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Abstract

An "active" database management system (DBMS) is characterized by its ability to
automatically monitor user-defined conditions and react when a particular condition is
satisfied. With traditional (passive) database systems, sub-optimal approaches must be
used to provide- this capability. Efficient condition evaluation is critical to obtain
satisfactory performance in an active database system. Condition evaluation differs from
query evaluation in terms of the anticipatory knowledge available for optimization and
the origin and propagation of bindings. To minimize the cost of condition evaluation, an
incremental approach is preferred. This paper takes the first step towards the
development of a condition evaluation strategy for active deductive databases, by
applying the HiPAC approach for incremental condition evaluation to deductive database
systems. The applicability of the HiPAC approach is demonstrated by presenting an
incremental condition evaluation strategy for resatisfiable conditions expressed in
nonrecursive Datalog without negation. The strategy is then extended to handle
nonresatisfiable conditions.

L Introduction

An "active" database management system (DBMS) automatically monitors user-
defined conditions and reacts when a particular condition is satisfied. Neither the
monitoring of the pre-defined conditions, nor the initiation of the various actions
resulting from the satisfaction of a condition, require user intervention. A conventional
DBMS is passive, since queries and transactions are executed only when explicitly
requested by a user or application program.

Active services have been identified as a key requirement of future applications
of databases {LAG89, STO90]. Some applications that require timely responses to
critical situations include computer integrated manufacturing (CIM), power and data -
distribution network control, program trading, battle management and chemical and
nuclear process control. As an illustrative example of the use of active services, consider
a database that contains investment management information. The information
maintained might include the recent price history of selected stocks, commodities and
precious metals. An investor may wish to be notified if some complex situation arises
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that might affect a current investment or indicate a new investment opportunity. The
investor may want the database to continually monitor specific economic conditions and
then automatically initiate a purchase or sale of a stock or security in a timely manner.

As noted by several researchers [DAY88b, CHA89, CHN90], traditional database
systems use two approaches for monitoring conditions (also called situations). The first
approach is to poll the database to check when a condition becomes true. The second
approach is to encode the condition evaluation function as part of application programs
that access the database. Polling is sub-optimal because the repetitive queries represent a
waste of system resources. In addition, if the time interval between each identical polling
query is large then the system may not detect condition satisfaction in a timely manner,
resulting in unsatisfactory system performance. Alternatively, if the time interval is too
small, system performance will degrade as a result of having to process large quantities
of unnecessary queries.

The second approach involves augmenting the application programs that access
the database to check for condition satisfaction. This approach passes the burden of
condition monitoring to the application programmer and affects software development.
Embedding condition monitoring code in application programs inhibits the development
of optimizations that would otherwise be available if the conditions were managed by the
database.

Active database systems support alerters, triggers and integrity constraints.
Conceptually, the primary difference between these three types of active services is the
possible actions that result from the associated condition becoming satisfied. If the
condition associated with an alerter becomes satisfied then the action is to notify a user or
application program. If the condition associated with a trigger becomes satisfied then the
action involves the propagation of an update. When the condition associated with an
integrity constraint becomes satisfied, the typical action is to abort the transaction. Other
options to restoring integrity include modifying the database (via a trigger) or,
alternatively, modifying the constraints. One measurement of active DBMS
sophistication is the degree of expressiveness the system offers the user in terms of the
ability to describe a condition. A trade-off exists between how expressive a condition is
and how expensive it is to monitor. If the conditions are expressive then the user can
pose a more comprehensive class of conditions and can benefit more from active service

support. The disadvantage of supporting more expressive conditions is that the
conditions will likely be more expensive to evaluate. Ideally, a designer of an active
DBMS would like to achieve efficient condition monitoring while allowing the user to
utilize very expressive conditions.

Deductive databases offer a logic-based language that can be utilized to
declaratively express complex conditions. For example, consider an alerter that could be
applied in a power distribution application. It states, "Alert the network manager if the
connection is broken between the main station and remote station number one”. A
connection between two stations exists if there is a direct connection between the two
stations or there is an indirect connection via one or more other stations. The condition
is represented by the Datalog expression occurring before the arrow:

not(connection_between(main_station,remote_station_1)) —
alert(network_manager, "remote_station_I _inaccessable").
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The r.e.cursive connection_between relationship can be expressed declaratively using a
transitive closure specification:

connection_between(Stationl, Station2) :-
direct_connection(Stationl,Station2).

connection_between(Stationl, Station2) :-
direct_connection(Stationl,Station),
connection_between(Station, Station2). .

The challenge is to provide efficient support for active services within this declarative
framework.

This paper describes an approach towards incorporating active service support in
a fieductive database that is based on an algebra and data structure that were used in the
HiPAC (High Performance Active Database System) project [DAY88a, DAY88b,
_HSU8.8, CHAB89, MCC89, ROS89, CHN90]. The objective of the HIPAC project is to
investigate active, time-constrained database management [MCC89]. The HiPAC
system is object-oriented but is described as utilizing a rule subsystem that includes a
condition evaluator. The algebra and data structure were presented in [ROS89] and a
summary of relevant portions will be provided later in this paper. The ability to define
conditions on derived objects (termed virtual conditions) is a useful capability
[DAY88a]. The HiPAC condition evaluator supports virtual conditions that were limited
to selec.t-project-join (SPJ) expressions [CHA90]. Since Datalog allows for more
expressive 'conditions, the application of active service support to deductive databases
will result in a technique that can be used to extend the HIPAC condition evaluator.
Here, we consider conditions expressed in non-recursive Datalog without negation.

Other research has been aimed at problems relating to active service support in
fieduc.tive databases. Unfortunately, this work is focused primarily to the area of
gntegr;ty constraint checking [LLO87,SADS88]. In [SAD88] an approach for checking
integrity constraints in a deductive database is presented that uses an extension of the
SLDNF proof procedure. Although the extension offers a method for handling implicit
insertions and deletions , it does not explicitly handle implicit modifications. In addition,
since the work focused solely on integrity constraint checking, where the goal is to obtain
grounds for update rejection, finding any proof of inconsistency is all that is required.
However, when implementing certain types of alerters and triggers (e.g. those with
no.nresatisifable conditions), a derivation of a proof is irrelevant if another proof already
exists. Nonresatisfiable conditions, which are discussed later in this paper, represent a
class of conditions that are not treated in literature relating to integrity constraint
checking.

- The remainder of this paper is organized as follows: The differences between
condpmn monitoring and query evaluation, as applied to deductive databases, is given in
Section 2. Section 3 provides a description of the data structure, known as delta
.relations, that supports incremental condition evaluation. A straightforward,
mcrer.nen'tal condition evaluation (ICE) strategy for nonrecursive Datalog without
negation is presented in Section 4. This evaluation strategy monitors resatisfiable
cond1t101}s. An extension of the monitoring approach is given in Section 5 for
nonresatisfiable conditions. The paper concludes with a discussion of the future research
directions for providing efficient active service support in deductive databases.
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IL Condition Evaluation vs. Query Evaluation

In a deductive DBMS, conditions and queries share an equivalent declarative
representation, namely the conjunction of atomic formulae. However, the methods used
to evaluate them must be different. Conditions represent a characteristic of the database
state that the user wishes to identify. The database state changes after every update.
Therefore, each update forces some degree of evaluation of all conditions. If condition
evaluation was performed in a naive fashion, the DBMS would incur an unacceptably
large overhead cost as a result of each update. Condition evaluation involves reasoning
about two different database instances. This differs from (retrieval-only) query
evaluation, which is initiated when a query is introduced to the system. With query
evaluation, only the current database state is examined.

With condition evaluation, the DBMS can exploit anticipatory knowledge
obtained from analyzing the pre-defined conditions. This information can be utilized to
increase the efficiency of condition evaluation. This differs from query evaluation where
little, if any, anticipatory knowledge is available. Typically, the DBMS has little
information available to use for forecasting what query the user may enter.

Another difference between condition evaluation and query evaluation is the
origin and the propagation of the constraining bindings. Often, when a query is
presented to the DBMS, constants can be extracted to constrain the query. In the case of
resolution-based query evaluation techniques [DIE87, WAR90], these constants would
propagate, via the unification mechanism, through relevant rules towards the base
relations to avoid unnecessary computation. In the case of evaluation techniques based
on rule-rewriting followed by semi-naive bottom-up evaluation [BAN86,ULLR9], the
rules in the database are rewritten to allow constraining bindings originating from the
query to propagate towards the base relations to inhibit irrelevant computation.

The query evaluation strategies described do not represent a solution to the
condition evaluation problem because, in the condition evaluation problem, the
constraining bindings originate from the base relation update and then must be used to
constrain the evaluation of the conditions. These bindings propagate towards the
conditions that are defined, directly or indirectly, in terms of the updated base relation.
This motivates the concept of a condition evaluation strategy (CES). Given a set of
conditions and a set of updates, the CES will determine if proofs are formed or lost for

expressions that are created by unifying variables occurring in the conditions with
constants that are generated as a result of the updates.

III.  Delta Relations

The description that follows explains the data structure that is used in the HIPAC

approach to ICE. The data structure is called a delta relation (abbreviated Arelation). A

“brief explanation of the data structure is presented here along with notation that will be
used in following sections. The concepts presented in this section were developed in
[ROS89]. ‘

The purpose of a Arelation is "to provide a single object that captures an arbitrary
change to a relation” [ROS89]. A Arelation represents the net change to a stored or
derived relation. Separate algorithms for handling insertions, deletions and modifications
are not needed. Neither are algorithms for recombining the results [ROS89]. The
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Arelation is a powerful construct for unifying the effects of database insertions, deletions
and modifications.

Consider a relation X with schema X(X_tid X_att,X_att,,..X_an,). Let X_att,
where 1 <1 <n, be the attributes of X and let X_tid be a unique immutable tuple
identifier. Define AX as a relation with schema AX:

AX(~X_tid, ~X_att),~X_att,,...,~X_att, X_tid~X_att,~X_att,~,....X_att,~)

The_ attribute names that begin with a "~" (tilde prefix) represent old attribute values and
attribute names that end with a "~"(tilde suffix) represent new attribute values. There
are renaming functions defined for attributes given a schema X:

pretilde(X) = {~tidy,~X_att,~X_att,,...,~X_att,}
postilde(X) = {tidy~X_att;~X_atty~,...X_att, ~}

If X is a relation, the function pretilde(X) (postilde(X)) returns a relation with the same
t}lples as X but with all attribute names of the schema preceded (followed) by a single
tilde. The function untilde(X) removes tildes from all attribute names. There are
additional functions defined that operate on a Arelation:

removal;~( AX) =P | iigexy (AX) additions~(AX) =P i) (AX)
removals(AX) = untilde(removals~(AX))  additions(AX) = untilde(additions~(AX))

The definition of these functions is extended such that if a tuple Ax € AX is passed to
one of these functions, it is treated as a relation AX with a single tuple Ax.

For any Arelation tuple, the tuple identifier cannot be null on both the pretilde
side and the postilde side. The function insertions(AX) returns every tuple in AX where
the value of all attributes, including the tid, that occur in the schema produced by
pretilde(AX) is nil. The function deletions(AX) returns every tuple in AX where the
value of all attributes that occur in the schema produced by postilde(AX) is nil. The
function modifications(AX) returns every tuple in AX where the value of the tid on both

the pretilde and postilde side is not nil. Note, that if a tuple represents a modificati
then both tids will be equal. ple rep ification

IV.  An Initial Condition Evaluation Strategy

_ Since the database state changes after every update and we assume that updates
will oceur frequently, condition evaluation must be efficient. One way to reduce the cost
of evalqatmg a set of conditions is to evaluate them incrementally. The remaining
subseqtlons describe a basic incremental condition evaluation strategy (ICES). First, an
ICES is presented that can incrementally evaluate a condition consisting of two liter:,ils
representing extensionally defined (EDB) predicates followed by an example. Next, we
modify the ICES to support  literals representing either EDB or fully-bound evaluable
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predicates. ‘Finally, we add support for conditions defined in terms of non-recursive
intensionally defined (IDB) predicates.

Conditions Consisting of Two EDB Literals

To incrementally evaluate a condition whose body consists solely of EDB literals,
we can utilize a revised version of the HiPAC incremental join operation that was
reported in [ROS89]. Assume we are given two relations (call them X and Y), their
corresponding Arelations and a join predicate O(X,Y) that involves attributes of schemas

X and Y. Let XY represent the join of X and Y using 6(X,Y). Function IncrJoin will
compute a Arelation that indicates changes to XY;, resulting from the changes to both X
and Y. The function is shown in Figure 1.

Essentially, the algorithm performs three separate computations and then
combines the results. First, the changes to relation X (i.e. AX) are examined to
determine which updates will result in a change to the join. Each update in AX is
matched with a tuple from relation Y that is not going to be removed as a result of the
changes to relation Y. Additions and removals from AX that match the retained tuples of
Y are stored in variable Delta_join_Kept. A similar procedure, to determine which
updates in AY will result in a change to the join, is performed to obtain Kep +_join_Delta.
Finally, the changes to X and Y are examined to detect whether additions to both
relations or removals from both relations result in a change to the join. The result of this
computation is reflected in variable Delta_join_Delta.

_ This revision of the incremental join algorithm resolves an anomaly with the
initial definition that allowed redundant tuples to occur in the result. This was the result
of an oversight that occurred when applying the algebra introduced in [ROS89] to derive
- the operator definition. Closer examination revealed that the algebra itself is correct and
derives the revised definition presented here. Furtherdescription of both versions of the
incremental join operator and a proof of the revised operator appear in [HAR91].

We now present an example that illustrates the incremental join operator given
above. Consider the relations PART, STOCK and their join PART_STOCK given in
Figure 2. PART_STOCK was created using the join predicate, PART.Pid = STOCK.Prt.
The PART relation indicates that part Pid has the name Pname.. The STOCK relation
indicates that there are Pamt units of part Prt currently in stock. The unique tuple
identifier in relation STOCK is Prt. Now, assume the following Arelations exist for
PART and STOCK: ‘

APART(~Pid,~Pname,Pid~,Pname~) = ("Pid, “Pname, Pid~, Pname”)
) (p123 widget pl23 wicket)
ASTOCK(~Prt,~Pamt,Prt~,Pamt~) = ("Prt, “Pamt, Prt~, Pamt”)
. (p123 100 pl23 200)
(p234 200 p234 250)

The tuple in PART specifies that part 'p123' is to have its name changed from ‘widget' to
'wicket'. The first tuple in ASTOCK specifies that the number of units of part 'p123'is to
be increased from 100 to 200. The second tuple specifies that the number of units of part
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Function IncrJoin(X,Y : relation; AX,AY : A_relation;

‘begin
Rem_AX_join_Y
Add_AX_join_Y
Delta_join_Kept

X_join_Rem_AY
X_join_Add_AY
Kept_join_Delta

Join_pred : join_predicate) : A_relation;

= join(removals(AX), (Y - removals(AY)), Join_pred);
= join(additions(AX), (Y - removals(AY)), Join_pred);
= outer_join( pretilde(Rem_AX_join_Y),
’ postilde(Add_AX_join_Y),

(~tidy = tidg~ AND ~tidy = tidy~));

= join((X - removals(AX)), removals(AY), Join_pred);
= join((X - removals(AX)), additions(AY), Join_pred);
= outer_join( pretilde(X_join_Rem_AY),
postilde(X_join_Add_AY),
(~tidy = tidg~ AND ~tidy = tidy~));

Rem_AX _:join_Rem_AY = join(removals(AX), removals(AY), Join_pred);
Add_AX_join_Add_AY = join(additions(AX), additions(AY), Join_pred);

Delta_join_Delta =

end.

outer_join( pretilde(Rem_AX_join_Rem_AY),
postilde(Add_AX_join_Add_AY),
(~tidy = tidy~ AND ~tidy = tidy~));

Incrjoin = Delta_join_Kept U Kept_join_Delta L Delta_join_Delta;

Figure 1: An Incremental Join Algorithm

PART(Pid.Pname) STOCK(Prt,Pamt) 'PART STOCK(Pid,Pname,Prt,Pamt)

(pid, Pname) (Prt,

Pamt) (Ppid, Pname, Prt, Panmt)

(p123, widget) (p123, 100) (pl23, widget 123

(p234, switch) (p234, 200) (p234: swigch: 5234: :Zlgg;
(p345, bolt) (p345, 300) (p345, bolt, - p345, 300)
(p456, roller) (p456, 400) (p456, roller, p456, 400)
(p567, frame) (p567, 500) (p567, frame, p567, 500)

Figure 2: Sample Relations
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'p234' is to be increased from 200 to 250. Now consider the incremental join of relations
PART and STOCK, again using the join predicate, PART.Pid = STOCK.Prt. Using the
relations given above and the definition of the incremental join operator, the following
relations would be computed. :

Delta_join_Kept = &

Kept_join_Delta=  (~pid, ~Pname, ~Prt, ~Pamt,Pid~,Pname~,Prt~,Pamt~)
(p234,switch,p234, 200, p234,switch,p234, 250)

Delta_join_Delta =  (~Pid, ~Pname, ~Prt, ~Pamt,Pid~,Pname~,Prt~,Pamt~)
(pl23,widget,pl23, 100, pl23,wicket,pl23, 200)

Incrloin([PART,STOCK,APART, ASTOCK], PART.Pid = STOCK.P1t) =

(~Pid, ~Pname, ~Prt, ~Pamt , Pid~, Pname~, Prt~, Pamt~)
(pl23,widget,pl23, 100, pl23,wicket,pl23, 200)
(p234,switch,p234, 200, p234,switch,p234, 250)

Note that the first tuple that occurs in APART_STOCK (as a result of using
IncrJoin) represents a modification to the tuple with tid 'p123' € PART_STOCK. The
modification indicates that the fields Pname, with value 'widget', and Pamt , with value
100, should be changed to have ‘wicket' as Pname and 200 as Pamt. The second tuple
represents a modification to the tuple with tid 'p234' in PART_STOCK. The
modification indicates that the field Pamt should be changed from 200 to 250. These
changes correctly correspond to the Arelations APART and ASTOCK. Also note that,
here, the union operator (L) represents the less expensive disjoint union operation.

Conditions Consisting of N EDB or Fully-Bound Evaluable Literals

Function IncrJoin can be utilized to incrementally evaluate conditions consisting
of more than two EDB literals. If we have a rule with # literals, corresponding to EDB
relations Ry through Ry, and n corresponding Arelations, AR, through AR, the condition
can be incrementally evaluated by performing the following steps:

AR, =Inctloin(R,,R,,AR,, AR, , B(R,,R,))
AR,,; =InctJoin(R,, , Ry, AR, ,, AR, , B(R,,R,,Ry))
where R, , = join(R,,R,, 6(R;,R))

ARy, .. n=IncrfoinR, .1, Ry, AR, .1, AR, B(R.R,,...,R))
where Ry, . =join(Ry, ., SRy O(RLR,,. LR )

For readers familiar with the differential approach to query evaluation [BAL87], note

_ that this technique is not applicable to ICE because the Arelations represent non-

monotonic changes to the relations.
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In this simple approach it is necessary to have access to each partial join for use
as the first argument of each call to function IncrJoin. Access to tuples contained within
the partial join is required by function IncrJoin to compute the value of variable
Kept_join_Delta. Two ways this access can be facilitated is by either recomputing or
maintaining each partial join. Maintaining the partial join is prohibitive because of the
large cost in terms of space. Recomputing the partial join is suboptimal because the
bindings that occur in the Arelation of the second argument to function Incrloin (ie. AY)
can be used to significantly constrain the computation required to obtain the portion of
the partial join that is necessary to compute Kepr_join_Delta. A technique that does not
require materialization and also utilizes available bindings to optimize the access to
necessary portions of the partial join is incorporated in procedure ICES, described below.

Procedure /CES will incrementally evaluate a datalog condition that consists of
either EDB or fully-bound evaluable literals. The literals are processed in a cascading
fashion (i.e. [[[[LIT,, LIT,], LIT;], LIT,], ..., LIT,]). In an actual implementation, an
optimizer could reorder the literals. Procedure ICES avoids the need to access the
various partial joins (e.g. LIT, ,,LIT, , 5, etc.) by posing successively larger conjunctions
of literals as datalog queries to the database. Each query is constrained by the bindings
that occur in the Arelation of a literal in the rule and the accumulated Arelation for the
rule body up to that point.

For example, if the algorithm is currently processing litel:al LIT,, a query is
issued consisting of literals 1 through k-1, constrained by bindings occurring in ALIT,
and removals(ALIT, . ,). This query is issued in lieu of computing the partial join and

is used by procedure ICES to compute the variable Kept_join_Delta. Note that literals 1
to k-1 can be fully-bound evaluable. Another query is issued to compute
Delta_join_Kept. Assume, again, we are processing literal LIT,. Here a query is issued
to evaluate literal k, constrained by bindings occurring in removals(ALIT,) and

ALITI‘. vok-10

- We assume the existence of a function eval(Bindings, Literals, Exclusions) that
performs the queries as described above. Literals is a conjunction of literals that
represent the partial join. Bindings is a relation from which bindings can be extracted
that will constrain the evaluation of Literals and therefore eliminate the computation of
unnecessary tuples of the partial join. The relation Exclusions is used to disqualify
certain tuples that result from the evaluation of Literals. Tuples that result from
evaluating Literals but are present in relation Exclusions are disregarded. If a left-to-
right sideways information passing (SIP) strategy was used, function eval would evaluate
a query of the form:

- bindings, LIT,, LIT,, ..., LIT,, not exclusions.

Since function eval queries the database to access the relevant portions of the partial join,
the entire partial join does not need to be maintained or recomputed to obtain
Kept_join_Delta. As a convenience, function eval can also be used to compute
Delta_join_Kept.

If a literal represents a fully-bound evaluable predicate then evaluating it cannot
result in the addition of any columns of bindings to the resulting Arelation for the rule
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body. Therefore, to process a fully-bound evaluable literal, procedure ICES need only
filter the Arelation constructed by incrementally evaluating the previous literals. In
addition, a fully-bound evaluable literal will always have a null Arelation since unlike
EDB and IDB predicates, it cannot change as a result of an update. Asa result, both
Kept_join_Delta and Delta_join_Delta will always be null and need not be computed.

Procedure ICES is shown in Figure 3. The arguments passed to the procedure
include a rule body (RB) consisting of # literals denoted by LIT, through LIT, that
represent EDB or evaluable predicates. Procedure ICES also receives a Arelation
corresponding to each non-evaluable literal of the rule. These Arelations are denoted by
ALIT, where i is the literal's position in the rule body.

Conditions Containing Intensionally-Defined Predicates

Conditions defined in terms of non-recursive intensionally defined (IDB)
predicates can be handled in a straightforward manner. Before run-time, the conditions
are unfolded [SAT84]. Each condition containing an IDB predicate is rewritten to obtain
a set of conditions that do not contain any IDB predicates. All that is required is to
backward-substitute rule bodies for rule heads. We assume that the rules in the database
are rectified as described in [ULL88]. The substitution is repeated recursively until a set
of conditions, expressed using only EDB relations, is produced corresponding to each
original condition. No IDB predicate will occur in any of the rewritten conditions.
Procedure ICES can then be used to incrementally evaluate the resulting set of
conditions.

An alternative for supporting conditions defined in terms of IDB
predicates is to employ a bottom-up rule evaluation strategy. Consider a predicate P that
is defined by several rules where in each of the rule bodies the exists a literal
corresponding to an updated base relation. Each rule body would then have to be
evaluated incrementally, resulting in a ¢orresponding (possibly null) Arelation describing
the changes to P as indicated by that particular rule. Next, Arelations would be produced
for each of the rule heads by projecting attributes from the Arelations formed for the rule
bodies. Since the incremental projection operator described in [ROS89] has the
restriction that the tuple identifier must be projected out with any additional attributes the
user requests, the system would have to store these distinguishing attribute values in the
corresponding Arelation. The next task would be to propagate these Arelations to rules
that contain a literal corresponding to P in the body. These newly identified rules would
then be evaluated to obtain more changes. This process would continue recursively as
long as new Arelations were produced. At that point, the conditions themselves would be
incrementally evaluated and ICE would be complete. '

With this approach, condition rewriting is avoided but a complication is
-introduced. Consider again the Arelations produced for each rule of predicate P. Because
of the restriction involving the projected tids, these Arelations could have different
schemas. Merging the Arelations to form one unified Arelation that represents all
changes to P poses a challenge . This complication encourages the use of the unfolded
conditions.

Procedure /CES(in RB: rule_body; ALIT : set of Arelations; out ARB : Arelation);
begin /* ICES */
Curlit=1;
ARBy; = ALIT i /* if only one literal in rule body, result is ALIT, */

while Curlit < num_of_lits(RB) do

begin
++Curlit; /* consider the next literal */
Rem_APrev_join_Current = eval(removals(ARB i, . 1) [LIT (5 removals(ALIT o, 00

Adq_APrev _join_Current = eval(additions(ARB . . H[LIT¢, i ,removals(ALIT o 40);
Delta_join_Kept = outer_join(pretitlde(Rem_APrev_join_Current),
(postilde(Add_APrev_join_Current),
(~tidPrev= tidPrev~ AND ~tidCurlit = tidCurlil~));

if evaluable(LIT,;,) then
ARB ;¢ = Delta_join_Kept

else
begin /* nou-evaluable */

Prev _join_Rem_ACurrent =
eval(removals(ALIT ¢, ;) [LIT.. . ., LITqy g5 Jiremovals(ARB i - 1));
Prev_join_Add_ACurrent = .
eval(additions(ALIT 0, [LIT;... LTy Jremovals(ARB i - 1))
Kept_join_Delta = outer_join(pretilde(Prev_join_Rem_ACurrent),
postilde(Prev_join_Add_ACurrent),
("'tidPrev: tidpye,~ AND ~tidoyg =ﬁdCurlit~))i

Rem_APrev _join_Rem_ACui‘rent = join(removals(ARB 45, - 1)
removals(ALIT,, i), Join_pred);
Add_APrev_join_Add_ACurrent = join(additions(ARBqy 1)
additions(ALIT (), Join_pred);
Delta_join_Delta = outer_join( .
pretilde(Rem_APrev_join_Rem_ACurrent),
postilde(Add_APrev_join_Add_ACurrent),
(~idpyey= tidprey~ AND ~tideyyye = tidey~))s

ARB(, ;s = Delta_join_Kept U Kept_join_Delta U Delta_join_Delta;

end; /* non-evaluable */
endwhile;

ARB = ARB 5

end. /* ICES */

Figure 3: Procedure ICES

91



92

V. Resatisfiable vs. Nonresatisfiable Conditions

We now focus on the subtle distinction between two types of conditions, namely
those that are resatisfiable and those that are nonresatisfiable. Resatisfiable conditions
can be viewed as event oriented. For example, consider a condition that states, "An
inventory shortage exists if the stock level of some item falls below the predetermined
minimal amount that is required to be kept on hand". Assume that there is an inventory
item called a widget and that there are currently 400 in stock. Also assume that the
predetermined minimal amount of widgets that are required to be kept on hand is 500. If
the condition is labeled as resatisfiable, each time a change occurs to either the stock
level or the predetermined minimal amount and that change does not rectify the shortage,
the system would report the inventory shortage again. In this example, this means that if
the stock level of widgets dropped from 400 to 300 and then to 200, the condition would
be reported as being satisfied after each reduction (i.e. each event) and two additional
notifications would be issued.

Nonresatisfiable conditions can be viewed as being state oriented. If the
condition is nonresatisfiable, then once the shortage is initially detected no additional
reports will be issued until a change occurs to either the stock level or the minimal
amount that resolves the shortage (i.e. changes the state). This means that, once the
condition has been reported as being satisfied, further reductions of widget inventory
would not result in any additional notification. .

By using the technique already described, resatisfiable conditions can be
monitored. The information is contained in the Arelations resulting from ICE. Each
addition represents a set of bindings that, when unified with variables in the condition
definition, will form a provable expression in the new database state. The new database
state will reflect the updates to the base relations. This does not imply, however, that the
expression was not already provable in the original database state. It merely indicates
that a new proof exists for the expression. Each remoyal represents a set of bindings
that, when unified with variables in the condition definition, forms an expression that has
lost a method of proof in the new database state. This does not imply, however, that the
expression is not provable in the new database state. It merely indicates that one less
proof exists.

Each addition occurring in a Arelation corresponding to a nonresatisfiable
condition represents a set of bindings that, when unified with variables in the condition
definition, will form a provable expression in the new database state that was not already
provable in the original database state. Each removal represents a set of bindings that,
when unified with variables in the condition definition, forms an expression that is no
longer provable in the new database state.

The Arelations resulting from ICE must be processed further to support
nonresatisfiable conditions. The additions that occur in Arelations resulting from ICE
must be unified with the condition and then posed as queries to the initial database state.
The removals must be unified with the condition and then posed as queries to the new
database state. Fortunately, both states are available because updates to the various base
relations were placed into Arelations to be used in the condition evaluation process but do
not have to be incorporated to the base relations to perform ICE. Below we describe
additional processing for the Arelations that is required for nonresatisfiable conditions.
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Each expression formed with bindings from an addition is posed as a query
before the updates to the base relations are incorporated to check if the expression is
already provable. If a tuple of addition bindings, when unified with the condition, forms
a proYable expression then the tuple is discarded. If the expression is not provable, the
tuple is considered as satisfying the condition for the first time.

Now, consider the removals. By definition, each tuple that appears as a removal
has a}lready been proven. All that is needed is to perform the actual updates to the base
relations and then perform a check to determine if the expression formed with the
removal tuple is still provable. If so, the removal can be discarded since the expression is
still prqvable. If the expression is no longer provable then it represents the last
expression formed with the bindings from the removal tuple that satisfied the condition.

' The procedure Process_Nonresatisfiable_Conditions, shown in Figure 4,
implements the concepts above. Let the set of Arelations AD be the result of using
procedure ICES on the set of all nonresatisfiable conditions.

Procedure Process_Nonresatisfiable_Conditions(AD)
begin
For each Ad;e AD do
For each tuple t € Ad, do

if additions(t) = AND provable(additions(t)) then addition(t) « &;
{Perform updates to base relations}

For each Ad; € AD do
For each tuple t € Ad, do begin :
if removals(t) # & AND provable(removals(t) then removals(t) « &;

if removals(t) = & AND additions(t) = & then Ad; = Ad; - t;
end; '
{report changes as specified in AD}
end;

Figure 4: Procedure Process_Nonresatisfiable_Conditions

VL. Summary and Future Work

'We have described an approach towards incorporating active service support in a
de(?uctwe database that is based on incremental condition evaluation and delta relations.
This approach was used successfully in the HIPAC project and it was our objective to
det_enmne the feasibility of applying this technology towards the development of an
active deductive database. Our results demonstrate the usefulness of the technology for
lncrementally evaluating conditions defined in terms of non-recursive datalog without
negation. Algorithms for incrementally evaluating conditions that are defined in terms of
recursive and negated predicates are currently under investigation. When refined, these
~algorithms may be used to enhance the capability of the HiPAC condition evaluation
- component as well as to provide support for an active deductive database system.
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