluation method is modified
to achieve efficient program execution.

The problem of terminating the executicn of logically
correct programs which are defined using recursive rules

" has received a lot of interest recently in the database
community. Many strategies for the evaluation of recur-
sive queries in deductive databases have been proposed
[8],{9],{20],{11], [12],{13],(14], [15],(16]. These works per-

_ tain primarily to Datalog programs which are Horn clause
programs without function symbols. These methods gen-
erally apply to a restricted set of Datalog programs. Our
research, therefore, is also applicable to the evaluation of .
recursive rules in deductive databases. However, its ap-
plicability extends beyond the realm of databases to the
evaluation of logic programs in general.

This paper explores the use of an efficiency mecha-
nism which employs the dynamic programming principle
{17} where the results of subproblems are saved in a ta-
ble; if the same result is needed later, it is retrieved via a
table lookup instead of being recomputed. One such ap-
plication of this principle used to achieve efficiency for the
evaluation of numerical functions is known as memo func-
tions [1]. Our research applies this dynamic programming
technique to logic programming. The table in which the
results of computation are saved is called an eztension ta-
ble since it is the extension of a predicate that is stored in
the table. Extension table evaluation is interestingly dif-
ferent from memo evaluation in functional programming
because of the nondeterminism in logic programming. Ez-
tension tables favorably affect the termination character-
istics of depth-first evaluation methods in the presence of
recursive definitions and thus speaks to one of the glaring
problems in efficient logic programming languages such
Prolog. :
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This paper assumes that the reader is familiar with
logic programming and, in particular, the programming
language Prolog. Section 2 discusses the use of memo
functions in functional languages. Section 3 introduces
extension tables as a caching mechanism. In Section 4, we
propose the use of extension tables as an evaluation proce-
dure for general logic programs with recursive rules. Sec-
tion 5 comments on research related to extension tables.
Conclusions and open research problems are included in
Section 6.

2 Memo Functions

A simple but often effective mechanism for improving
the efficiency of the execution of a program is to save in-
termediate results in a table and to use a table lookup to
retrieve a result instead of recomputing it. As noted ear-
lier, this is known as the dynamic programming principle.
Michie [1] referred to this mechanism as a memo facility.
He called a function which has this technique applied to
its evaluation, a memo function.

The evaluation of a memo function first performs a
table lookup via a search strategy for the current request.
If an entry is found in the table which has its arguments
equal to the calling arguments, then the value in that
entry is returned. If an answer is not found in the table,
then the computational procedure is used to compute the
answer, The computed answer and its arguments are then
saved in the table.

Memo-ization has been argued to be a useful optimiza-
tion technique for functional programs [2]. He uses as an
example the following clear and natural definition of the
fibonacci function:

fib 1 =1,
fib 2 = 1.
fidb n = fib(n-1) + fib(n-2), n>2.

This definition results in an inefficient exponential execu-
tion since it performs a large amount of redundant work.
The memo function for this definition of fibonacci achieves
2 linear run-time, assuming an efficient search strategy on

the look-up table, instead of an exponential one as in the

original definition. This is because all calls to ib will first
perform a table lookup before using any rules to compute
the answer. :

-~ Memo functions preserve total correctness. The
memo-ized program and the original program are equiv-
alent in the sense that they compute the same answers
but memo functions may compute them more (or in some
Cases less) efficiently. Also, if the original program termi-
Nates on a given set of input so does its memo-ized version.
The only difference in the memo-ized evaluation is that
when the function call successfully returns, the argument-
value pair for that call is stored in the look-up table. If
that same call is made subsequently, the memo-ized ver-
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sion will use the value in the look-up table whereas the
original program will recompute it. In both evaluations,
the computation terminates. In general, memo evalua-
tion will not change the termination characteristics of the
original program. I the original program diverges on a
given set of inputs, then so does its memo-ized version.
A nonterminating computation for a function call results
from a recursive call to that function with the same ar-
guments. The evaluation of the original program results
in an infinite loop due to these recursive calls with the
same arguments. The evaluation of the memo-ized ver-
sion of the function would also result in a nonterminating
computation. Since the first function call has not suc-
cessfully returned, there is no entry in the look-up table
that can be used for the recursive call. The memo eval-
uation would proceed by again trying to find the answer
via the computational procedure and 5o enters an infinite
loop. Thus, due to the deterministic nature of functional
programs, the memo facility will not affect termination.

3 Caching Mechénism

. Extension tables, an application of Warren’s work on
recall tables [18] to logic Pprogramming, have been pro-
posed (but not developed) as a caching mechanism for an
integrated Database-Prolog system [19]. The database
aspects of Prolog allow many uses of extension tables on
simple predicates. For example, an extension table can
be used for the storage of intermediate relations.

Pa(X.Y) :- p(X),q(Y)-

If a relation pgis defined to be the join of relations p and
¢, then each time pq is called p and ¢ will be executed.
If pg were kept in the extension table, the join would be
performed only once and subsequent requests for pg would
retrieve the joined tuples from the table.

Another more traditional use of caching would be to
reduce the number of disk accesses. There may be very
large relations in the system that are only sparsely ac-
cessed and always by a key, for example, a large file di-

“rectory. A cache on such a predicate would store tuples

retrieved from disk in the extension table and so future
references to these tuples would find them in the exten-
sion table and so would not have to access the disk. An
open file table, which is a cache for the file directory, can
be easily implemented with extension tables.

Extension tables can also provide a flexible caching
mechanism. The programmer can indicate to a prepro-
cessor that an extension table is to be kept on a particular
predicate by annotating the predicate in the source pro-
gram. The caching behavior of the system can be recon-
figured simply by changing the annotations and running
the preprocessor on the program.

An extension table can be viewed as a straightforward



implementation of the dynamic programming principle to
logic programming. The goals and answers must be saved
so that results can be retrieved for subsequent requests of
a goal. In the procedural meaning of 2 Horn clause pro-
gram, the evaluation of a goal is a procedure call and a
derived answer is a return. Recall that a memo function
saved its calling arguments and value at the time of return
from the function call. Since memo functions are deter-
ministic, there is exactly one return for each call in the
look-up table. However, in Horn clause programs which
are nondeterministic, a single call may have multiple re-
turns, or it may have no returns. Thus the information
management of the look-up table is more complicated.
The extension table facility saves a call at the time it
is first made. Since extension tables memo-ize the rela-
tions defined by a call, the table lookup can be employed
if the current request for a subgoal is subsumed by a pre-
vious request. For example, if a call is made for p(X,b)
and there has been a previous call to p(X,Y), then a ta-
ble lookup can be used because p(X,b) is a selection of
the relation for p(X,Y). So if the current call can use a

table lookup, then the answers stored in the extension -

table are returned one at a time. Any returns added to
the table during the processing of the call are also used as

returns. Otherwise, the current call is the first such one

and so it is saved and the predicate’s definition is used
~ to determine an answer. The answer that is computed
- is then conditionally added to the extension table. Since
the table stores the extension of a predicate, a computed
answer which is an instance of an answer already stored
in the extension table is not added and that current com-
putation is made to fail.

This extension table facility can be implemented easily’
in Prolog by simply modifying the clauses that define a
predicate. We will call this approach the ET algorithm.
The code to implement an extension tabe facility is shown
in Figure 1. To use an extension table for a predicate
pred, the predicate code_pred must be defined using the
original clauses that defined pred. The calls for pred are
saved by asserting them into the predicate call_pred. The
answers for pred are saved in the extension table using
the predicate ef_pred, i.e. the extension of pred is given

by et_pred.
Note that if pred is recursive, then the recursive calls

in the body of the clauses for code_pred are to pred, which
checks the table, and not directly to code_pred.

The extension table facility can be requested for any
predicate on which an extension table is desired. This al-
lows for not introducing the overhead of saving the calls
and answers on predicates which are already extensionally
defined or on predicates which are very fast to compute.
The translation of a predicate to its associated extension
table code can be performed at run-time given the orig-
inal definition for a predicate. The translation can also
be performed at preprocessing-time given a declaration
indicating that an extension table facility is to be used on
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/* if called before use et */
pred(Xi,...,Xn) :-
call_pred(Y1,...,¥n),
subsumes (pred(Y1,...,Yn),
pred(Xi,...,Xn)).!,
et_pred(X1,....Xn).
/* else save call and compute answer */
pred(X1,...,Xn) :-
assert(call_pred(X1,...,Xn)),
code_pred(X1,...,Xn),
not(et_pred(Y1,...,Yn),
subsumes (pred(Y¥i,...,Yn),
pred(X1i,....,Xn))),
assert(et_pred(X1,....Xn)).

Figure 1: ET Algorithm

that predicate.

The ET algorithm has been implemented in Stony
Brook Prolog [20] which is a Prolog compiler based on
the Warren Prolog engine [21] and in Cprolog. For Stony
Brook Prolog, the goal et(pred/arity) automatically gen-
erates an extension table version of the code for pred
which replaces the original definition of the predicate. In
Cprolog, a simple Prolog program is used to generate the
straightforward program transformation needed to imple-
ment the extension table algorithm. The output .of this
program is the set of clauses which gives the extension
table code for the predicate. This code must be con-
sulted before querying the predicate. (Note that the ex-
tension table implementation requires that the predicate
assert has been modified so that a new clause added to
the chain after the current last one has been retrieved will
be found on backtracking.) Extension tables can be a use-
ful caching mechanism. Some queries, such as fib(20,F )
on the naive fibonacci program, which run out of space
in Prolog can be answered quickly by the extension table
evaluation.

4 Evaluation Strategy

Extension tables can be used as an evaluation proce-
dure for general Prolog programs. Assume, for simplicity
of presentation, that the logic programs which will be con-
sidered in this section are Datalog programs. The use of
extension table evaluation of logic programs with function
symbols will be addressed later. :

4.1 The ET Algorithm

Recall the classic Farmer-Wolf-Goat-Cabbage (alias
Missionaries and Cannibals) puzzle. The farmer, wolf,
goat and cabbage are all on the north bank of a river and
the problem is to transfer them to the south bank. The
farmer has a boat which he can row taking at most one




Initial state
state(n,n,n,n).
Farmer takes Wolf
state(X,X,U,V):-
safe(X,X,U,V),
opp(X,X1),
state(X1,X1,U,V).
Farmer takes Goat
state(X,Y,X,V):-
safe(X,Y,X, V), -
opp(X,X1),
state(X1,Y,X1,V).
Farmer takes cabbage
state(X,Y,U,X):-
safe(X,Y,U.X),
opp(X,X1),
state(X1,Y,U,X1).
/* Farmer goes by himself
state(X,Y,U,V):-
safe(X,Y,U,V),
opp(X,X1),
state(X1,Y,U,V).

/%
/*

/*

/*

/* Opposite shores (n/s) #/

opp(n,s). opp(s,n).

Farmer is with Goat
safe(X,Y,X,V).

Farmer not with Goat
safe(X,X,X1,X) :-

/*
/%

*/

*/
opp(X.X1).

Figure 2: Farnier—Wolf»Goat—Cabbage Puzzle

_passenger at a time. The goat cannot be left with the

wolf unless the farmer is present. The cabbage, which
counts as a passenger, cannot be left with the goat unless
the farmer is present. Consider the Prolog clauses in Fig-
ure 2 which declaratively defines a solution to the puzzle
(origin of this solution is unknown).

The evaluation of the goal state(s,s,s,s) under Prolog’s
evaluation strategy will enter an infinite loop. A trace of
the execution shows that, due to the fixed order of the
clauses, the farmer takes the goat back and forth across
the river. But consider the evaluation of this program if

. We put an extension table facility on the recursive predi-

. Baea tap)e lookup.

cate state. Using the extension table as an evaluation pro-
cedure, the computation terminates and concludes that
the four can cross the river satisfying the constraints.

The Prolog code to implement the extension table for
State is given in Figure 3. As discussed above, this re-
quires (1) the definition of the predicate code_state is that
of the original clauses for state and (2) the generation of
the following new clauses for state.

The divergence of the query state(s,s,s,s) on the orig-

ina] C?de for state resulted from the repeated use of the
Fecursive ryfes. This resulted in infinitely many uses of
b *econd clause for state. The extension table facility

Minates the non-termination because the recursive calls
If it tried to enter a state that it was
efore, there was no solution found in the extension
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/*
/%

Initial state
code_state(n,n,n,n).
Farmer takes Wolf
code_state(X,X,U,V):-
safe (X,X,U,V),
opp(X,X1),
state(X1,X1,U,V).
Farmer takes Goat
code_state(X,Y,X,V):-
safe(X,Y,X,V),
Opp(x .11) »
state(X1,Y,X1,V).
/* TFarmer takes cabbage
code_state(X,Y,U,X):~
safe(X,Y,U,X),
opp(X,X1), '
state(X1,Y,U,X1).
/* Farmer goes by himself */
code_state(X,Y,U,V):-
safe(X,Y,U,V),
opp(X,X1),
state(X1,Y,U,V).

*/

/* */

state(X1,X2,X3.%X4) :-
call_state(Y1,Y2,Y3,74),
subsumes (state(Y1,Y2,Y3,Y4),
state(X1,X2,X3,X4)),!,
et_state(X1,X2,X3,X4).
state(X1,X2,X3,X4) :-
assert(call_state(X1,X2,X3,X4)),
code_state(X1,X2,X3,X4),
not(et_state(Y1,Y2,Y3,Y4), o
subsumes (state(Y1,Y2,Y3,V4),
‘ state(X1,X2,X3,X4))),
assert(et_state(X1,X2,X3,X4)).

Figure 3: ET algorithm on state

table, so the evaluation failed and was forced to consider
another alternative.

In the previous examples, the extension table evalua-
tion resulted in a terminating computation which found
all the answers for a query. It would be nice if exten-
sion table evaluation were convergent and complete for

-all Datalog programs. It is unreasonable to expect that

this evaluation strategy is complete for general Prolog
programs with structure symbols, since it is easy to write
a program which loops by building larger and larger data
structures. Unfortunately, the ET algorithm is not com-
plete even for Datalog. There are logic programs without
recursive data structures for which this evaluation strat-
egy fails to find all answers,

Consider the following program which computes the
transitive closure of the relations p and ¢.

p(a.b). plc.d). q(b,c). q(d,e).

Ri:  pgs(X.¥) :- p(X,Y).
R2:  pgs(X,V) :- q(X,Y).
R3: pgs(X,Y) :- pqs(X,Z),p(Z.Y).
R4: pes(X.Y) :- pgs(X.2).q(Z.,Y).




The set of answers for the query pgs(X,Y) is (a,b), (a,c),
(a,d), (2,), (bsc), (b,d), (bse), (c,d), (c.e), (d,e). Consider
the execution of this program with an extension table
facility on the predicate pgs. The answers (a,b), (c,d),
(b,c) and (d,e) are derived via the rules R1 and R2. Using
these answers that have been stored in the extension table
for pgs, R3 computes the answer (b,d) which is saved in
the extension table. (The answer (b,d) is available for use
by R3 but this tuple does not lead to another answer.)
Similarly, R4 computes the answers (a,c), (c,e) and (b,e).
The evaluation has terminated but the answers (a,d) and

(a,e) were not derived. The answer (a,d) was not derived -

because R3 needed the tuple (a,c) from R4’s computation
which occurred after R3 had failed. Similarly, R4 could
have derived (a,e) if (2,d) had been derived.

The ET algorithm will produce correct answers and
terminate evaluation for some Prolog programs. Simple
syntactic checks which will guarantee that the ET algo-
rithm is complete for a given Datalog program are being
investigated. If the clauses of a program are reordered so
that the recursive rules occur last, then more programs
can be evaluated with this strategy. However, as shown
above, there are programs for which the reordering of
clauses does not yield a version of the program which
can be evaluated with the simple extension table facility.
Thus, there is a need for an extension table facility that
will work for a broader class of programs.

4.2 The ETinterp Algorithm

The ET algorithm fails to be complete on programs
that require a breadth-first component. Such programs
have the property that, during evaluation via the ET

algorithm, new answers for.an entry are added after a .

call that used that entry has been backtracked over. A
straightforward solution to this problem is to re-activate
the computation that could use these new answers to pro-
duce additional results. That is, any time an answer is
defived for a subgoal, every clause which contains that
subgoal could be re-activated by the return of the new
answer for that subgoal. However, to accomplish this, the
state of the computation, which is kept in the run-time
stack of environments, must be saved over backtracking.
Thus, a complete general extension table facility must
save, in addition to the subgoals and their extensions, a
representation of the run-time stack.

The explicit saving of a representation of the run-time
stack requires that the program clauses be represented as
data as well. Thus, the implementation of this general
extension table facility is that of an interpreter written in
Prolog. This interpretive approach is called ETinterp. The
interpreter is essentially a top-down left-to-right depth-
first evaluator with a breadth-first component. The in-
terpreter is described in full detail in [22].
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This extension table implementation is related to Ear-
ley deduction which is a proof procedure for definite
clauses [23]. Earley deduction is a demand-driven strat-
egy which uses dynamic programming to yield an execu-
tion method with both top-down and bottom-up evalua-
tion characteristics. It is 2 generalization of Earley’s [24']
context-free parsing algorithm applied to definite clause
grammars. A comparison of Earley deduction and exten-
sion tables is given in [22].

4.3 The ET" Algorithm

The implementation of a general extension table fa-
cility as in ET;ns.,p requires an extra level of interpreta-
tion. Due to this fact, and also because it explicitly main-
tains the continuation goal list, this implementation can
be quite inefficient. However, the conventional iterative
algorithm for computing a least fixed point can be used
to take advantage of the efficient depth-first search and
the compilation techniques that have been developed for
Prolog implementations. The conventional approach to
computing a least fixed point is to initialize the relations
to be empty; then perform an iteration using these rela-
tions to determine what new tuples to add to them; and
repeat this process until no new tuples are added. The
extension table implementation described in this section
uses this iterative approach, which allows it to take ad-
vantage of Prolog’s efficient inference mechanism. In this
implementation, Prolog regenerates the run-time stack at
each iteration instead of saving it explicitly as the con-
tinuation goal list which it must do in the interpreted
implementation. ‘

The iterative implementation performs iterations of
the ET algorithm. Thus, this iterative algorithm is called
ET*. The ET algorithm began with completely empty
extension tables, but consider how it would execute if the
extension tables for some predicates already had some an-
swers in them. In this case, the first call of a predicate
on an iteration must first return all answers in the exten-
sion table before calling the original code for the predicate
to possibly compute additional answers. These answers
must be returned to guarantee that an answer is returned
to a call at least once. Any subsequent call on an iter-
ation would use all the answers in the extension table:
those initially in the table as well as those added by the
first call. So the ET algorithm computes a monotonic
function on predicate extensions. The set of extensions
we want is the least fixed point of this function.

The implementation of ET* requires a slight modifi-
cation of the ET algorithm. Since the stopping condition
for the ET* algorithm depends on the addition of new
tuples to the extension table, a flag must be set when 2
new answer is stored in the extension table. This will
be accomplished by the use of the predicate et-changed-
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In addition, the code must be modified so that the ex-
tension table answers are returned to the first call on an
iteration. This modification results in a noop when the
ET algorithm is used Jjust as a caching mechanism since
there are no answers stored in the extension table on the
first call. The modified version of the ET algorithm is
given in Figure 4.

/% if called before use et */
pred(X1,...,Xn) :-
call_pred(Y1,...,¥n),
subsumes (pred(Y1,...,¥Yn),
pred(Xi....,Xn)),!,
et_pred(X1,...,Xn).
/* else save call and c mpute answers */
pred(Xi,...,Xn) :-
assert(call_pred(Xi,...,Xn)),
(et_pred(X1,...,Xn);
code_pred(Xi,...,Xn),
not(et_pred(Y1,...,¥n),
subsumes (pred(Y1,...,Yn),
pred(Xi,...,Xn))),
et_changed, )
assert(et_pred(Xi,...,Xn))).

Figure 4: Modified ET Algorithm

So to compute the least fixed point, we begin with
the extension tables initially empty. Each iteration of the
fixed point computation corresponds to calling the query
using the modified ET‘_aIgorithm, but the extension ta-
bles contain the answers left from the previous iteration.
Thus, at the beginning of each iteration the calls are re-
moved from the extension table but the answers remain
untouched. The answers to the query are returned to the
user tuple at a time as they are computed in Prolog. Since

each iteration recomputes the answers from the previous

iteration plus perhaps some more, the answers that are
returned to the user are saved and duplicates are not re-
turned. This process is iterated until there is a complete
iteration in which no new answers are generated. The
Prolog code to implement ET" is given in Figure 5.

et_star(Query) :-
repeat,

(remove_calls,
call(Query),
not(duplicate(Query));
nochange, !,fail).

Figure 5: ET* Algorithm

ET* takes advantage of compilation techniques devel-
oped for Prolog compilers. It does not have to explicitly
Save continuations as the ETnt.yp algorithm does. In-
stead, it can be understood as recomputing the contin-
utations as it needs them. These continuations are rep-
resented in the run-stack of environment frames that is
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maintained by the compiled system. Thus, not only is
one level of interpretation avoided, but the efficient stack-
based memory allocation scheme of the depth-first search
of Prolog is used.

As discussed earlier, a pragma (or declaration) can
be used in the program source to direct a preprocessor
to generate the desired code. In addition, the run-time
transformation to the extension table algorithm can also
take advantage of compiled code. If the original definition
of the predicate pred has been compiled and loaded, then
this compiled code can be used to define code_pred.

Hands-on experience indicates that ET" is, in general,
more efficient than ETinterp- Both the interpretive and it-
erative implementations of the general extension table fa-
cility were coded in Stony Brook Prolog and in Cprolog.
In both implementations, ET* was more efficient than
ETinterp on the examples tested. These test prograrms in-
cluded fibonacci, transitive closure, the farmer-wolf-goat-
cabbage problem and the parsing of a left-recursive gram-
mar. As already noted, this speedup results from the abil-
ity of the iterative algorithm to use Prolog’s depth-first
evaluation strategy and compiled code. v

Both ETinterp and ET* are not complete for logic pro-
grams with function symbols. These general evaluation
strategies may fail to find an answer when recursive data
structures are involved. This is due to the depth-first
search rule used by the interpreter. Consider the evalua-
tion of the query p(e) on the following Prolog program:

P(X) :- p(£(X)).
p(a).

Prolog will enter an infinite loop via successive applica-
tions of the first rule for P generating ‘the calls:
p(a), p(f(2)), p(f(f(2))), ... Since each call is different,
the extension table lookup is not used and the recursion
is not terminated.

ET” can easily be modified to be complete for general
logic programs by introducing a depth-bound. A depth-
bound on a call can be used to fail 3 deduction path if the
depth (in the OR-tree) of the call exceeds the indicated
limit. When a path fails due to the depth-bound being
reached, the nochange predicate is set to fail, in order to
trigger another iteration. This failure gives other rules a
chance to be used. After each iteration the depth-bound
is increased so that the search can continue further. This
strategy requires that a counter is maintained for checking
the depth bound. While such a strategy is also available
for use with the regular depth-first evaluation as used by
Prolog to obtain a complete algorithm (Stickel suggested
such a strategy in his Prolog Technology Theorem Prover
25]), it is more reasonable to consider it in the context
of the extension table evaluation method. Although in
both standard Prolog and ET* each iteration completely
recomputes the work of the previous iteration, there is no
duplication of work within an iteration of the ET algo-




rithm.

The last iteration of the ET* algorithm does not pro-
duce any new answers. Thus, this iteration is completely
redundant. There is a check that can be made on an it-
eration to determine whether another iteration may be
necessary. This requires that the calls that have failed
on the current iteration have been flagged. If a new an-
swer is computed which any one of the failed calls could
have used, then another iteration is required. This check
may reduce the number of iterations by one but not nec-
essarily. If the answer that forced another iteration does
not produce a new answer on the next iteration, then the
same number of iterations is performed. :

Another possible optimization can be introduced to
the ET algorithm when adding an answer to the extension
table. When a new answer is added to the extension table,
any answers already there that are instances of the new
one can be deleted. Obviously, some work has already
been duplicated in deriving the more general answer but
removing the instances of this answer will stop any further
duplication of effort by rules that use these answers later
on. This optimization requires a minor modification to
the ET algorithm.

5 Related Research

In the area of logic programming, there has been re-
search by Tamaki and Sato paralleling our work of ex-
tension tables. Their work is related to ours in that they
propose using tabulation with a demand-driven strategy
‘to evaluate recursive queries. The multistage depth-first
strategy proposed in [26] iterates to compute the least
fixed point of tle program being evaluated. The main
difference between the two strategies is that the multi-
stage depth-first strategy restricts the table lookup to
answers computed on the previous iteration. This lim-
itation guarantees the completeness of multistage depth-
first without having to introduce a depth-bound. How-
ever, it implies that multistage depth-first will have to
perform more iterations, in general, than the ET* algo-
rithm. Since an iteration recomputes everything from the
previous iteration plus perhaps more, the number of iter-
ations a strategy uses to completely evaluate a query is
an important measure of efficiency. The ET algorithm,
one-pass of the ET* algorithm, can completely evaluate
certain logic programs. Thus, extension tables has the
potential for efficient and complete execution of logic pro-
grams through optimization techniques. In general, there
are certain rules to follow that will lead to a more efficient
evaluation of a Datalog program with extension tables:

» Put recursive rules last
o Convert right recursion to left recursion

o Left-factor recursive rules to get just one
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These rules, in general, reduce the number of iterations
that the ET* algorithm needs to completely evaluate a
program. An area for future research is to be able to
identify or transform logic programs into logically equiv-
alent programs such that the one Pass extension table
algorithm can be used to completely evaluate that pro-
gram.

6 Future Research

In this paper we explored the application of the dy-
namic programming principle to Horn clause programs.
Memo-ization, an optimization technique for functional
programming, applied the dynamic programming princi-
ple of computation to the evaluation of the memo func-
tion. In a nondeterministic language such as logic pro-
gramming there are multiple returns for a single call.
This makes the use of memo relations, or extension tables,
much more complicated than the straightforward use of
memo functions. :

The execution method using extension tables for
caching is a simple modification to Prolog’s top-down left-
to-right depth-first evaluation strategy. The extension ta-
ble evaluation may terminate the execution of goals that
involve recursive rules in cases in which Prolog’s strategy
diverges. A simple, efficient implementation of extension
tables in Prolog, the ET algorithm, was described. It cor-
rectly and efficiently evaluates recursive queries for many
Datalog programs. Unfortunately, the ET algorithm is
not cornplete for some logic programs. Therefore, we de-
scribed the ET" algorithm, which iterates over the ET
algorithm, to find all answers to a query. This algorithm
that employs a depth-first search rule can be complete by
adding a depth-bound.

"There are a variety of directions in which extension
tables could be developed.

One area for further research is the question of a more

efficient implementation of the primitives used in the ET

algorithms. The algorithms require much table lookup
and subsumption checking. Hashing techniques can im-
prove the table search time. The compilation of the sub-
sumption check, similar to the compilation of unification
done by Prolog compilers, can reduce that cost.

It may also be useful to be able to determine dynam-
ically when all answers for a given call have been devel-
oped. Such a call need not be deleted for subsequent
iterations in ET* and thus later iterations require less
computation.

For some programs the extension tables may get very
large. There are two possibilities for dealing with such
situations. One is to explore how these tables might ef-
ficently be stored on, and accessed from, disk. Another
alternative would be to fix the amount of memory that
the extension tables are permitted to use, and then de-




velop a replacement strategy when this space overflows.
In the functional framework this is relatively straightfor-
ward [1] but in our relational framework, issues of termi-
nation again are involved.

Extension tables provide a new execution method that
is appropriate for certain kinds of Horn clause programs.
Different, but logically equivalent, programs will be eval-
uated with different efficiency using this evaluation tech-
nique. For example, equivalent left-recursive and right-
Tecursive grammars have different orders of complexity
when processed with ET”. So the ET* evaluation method
induces a theory of optimization (as does any evaluation
strategy): given a Horn clause program, find an equiv-
alent one that is more efficiently executed by the ET
algorithm. Developing the details of this theory is an
interesting area for further research. -

One particular optimization direction is to recall that
for some programs the simple ET algorithm is complete.
If this can be determined statically, then the second pass
of ET*, which would simply verify that all answers had

" already been obtained, need not be performed. Also, this
suggests that an important goal of optimization might be
to transform an arbitrary program into one for which the
simple ET algorithm is complete, if possible.
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