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Abstract

A view is a derived relation that is defined in terms of other relations. If
a view is retained between references, as opposed to being reconstructed each
time it is required, then it is termed materialized. One use of materialized
views is to increase the speed of query processing. Updates made to stored
relations that participate, directly or indirectly, in the definition of a view can
cause the materialized view to be inconsistent with its definition. Optimally,
the database system should be capable of updating a materialized view incre-
mentally to reflect updates to the stored relations thereby avoiding the cost of
reconstructing the materialized view.

View maintenance is also an important process in an active database when
rules are defined that are to be triggered by updates to derived relations, i.e.,
views. In this context, it is the updates that are of interest, rather than an
updated materialized view, since the updates have the potential to trigger the
active rules. Storing the materialized view is unnecessary and incurring this
cost may be undesirable.

This paper presents a novel update propagation algorithm for a deductive
database (or a relational database supporting the proposed SQL3 standard)
that can both incrementally maintain materialized views, and also trigger active
rules that are monitoring the updates to views, without requiring the view
to be materialized. The views can be defined using the relational operators,
stratified negation and recursion. In certain cases, the algorithm can perform
these tasks even when the view definition is modified. A series of optimizations
are described that increase efficiency and have been implemented in a prototype
system.
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1 Introduction

1} view is a derived relation that is defined in terms of stored relations and other de-
rived relations. A view provides an interface to the database that can remain constant
even after modifications to the database schema are performed. If the derived relation
representing a view is reconstructed each time it s referenced it is considered virtual,
If the derived relation is retained between references then it is termed materialized,
Materialized views can be used to increase the speed of query processing. If ‘queries:
repeatedly request access to a derived relation, then it is often advantageous to ma-
terialize the view. The benefit of materializing the view is obtained from amortizing
the cost of constructing the derived relation over multiple queries.

. Updates made to stored relations that participate in the view’s definition can
lr}validate the derived relation representing the view. To resolve the invalidation, the
view can be recomputed after the database is updated, i.e., the view can be disca.;ded
and materialized again using the current database state. This approach can be costly
if the database is updated frequently. To avoid these costs, the materialized view
itself can be updated incrementally to reflect the changes made to stored relations
that comprise the view’s definition.

In [TOMSS], the problem of updating a materialized view is decomposed into
three subproblems; namely the detection of irrelevant updates, the detection of gu-
tonomously computable updates and the problem of efficiently reevaluating the view.
I}‘relevant updates are updates to stored relations that cannot affect a derived rela-
tion. .An autonomously computable update is one where all data necessary to update
the view is contained within the update and the view itself. No direct access to the
stored relations is necessary.

In [BLARg9], these tests are applied when an update is presented to the system. An
update is first examined to determine if it is irrelevant. If the update is not irrelevant
it is then tested to determine if it is autonomously computable. If both of these
tests fail, the view is re-computed differentially. Blakeley et al. focus primarily on
the subproblems concerning the detection of irrelevant and autonomously computable
updates. The views considered are restricted to select-project-join (SPJ) expressions

In this work, a different -approach is proposed. Instead of recomputing the viev‘;
upon the failure of both the irrelevant and autonomously computable tests, an update
propagation algorithm is used to incrementally compute the necessary upd,ates to the
materialized view without forcing complete recomputation. This work complements
[BLAS89] in that this algorithm can be employed to avoid the third subproblem, namely
the efficient recomputation of the view. In addition, optimizations to the a,l,gorithm
detect irrelevant updates, hence treating the first subproblem as well.

The update propagation algorithm, which is called Estended  Propaga-
tion/Filtration, can maintain views that are expressed using all of the relational
operators, stratified negation and recursion.! The EPF algorithm is more efficient

!An extension describing support for group stratified aggregation appears in [HAR93].
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than its predecessor, known as PF [HAR92a]. EPF is also capable of computing up-
dates to views when the view definition is modified. This problem has received little
attention in the research community. We address the case where a view definition
~ contains one or more union operators and an operand of one or more of the unions is
 either added or removed from the definition.

This algorithm is unique because the updates to the view can be computed even
- when the view is not materialized. This characteristic allows EPF to be applied to
the problem of compler event detection in an active database system[ROS89, CHA91,
DIE92]. In an active database system, a user can define rules that are triggered by
updates to stored relations. More sophistication is obtained if the user can define
rules which are triggered by updates to derived relations, i.e., views. In this context,
it is the updates that are of interest as they may trigger an active rule. Storing the
materialized view is unnecessary and incurring this cost may be undesirable. The
EPF algorithm can be employed to detect updates to derived relations, even those
recursively defined, without having to incur the cost of materializing the derived
relation.

The remaining sections of this paper are outlined below. Section 2 introduces
notation and terminology. Section 3 describes the EPF algorithm and its support
for stratified negation and view definition updates. Section 4 presents a series of
optimizations that have improved the performance of our prototype. - Finally, we
compare the EPF algorithm to related algorithms, including the recently proposed

DRed algorithm [GUP93].

2 Basic Concepts and Notation

The view maintenance approach described here relies on a procedure for computing
the difference between two consecutive database states. This difference represents the
changes that must be made to the initial database to obtain the updated database.

Assume that a database DB consists of a set of extensionally defined relations
(EDB) and a set of intensionally defined relations (IDB). Let relation P € IDB and be
defined by the predicate p. Let U, be a set of updates to the EDB. The database state
before U, is performed is referred to as old. The database state after U, is performed
is referred to as new. Let the function mat(IDB_Pred; DB_State) compute an IDB
relation defined by the predicate IDB.Pred using the EDB indicated by DB_State
and the IDB. Let the difference between the materialization of an IDB relation in
the old state and the materization of the same relation in the new state be termed
the “delta set” (abbreviated Aset) for the relation. A delta set can be viewed as the
updates that' must be made to the old relation to obtain the new relation.

The notation AP represents the Aset for IDB relation P. A Aset consists of two
distinct (possibly empty) subsets. The first, labeled AP,;4, consists of tuples that
must be added to the old relation to obtain the new relation. The second, labeled
AP,.,, consists of tuples that must be removed from the old relation to obtain the



48

new relation. 'These concepts are formalized using the definitions below, which assume
that the predicates that define the IDB relations are not updated. Later, we address

updates to the definitions of the IDB relations.

Definition. Let EDBoyy refer to an arbitrary EDB before a set of updates #{, are
performed to the EDB relations. Let EDBp,, refer to the same EDB after ¥/, are
performed. Let p denote a predicate representing an arbitrary IDB relation P. Since

we defer our discussion of IDB updates until a later section, let IDBy,,, = I DBoy,.

AP, = mat(p, Old) — mat(p, New)
APuiq = mat(p, N ew) — mat(p, Old)

DBowy = EDBoiy U IDBoy,
DBNew = EDBy.,, U IDBy,,

AP = {APrema APadd} D

3 Update Propagation

This section describes the EPF algorithm. For clarity, we initially present a version
tl%at computes updates to IDB relations defined in terms of safe, recursive Datalog
without negation. We then describe the integration of a memoing feature and the
extensions that support stratified negation and modifications to the view definition.

Definition. Let e, represent the predicate defining an arbitrary EDB relation E,
v'vl}ere E, €&, Let = bea path in DG. An IDB relation 1, defined by the predicate
. %, 18 termed a candidate for update if:

& = i € DG
An IDB relation is said to be unaffected if it is not a candidate, O

A'. subset (not necessarily proper) of the rules that define a candidate relation can
contribute changes after updates to the base relations are introduced.
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Definition. A rule defining a candidate predicate that contains one or more literals
in the rule body corresponding to either a candidate predicate or an updated EDB
relation is termed a candidate rule.. A rule is termed unaffected if it is not a candidate.

The EPF algorithm computes the updates for all candidate relations. This is

accomplished by iterating a propagation phase followed by a filtration phase. These
phases are discussed below. ;

3.1 Propagation and Filtration

During the propagation phase, candidate rules are evaluated when the relations that

correspond to subgoals are updated. The evaluation is constrained using bindings
taken from these updates. The result of the evaluation is a set of tuples representing
possible updates to the candidate relation.

Definition. The set of tuples generated for an IDB relation as a result of a propa-
gation phase is termed an approzimation. Each tuple in the approximation is termed
a potential IDB update. '

To obtain an approximation from a candidate rule, a.query consisting of the
literals appearing in the rule body is invoked over either DBoig or DByey,. Consider
a rule r defining an IDB relation P where both additions and removals have been
identified for a relation L corresponding to a literal / appearing in the body of r. To
propagate the additions to L to the IDB relation P, the rule body is evaluated using
DBpew. The evaluation is constrained using bindings from AL,y The result of this
evaluation is a relation whose schema contains all of the variables that occur in the
rule body. The relation is projected onto the set of attributes corresponding to the
set of variables that appear in the head literal. A similar procedure is performed
to process the removals, however, the rule body is evaluated using DBy and the
evaluation is constrained using bindings from AL,.,. The result of the projection is
the approximation for P.

Note that for both additions and removals the subgoal representing the literal /
can be removed from the query for efficiency, since the updates to L used to constrain
the query bind all variables appearing in subgoal I This forms a query that tests a
tuple that has already been determined to be an actual IDB update and, therefore,
represents redundant computation.

If the rule body contains several literals, each representing either a candidate
relation or an updated base relation, then a separate query is issued for each literal.
In addition, a separate query is issued for the additions to, and the removals from,
each relation. In the worst case situation, where a rule defining a predicate p has k
subgoals each corresponding to a relation where both addition and removal updates
have been identified, 2k queries would be issued during the propagation phase to
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obtain all potential updates for p. In our implementation, a multiple query optimizer
identifies common subexpressions in the queries, which all involve the same set of
predicates, thereby significantly reducing the actual computation performed.

The propagation phase propagates the changes to the extensional relations up
through the rules and identifies potential changes to the intensional relations. Poten-
tial changes are filtered to identify actual changes. For example, a potential addition
represents a derivation of a tuple ¢. If ¢ is provable in the database state before the
updates, then the potential addition is filtered and is not reflected as an actual change
to the database. Similarly, a potential removal represents the deletion of a derivation
for a tuple ¢ and if ¢ is still provable in the database state after the updates, then the
filter phase does not identify the potential removal as an actual removal.

Thus, the filtration phase of PF refines the approximation of potential updates to
IDB relations identified during the propagation phase. Potential IDB updates that
cannot be proven are removed from the approximation. Each potential addition is
posed as a query to the database using DBgyy. Each potential removal is posed as a
query to the database using DBy.,. Tuples returned as a result of the query do not

-represent a change in the database state so they are deleted from the approximation.

Definition. A potential IDB removal is termed disqualified if it is provable in DB ye.
A potential IDB addition is disqualified if it'is provable in DBoyy. A potential IDB
update that is not disqualified is termed an actual IDB update.

Actual IDB updates are saved in global Asets and are available for use in sub-
sequent invocations of the algorithm, including recursive ones. The Asets facilitate
duplicate elimination. They are also used to reduce the size of subsequent approxi-
mations, as described in the next section. .

3.2 The EPF Algorithm

The EPF basic algorithm consists of three procedures, which are given in Figure 1.
Let £, represent the set of updated base relations. Let AE, be the set of Asets cor-
responding to £,. If Fis an updated base relation then AE € AE,. To process the
updates, the system calls procedure process_updates to initiate propagation of the up-
dates to the stored relations. This procedure calls procedure select_propagation_rules
to identify the rules that are to be used for propagation. For clarity of the algorithm,
a for loop is used to iterate over all of the-candidate rules so that each can be con-
sidered for use for a propagation phase. A more efficient method, which is employed
in our prototype, uses the dependency graph to identify the applicable rules.

After the rules are identified, the procedure propagate. filter is called to perform
propagation and filtration. The function query_appr(Query, Updates,State) is called
by the procedure to compute the approximation. It issues a query consisting of
a conjunction of literals over the database state indicated by State. Bindings ex-
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Procedure process.updates
begin _
For each AF € A€, do begin
e = pred-arity(E);
if AE,.m # 0 then select_propagation_rules(e, AFren);
if AE,4q # 0 then select_propagation_rules(e, AE.q4);
end;
end;

Procedure select_propagation.rules(q, Urype)

For each candidate rule: p — Q do

For each ¢; € Q | pred-arity(g;) = pred-arity(q) do
v propagate_filter(p «— {Q - &}, Urype);
end;

Procedure propagate_filter( p «— Q' , Urype)

begin

1) if Type = add then begin

2) Prop-State = new; Filter-State = old end
-8) else begin /* Type = rem */

4) Prop-State = old;  Filter-State = new end,;
5) A = Taus(p) (query-appr(Q', Urype, Prop-State));
6) Apea = A- APrype

7) D = query-disq(p, Aged, Filter-State);

8) Uk, = Ara —D;

9) ifUk, . # 0 then begin

10) APrype = APrype U U’T’m;

11) select_propagation_rules(p, Ugwe);

end;

end;

Figure 1: Basic EPF Algorithm
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tracted from Updates are used to constrain the evaluation of Query. The function
query.disq(Pred, Approz,State) is called by procedure propagate_filter to filter the ap-
proximation. It poses a set of tuples Appror each with predicate symbol Pred, as a
query in the database state represented by State. Each type of query can be evalu-
ated using any strategy that is sound, complete and terminates for recursive Datalog
programs.

Lines 1-4 of the propagate_filter procedure select the correct database state for
propagation and filtration based on the type of update that is being propagated.
The propagation phase is implemented by line 5. Updates that have already been
discovered are removed from the approximation at line 6. The filtration phase is
implemented at line 7. Newly discovered updates are identified at line 8. The Aset is
updated at line 10. If any actual IDB updates are identified that were not previously
known, then the algorithm is recursively called to propagate them at line 11.

Note that the EPF algorithm computes Asets, Not DByey. State DBye, be-
comes available immediately when the updates to the EDB relations are submitted.
Newly inserted tuple are ignored when querying the database when access to DBgq
is required. Tuples tagged for removal are ignored when querying the database when
access to DByey is required. The EPF algorithm issues queries to each state.

The EPF algorithm never accesses the materialized view to compute the Asets.
Therefore, it can be used to monitor changes to derived relations without having to
materialize the derived relation. This capability is useful in an active database where
a user may define triggers to be activated by changes to derived data. Changes to
the derived data can be computed incrementally without having to incur the costs of
either materializing or storing the derived relation. '

It is possible that a potential IDB update p may appear in more than one approx-
imation as a result of multiple recursive invocations of the EPF algorithm. Filtration
need only be performed once to determine if p is disqualified, or alternatively, if p
represents an actual IDB update. To avoid redundant computation, EPF performs
a check to ensure that p is only filtered once. The check that avoids filtering IDB
updates that already appear in a Aset occurs at line 6 in procedure propagate._filter.

~ Let p be a potential IDB update of type Type. Let Arype be an approximation
containing tuples of type Type. If p € APry,. then filtering p more than once rep-
resents redundant computation since p will be discarded later as a duplicate. These
concepts are formalized below.

Proposition 1. If there exists p such that p € A,em and p € AP,y then p is a
duplicate. Alternatively, if there exists p such that p € Agaq and p € APyyy then p is
a duplicate.
Proof (sketch). As can be observed from the algorithm, no tuple can be a member
of APrem or AP,qq without having appeared in an approzimation and not having been
disqualified. O

The check that avoids filtering disqualified IDB updates more than once is de-
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scribed in a later section.

Example

The following example illustrates the propagation and filtration performed by the
basic unoptimized EPF algorithm on a simple example. The program and base data
are given in Figure 2. The EDB relation edge, which is derived from an example
appearing in [GUP93a), is represented as a graph. The only update is the removal of

- edge(b,d).

The EPF a,lgorithm will invoke procedure select.propagation_rules twice (once from

- procedure process.updates and once from procedure propagate_filter. This will result

in procedure propagate_filter being called three times. Each invocation of procedure
propagate.filter will be represented (in order of call) by an entry in the table in Figure
3. Each entry indicates the rule used for propagation (Rule), the updates being
processed using the rule body (Z/), the approximation computed by propagation (A),
the disqualified tuples identified by filtration (D) and the actual IDB updates obtained
from the approximation (U”).

The Aset computed by the algorithm for relation TC is the set of actual IDB
updates identified by each invocation. Note that at no time are tuples of the form:
tc(a,e;) ever considered potentially deleted. Also note that if the graph of the tran-
sitive closure relation was comprised of several connected components, the algorithm
would only examine tuples representing edges in the single connected component
where the update occurred. ’

3.3 Increasing Performance using Memoing

The EPF algorithm may issue many queries during the propagation and filtration
phases to compute the Asets. The worst case involves a rule that has n subgoals
where each subgoal corresponds to a relation that has been updated as a result of
both additions and removals. In this situation, 2n queries would be issued, where
n queries would be issued in the new database state and n queries would be issued
in the old database state. Each of these queries will involve essentially the same
set of predicates. A call made to the same predicate by different queries represents
a common subquery if the arguments of one call will unify with the arguments of
another.

The invocation of multiple related queries motivates the development of a multiple
query optimization (MQO) algorithm to increase the efficiency of propagation and
filtration. As described in [DIE87], memoing inherently implements the MQO task of
common subezpression identification [CHA86, PARSS]. Each occurrence of a literal
defining an IDB predicate represents the subexpressions defined by the conjunction
of literals in the bodies of the rules defining the predicate.

Our prototype employs a top-down recursive query evaluation strategy known
as EQ*-[HAR92c]. This strategy, which is an enhanced version of the ET* strat-



Rule:

U:

b €1 te(X,Y) « edge(X,Y).
te(X,Y) « tc(X,W), edge(W,Y).
d €2
c
€n

Figure 2: Sample Graph

te(X,Y) — edge(X,Y).
{edge(b,d)}

{tc(b,d)}

{0}

{te(b,d)}

te(X,Y) «— te(X, W), edge(W, Y).
{te(b,d)}
{t;(b;el); te(bes), ..., te(ben)} -

{0}
{tc(b,e1), te(byer), ..., te(b,en)}
te(X,Y) « tc(X,W), edge(W,Y).

{edge(b,d)}
{tc(a,d)}

{tc(a,d) }
{0}

Figure 3: Trace of Basic EPF Algorithm
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egy [DIE87], utilizes memoing to insure completeness and to facilitate the implemen-
tation of MQO. The FQ*- algorithm detects completed calls, which have an extension
that is complete. Completed calls that are detected by the algorithm are not recom-
puted. Instead, the answers for the call, which are retained in the extension table,
are returned to the caller. If a call is made to a predicate that is not subsumed by
an earlier call, the call is tagged complete after evaluation and the results are made
. available to subsequent callers.

The MQO optimization benefits both the propagation and filtration phases of the
PF algorithm. For example, memoed tuples obtained from DBy, when computing
- potential additions during a propagation phase, are used to reduce the effort required
to filter potential removals in a subsequent filtration phase. Alternatively, memoed
tuples obtained from DBy, when computing potential removals during a propaga-
tion phase, are used to reduce the effort required to filter potential additions in a
subsequent filtration phase. Tuples stored in a memo table for unaffected predicates,
obtained during a propagation or filtration phase, can be utilized regardless of the
state in which the query is posed.

Regardless of the type of update, memoing can be used to ensure that disqualified
updates are filtered exactly once. All that is required is to check the extension table
for p, which is partitioned into those tuples derived from the each state. If p appears in
an approximation computed using the new state and it also appears in the extension
table computed using the old state, then p is disqualified. Alternatively, if p appears
in an approximation computed using the old state and it also appears in the extension
table computed using the new state, then p is disqualified. This concept is formalized
below. ,

Let © Psyqte represent the (possibly empty) extension table for relation P that
holds answers computed in state State.

Proposition 2.  If there exists p such that p € A,er, and p € OPy,, then p is
disqualified. Alternatively, if there exists p such that p € Augq and p € OPgyq then p
is disqualified. '

Proof (sketch). If a removal appears in the memo table derived using DBy, then
the removal is provable in that state. This implies that the removal is disqualified.
Alternatively, if an addition appears in the memo table derived using DBy then the
addition is provable in that state. This implies that the addition is disqualified. O

Proposition 8.  Algorithm EPF will incur the cost of rederiving a potential IDB
update exactly once.

Proof (sketch). As implied by proposition 1, if p represents an actual IDB update,
then EPF will attempt to rederive p during filtration ezactly once. As implied by
proposition 2, if p represents a disqualified update, then EPF will rederive p ezactly
once. Since all tuples that appear in an approzimation must be either actual or dis-
qualified IDB updates, no more than one attempt will be made to rederive any tuple
appearing in an approzimation. O
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Procedure select_propagation_rules(q, Urype)
begin
For each candidate rule: p «— Q do
For each ¢; € Q | pred-arity(g) = pred-arity(q) do begin
if negated(q;) then
if Type = rem then Type = add else Type = rem
propagate.filter(p — {Q - &}, Uzype);
end;
end;

Figure 4: Modification to support stratified negation

3.4 Negation

An extension to EPF provides support for stratified negation. Assume a rule defining
an IDB relation P contains a negated literal —/ that is the only literal in the rule
representing an updated relation Ry. Additions to Ry, labeled as Algq, can only
have the effect of generating potential removals for P. This is because tuples for P
formed with bindings that occur in tuples of Al,44 are no longer provable with the rule.

Therefore, algorithm EPF processes additions to Ry, where I appears in a negated |

context, as removals from Ry assuming [ had appeared in a non-negated context.

Conversely, removals from Ry, labeled as Al,, can only have the effect of gen-
erating potential additions for P. This is because tuples for P that could be fm:med
with bindings that occur in tuples of Al.,, are now provable with the rule. Algoﬁrl?hm
EPF processes removals from Ry where l-appears in a negated context as addltx'ons
to Ry assuming [ had appeared in a non-negated context. The moc'liﬁcaf.tlon required
to upgrade algorithm EPF to support stratified negation is shown in Figure 4.

3.5 Modification of the View Definition

In this section, we address view maintenance when the definition of the derived re-
lation is modified. When the derived relation is defined using deductive rules, these
modifications are in the form of rule updates. Rule updates are defined here as either
the addition or removal of a rule from the database. This changes the definition of a
derived relation. The derived relation can be viewed as being comprised of a n-way
union where each rule defines one operand of the union. An update to the definition
of a candidate IDB relation can result in the generation of actual IDB updates to the

IDB relation that the rule defines. . ‘
Consider the case where a rule update is performed on a non-recursive IDB relation
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. When a rule r defining Iis added to the database, an unconstrained query consisting
f the conjunction of literals representing the rule body is issued over DBy.,,. The
esult is an approximation that is filtered using DBoyy. Conversely, the body of a
eleted rule is issued over DBoy4 to obtain the approximation and DB New 18 used for
ltration.

The query issued over either state includes all literals from the rule body and
ere are no bindings to constrain computation. Actual IDB updates computed for
P resulting from a rule update are propagated using the EPF algorithm’in the same
‘manner as those resulting from base relation updates. The rule update algorithm can
applied to recursive IDB relations. There is a constraint, however, as to the order
which rules are removed. When removing rules defining a recursive predicate, the
base rule must be removed last to avoid an ill-defined recursive specification. When
adding rules defining a recursive predicate, the order of addition is inconsequential.
The complete algorithm for rule updates and proofs can be found in [HAR92c].

4 Optimizations

propagation approach described above. The optimizations are motivated from deduc-
ive database query evaluation strategies but require adaptation for use in incremental
- view maintenance.
Optimal SIP Selection. Both the propagation and filtration phases of the EPF
. algorithm invoke queries to the database. Each query issued during the propagation
- phase consists of a subset of the literals that appear in a rule body. The sideways
_information passing strategy (SIP)[BEE91] chosen for query evaluation has a direct
effect on the efficiency of the EPF algorithm. Informally, a sip implements the decision
i as to how bindings will be utilized during each step of query evaluation. In our
- prototype, which is implemented in Prolog, the different sip’s are implemented by
 reordering the subgoals appearing in the Prolog queries. To be consistent with the
semantics of negation, negated subgoals are ordered such that their evaluation will be
delayed until their arguments are fully bound. Evaluable predicates are also delayed
until appropriately bound. The optimization is especially beneficial in the case of
. non-linear recursion to avoid unconstrained queries being issued.
] Dependency Graph Analysis. In an active database, a user may define an
 event-condition-action (ECA) rule that is triggered by either a removal from the
- virtual view, an addition or both. In the event that the user defines the rule to only
detect removals, there is no need to propagate tuples that result in additions (and
vice-versa) as they represent irrelevant computation.

the EPF algorithm would use to propagate irrelevant tuples. The objective is to
inform the EPF algorithm to remove the paths from consideration. :
Let Utype specify the type of update, e.g., removals or additions, that triggers

In this section, optimizations are described that improve the efficiency of the update‘

To avoid this, the program’s dependency graph is analyzed to identify paths that -
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the active rule. Let DG be the dependency graph for the database. Let ArcSeq be a
sequence of arcs that comprise a path p = g € DG (expressed as p = arcseq §). Let
edb-rel € EDB. The following rules define the optimization.

Rule 1: If there exists edb-rel such that edb-rel = grcseq pred € DG and ArcSeq con-
tains an even number of negative arcs then updates of type Utype made to edb-rel
must be propagated to pred.

Rule 2: If there exists edb-rel such that edb-rel = 4,c56q pred € DG and ArcSeq con-
tains an odd number of negative arcs and Utype is removals then addition updates
made to edb-rel must be propagated to pred.

Rule 3: If there exists edb-rel such that edb-rel = 4rc5eq pred € DG and ArcSeq con-
tains an odd number of negative arcs and Utype is additions then removal updates
made to edb-rel must be propagated to pred.

After the completion of path analysis, the update types, i.e., additions or removals,
to each stored relation that cannot result in an update to the view will have been
identified. Any update classified as one of these types is ignored and will not be
propagated. The optimization can reduce irrelevant computation in instances where
negation is present.

Partial Evaluation. Lakhotia and Sterling describe partial evaluation, as it
applies to logic programming, as follows. Given a program P and a goal G, the result
of partially evaluating P with respect to the goal G is the program P’ such that for
any substitution 0, evaluating G6 results in the same answers with respect to both P
and P'. The objective of partial evaluation is to produce a P’ on which G6 can be
evaluated more efficiently than on P [LAK90]. A theoretical foundation for partial
evaluation is given in [LLO91].

Partial evaluation can be used to form optimized deductive rules that increase
the efficiency of update propagation when constants appear in the definition of the
view. The predicate v, representing the view, serves as the goal G. The definition of
v serves as the program P. Actual IDB updates to the relations that define v that
will not contribute to updates to v (due to constants in v) are not propagated. This
results in a reduction in irrelevant computation. Informally, the partially evaluated
view definition ¢/ is created by pushing the constants appearing in the view definition
down through the rules that directly or indirectly define the view. The constants
bind variables in the rules and are used to form new, restricted versions.

5 Related Work

This section describes related work that focuses on the problem of view maintenance.
The most closely related work is the Delete & Rederive (DRed) algorithm proposed
by Gupta et al.[GUP93]. The DRed algorithm is based on similar concepts to the
propagation/filtration (PF) algorithm[HAR92a], which is the predecessor of the EPF
algorithm described here.

The DRed algorithm performs one propagation phase and one filtration phase
per stratum. This behavior allows the creation and propagation of disqualified IDB
updates between predicates within a stratum. After DRed completes this irrelevant
propagation; it must then filter, i.e. rederive, each of these erroneously propagated
tuples thereby incurring the cost of still more irrelevant computation.

The PF algorithm does not propagate disqualified IDB updates like DRed. Instead,
it detects and removes any irrelevant tuples immediately after they are generated.
This pruning eliminates costly erroneous propagation. However, the PF algorithm
will filter actual IDB updates more than once in certain instances. When this occurs,
it becomes unclear whether the PF or the DRed algorithm will perform the least
computation. There are examples showing how the PF and DRed algorithms can
outperform each other by an order of magnitude depending on the view definition
and stored data[GUP93a).

The EPF algorithm, however, is more efficient (even in its unoptimized form) than
both PF and DRed since EPF will never filter either potential or actual IDB updates
more than once (as indicated by proposition 3) nor will it propagate disqualified IDB
updates. The net result is a significant increase in efficiency.

Tompa and Blakeley[TOMS8] and Blakeley et al.[BLA89], describe tests for identi-
fying irrelevant and autonomously computable updates. The tests are only applicable
on views defined using SPJ operations. In [BLA86] a differential re-evaluation algo-
rithm was described for recomputing materialized views efficiently. Again, however,
only SPJ views are supported. The EPF algorithm focuses on the efficient recompu- '
tation of the view. The EPF algorithm identifies some irrelevant updates using the
dependency graph for the Datalog program. More importantly, however, is the EPF
algorithm can be applied to a larger class of views.

The EKS-V1 system [KUC91, VIE91] is a “knowledge base management system”
developed at ECRC. The system contains an update propagation mechanism that
was designed for integrity constraint checking and can be used for materialized view
maintenance. In the EKS-V1 approach, additional rules, which are termed propaga-
tion rules, are added to the database to direct propagation. These propagation rules
result in a significant increase in the total number of rules that must be maintained by
the database. Specifically, for each rule with n literals, 2n propagation rules are cre-
ated. Although this approach does not propagate the superfluous tuples (like DRed),
the propagation rules may perform unnecessary rederivations to identify superfluous
tuples. With the EPF algorithm, no additional propagation rules are required and
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through the use of memoing, the EPF algorithm does not perform any unnecessary
rederivation. .

Dong and Topor [DON92] describe an approach for creating incremental queries
that is related to the work presented here. Incremental query evaluation creates a
non-recursive query to obtain the answer to an initial query assuming that the view
is materialized and also that only additions are made to the database. The EPF
algorithm described here differs in that both additions and removals are supported
and that no requirement that the view is materialized is made. However, the queries
issued by the EPF algorithm may be recursive and therefore may be more expensive.

Other work addressing view maintenance impose restrictions such as supporting
non-recursive views only [WOL91], or depends on information such as keys or func-
tional dependencies that may not be available [CER92, URP92)]. Note that another
aspect of the materialized view maintenance problem involves identifying the updates
that must be made to stored relations resulting from updates made directly to the
materialized view. This aspect has not been addressed in this paper.

6 Summary and Future Work

This paper described an algorithm, referred to as Extended Propagation/Filtration
(EPF), that computes updates to views that are defined using safe, recursive Datalog
with stratified negation. The EPF algorithm can be employed to implement database
systems that intend to support the proposed SQL3 standard. An extension was de-
scribed that allowed FPF to incrementally maintain materialized views when the view
definition is modified if the view is defined using the union operator. Optimizations
were described that increase the efficiency of the algorithm. Because the algorithm
does not require the view to be materialized, the algorithm can also be applied to the
problem of complex event detection in an active database. For future work, we intend
to develop more optimizations and implement EPF in a parallel environment. We
believe that an opportunity exists to exploit parallelism since multiple invocations of
EPF only query the database.
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