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Abstract

A view is a derived relation that is defined in terms of stored relations and other derived rela-
tions. If the derived relation representing a view is retained between references, as opposed to being
reconstructed each time it is required, then it is termed marerialized. Materialized views are used
10 increase the speed of query processing and to support procedures in relational database systems.
Updates made to stored relations that participate in the view’s definition can invalidate the materialized
view. Optimally, the database system should be capable of updating a materialized view 1o reflect
updates to the stored relations thereby avoiding the cost of reconstructing the materialized view.

In 2 deductive database, the task of mainwining materialized views is challenging because views
can be defined using negation and recursion. This paper presents an algorithm for maintaining mate-
rialized views in a deductive database consisting of safe, recursive Datalog with stratified negation.
Materialized views that cannot be maintained using previously proposed methods, namely those views
that are recursively defined or are defined using all of the relational operators, can be maintained using
this approach. ’

1 Introduction

A view is a derived relation that is defined in terms of stored relations and other derived relations. A view
provides an interface 10 the database that can remain constant even after modifications 10 the database
schema are performed. If the derived relation represented by the view is reconstructed each time it is
referenced the view is considered virtual. If the derived relation is retained between references then the
view is termed materialized.

Materialized views can be used to increase the speed of query processing. If queries repeatedly
request access to a derived relation, then it is often advantageous to materialize the view. The benefit
- of materializing the view is obtained from amortizing the cost of constructing the derived relation over
multiple queries. Materialized views can also be used 1 both resoucture the internals of a relational
database and to extend a relational database to support procedures[TOME8].

Updates made to the stored relations that participate in a view’s definidon can invalidate the materi-
alized view. One way 10 resolve the invalidation is to recompute the materialized view after the database
is updated, i.e., discard the materialized view and recreated it using the current database state. This
approach can be very costly in the presence of complex view definitions and frequent database updates.
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To avoid these costs, the materialized view itself can be updated to reflect the changes made 10 stored
relations referenced in the view’s definition.

In [TOM88], the problem of updating a materialized view is decomposed into three subproblems:
namely the detection of irrelevant updates, the detection of autonomously computable updates and the
problem of efficiently reevaluating, i.e., recomputing, the view. Irelevant updates are updates to stored
relations that cannot affect a derived relation. An autonomously computable update is one where all data
necessary to update the view is contained within the update and the materialized view itself. No direct
access to the stored relations is necessary.

In [BLABY], these tests are applied when an update is presented 1o the system. An update is first
examined w0 determine if it is irrelevant If the update is not irrelevant it is then tested to determine if it
is autonomously computable. If both of these tests fail, the view is recomputed using their differential
re-evaluation algorithm, which is described in [BLA86]. The views supporied by their approach are
restricted 10 select-project-join (SPJ) expressions.

The approach described in this paper extends the work described above by providifr? support for views

~ that are defined using all of the relational ‘operators, as well as recursion. Specifically, an algorithm is

proposed, which is known as Propagation/Filtration (PF), that directly updates materialized views defined
using safe, recursive Datalog rules with stratified negation. The PF algorithm computes the updates to
materialized views, i.e., constructed derived relations, that result from updates made to the extensional
database, i.e., the stored relations.

This paper is a companion paper to [HARS1], which applies the PF algorithm to the problem of
efficient condition monitoring in an active deductive database. Note that another aspect of the materialized
view maintenance problem involves identifying the updates that must be made 10 stored relations resulting
from updates made directly to the materialized view. This aspect of the problem is not addressed in this
work.

The remainder of the paper is organized as follows. In the second section, initial concepts and
terminology is introduced. The third section describes the PF algorithm and provides an example of its
application 10 the materialized view maintenance problem. Related work is discussed in section four.

2 Basic Concepts

The view maintenance approach described here relies on a procedure for computing the difference between
two consecutive database states. This difference represents the changes that must be made 10 the initial
database 10 obrain the updated database. Once computed, this difference can be used to directly update
the materialized view. _

Assume that a database DB consists of a set of extensionally defined relations (EDB) and a set of
intensionally defined relations (IDB). Let relation P € IDB and be defined by the predicate p. Let U
be a set of updates 1o the EDB. The database state before U is performed is referred 10 as old. The
database state after U is performed is referred to as new. Let the function materialize(IDB_Pred, DB State)
compute an IDB relation defined by the predicate /DB_Pred using the EDB indicated by DB_Staze. Let
the difference berween the materialization of an IDB relation in the old state and the marerization of the
same relation in the new state be termed the “delta set” (abbreviated Aser) for the relation. A delta set
can be viewed as the updates that must be made 10 the old relation to obtain the new relaton.

The notation AP represents the Aset for IDB relation P. A Aset consists of two distinct (possibly
empty) subsets. The first, labeled AP,4q, consists of tuples that must be added to the old relation 1o
obtain the new relation. The second, labeled AP, m, consists of tuples that must be removed from the
old relation to obtain the new relation. These concepts can be formalized using the definitions below.
which assume that the definitions of the IDB relations are not updated.
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Definition. Let EDBpq refer to an arbirary EDB before a set of updates U, are performed t0 the
EDB relations. Let ED B .., refer to the same EDB after U, are performed. Let p denote a predicate
representing an arbitrary IDB relation P. Let IDB(EDB) represent an IDB derived using a specific EDB.

DBoig= EDBgia UIDB(EDBo1a)
DBNew=EDBNo, UIDB(EDBpNcw)
AP, = materialize(p, Old) — materialize(p, N ew)
AP gq = materialize(p, N ew) — materialize(p, Old)
AP = {AP,n, APada}

O

To perform the view maintenance function, the Aset AP is required. The wples in AP indicate
how the materialized view should be updated to reflect the updates made to the stored relations. Using
the definition above as an algorithm is clearly unsatisfactory since complete recomputation of the view
is required. Instead, an incremenial approach is employed, which is implemented using an update
propagation algorithm and is the subject of the next section. '

3 Update Propagation

This section describes the PF algorithm. For clarity, we initially present a version that computes updates
to IDB relations defined in terms of safe, recursive Datalog without negation. We then describe the
extension that supports stratified negation.

The dependency graph [ULL88] DG for a Datalog program D can be used to determine the IDB
relations defined by D that may have been updated as a result of the updates to the EDB relatons. An
IDB relation / may have been updated as a result of updates to the EDB relations if the predicate defining
I, namely i, depends, directly or indirectly, on one or more of the set of updated EDB relations ..

Definition. Let e, represent the predicate defining an arbirary EDB relation E, where E, € &,. Let =
be a path in DG. An IDB relation /, defined by the predicate i, is termed a candidaze for update if:

e, => i € DG

An IDB relation is said to be unaffected if it is not a candidate. O

A subset (not necessarily proper) of the rules that define a candidate relation can conuibute changes
after updates 10 the base relations are introduced.

Definition. A rule defining a candidate predicate that contains one or more literals in the rule body
corresponding to either a candidate predicate or an updated EDB relation is termed a candidate rule. A
rule is termed unaffected if it is not a candidate.

The PF algorithm computes the updates for all candidate relations. This is accomplished by iterating
a propagation phase followed by a filter phase. These phases are discussed below.
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3.1 The Propagation Phase

During the propagation phase, candidate rules are evaluated when the relations that correspond to sub-
goals are updated. The evaluation is constrained using bindings taken from these updates. The result of
the evaluation is a set of tuples representing possible updates to the candidate relation.

Definition. The set of tuples generated for an IDB relation as a result of a propagation phase is termed
an approximation. Each tuple in the approximation is termed 2 potential IDB update.

To evaluate the candidate rules, the rule bodies are posed as queries to the database. 1f a rule body
contains multiple literals, each representing 2 relation that has been updated, then a separate query is
issued corresponding to each literal. The query associated with a literal [ is constrained using the bindings
contained within the set of updates for the relation corresponding to I A separate query is issued for
the additions 1o and the removals from the relation. In the worst case situadon, where 2 rule defining a
predicate p has k subgoals each corresponding to a relation where both addition and removal updates have
been identified, 2k queries would be issued during propagation phases 0 obtain all potential g@dates for p.
In our implementation of the PF al gorithm, a multple query optimizer identifies common subexpressions
in the queries, all of which involve the same set of predicates, thereby significantly reducing the actual
computation performed.

Consider a rule r defining a predicate p where both additions and removals exist for a relation
comresponding to a literal [ in the body of r. To process the additions, the rule body is evaluated using
DBy and is constrained using bindings from Ala4a. TO process the removals, the rule body is evaluated
using DBoys and is constrained using bindings from Al,em. The result of this evaluation is a relation
whose schema contains all of the variables that occur in the rule body. The relation is projected onto the
set of attributes corresponding to the set of variables that appear in the head literal. After a propagation
phase has been performed for r, a (possibly empty) set of tuples representing potential IDB updates t0 p
will have been computed.

3.2 The Filtration Phase

During the filtration phase of PF, the approximation computed during the propagation phase is refined.
Potential IDB updates that cannot be proven are removed from the approximation. The potential additions
(removals) are posed as queries 10 the database using DBoid (DBNew)- Tuples returned as a result of
the query are already provable and therefore do not represent a change in the database state. They are
deleted from the approximaton.

Definition. A potential IDB removal (addition) computed during the propagation phase in DBou
(DBNew) is disqualified if it is provable in DBNew (DBoua). The potential IDB updates belonging
to an approximation that are not disqualified are termed actual IDB updaies.

Actual IDB updates not previously discovered during an earlier recursive invocation of the algorithm
are tabled in a Aset and are then used for a subsequent propagation phase. The Asets are global so they
can be accessed by all recursive invocations.

33 Algorithm PF

Let EDB_REL be the set of base relatons in the database and let AEDB_REL represent the updates 10
the base relations as presented 1o the system. To process the updates, the system calls procedure update,
given in Figure 1, which in turn calls procedure PF, which appears in Figure 2.
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Procedure update
begin
For each AE € A&, do begin
p = pred_sym(AE);
Rem_tuples = removals(AE);
Add_tuples = additions(AE);
if Rems # ( then PF(p, Rem_tuples, rem)
if Adds ¥ then PF(p, Add_tuples, add)
end;
end {update}

Figure 1: Update Procedure
X

Let £, represent the set of updated base relations. Let A£,, be the set of Aset corresponding to £,,.
If £ is an updated base relation then AE € A£,. To process the updates, the system calls procedure
update, given in Figure 1, which in turn calls procedure PF, which appears in Figure 2.

The function query_appr(Query, Ex_Lit, Updates,State) is called by procedure propagate_filter 10 com-
pute the approximation. It issues the query Query, consisting of a conjunction of literals representing a
rule body, in the database state represented by State. The literal Ex_-Lit, which corresponds 10 an updated
relation, is excluded from the query since bindings extracted from Updates are used 10 constrain the
evaluation of Query. The function query_disq(Pred Approximarion,State) is called by procedure propa-
gate_filier to filter the approximation. It poses a set of tuples Approximation each with predicate symbol
Pred, as a query in the database state represented by Staze. Each type of query can be evaluated using
any strategy that is sound, complete and terminates for recursive Datalog programs.

For the remaining description of the algorithm, rules defining IDB relatons will be represented using

the form:
head,ui.(B) «— body,;.(B)

where H represents the set of variables appearing the the head literal of the rule and B represents the
set of variables appearing in the various literals contained in the rule body. The propagation phase is
implemented by line 5. The filradon phase is implemented by lines 6-7. Actual IDB updates that were
not previously identified during execution of the algorithm are used to update the Asets at lines 9-10.
Newly discovered actual IDB updates force additional propagation at line 11.

Note that the PF algorithm computes Asets, not DB y.,,. State DBy, becomes available immediately
when the updates to the EDB relations are submitted. Newly inserted tuples are ignored when querying
the database when access 10 DBoua is required. Tuples tagged for removal are ignored when querying
the database when access 10 DBy, is required. The PF algorithm issues queries to each state. Proofs
of soundness and completeness for the PF algorithm appear in [HAR91].

It may appear to the reader that it is feasible to employ an integrity constraint (IC) checking algorithm
to identify updates to the IDB relations. The idea would be to pose the view defintion as an IC. An
“IC violation”, i.e., the detection of a refutation, caused by an update to a base relation would identify
an addition to, or alternatively, a removal from, the view. Unfortunately, this approach is suboptimal
because of a fundamental characteristics of most IC checking algorithms.

Typically, any update submitted to the system that results in an IC violation is aborted. Therefore, the
database is restricted to states where no condition corresponding to an IC is satisfiable. This restriction is
used as an underlying assumption in many IC checking algorithms {(BRYS88, L1087, SAD&8]. However,
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Procedure PF(Pred,Updates,Type)
begin
Affected Rules = {candidate rules | 3 lizeral L € body,,,, Tepresenting Pred}
For each rule R € Affected. Rules do
For each occurrence L; of L € R do N
" propagate filter(R, L; ,Updates, Type)
end;

Procedure propagate_ﬁlzer(Rule,ExJJLUpdates,T‘ype)

begin
1) if Type = add then begin
2) State s, = new; Stateps,q = old end
3) else begin /* Type = rem /*
4) State 4., = 0ld; Statepi,q = new end;
5) Approximation = 7z, (query_appr(bodyg,., ExLit, Updates, State Appr))s
6) Disqualified_tuples = query_disq(head pute, Approximation, Statepisg);
7) Updates = Approximation — Disqualified_tuples;
8) if Updates ¥ @ then begin
9) New_Updates = Updates — AHeadPredryp.;
10) AHeadPredr,,. = AHeadPredr,,. U New_Updates;
11) if New_Updates ¥ § then

PF(pred_sym(headgu.), New_Updates, Type);
end;
end;

Figure 2: The PF Algorithm
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r1: link(X,Y) — direct link(X,Y). 2N 58
12: Link(X,Y) — link(X,2), direct link(Z,Y). °} s4
s3 s7
\55
Figure 3: Transitive Closure Example
N

with a view maintenance mechanism, there is no requirement that the associated “constraint” remain
unsatisfiable since updates are not aborted. Therefore, fumre updates could result in the recomputation
of previously discovered refutations. Since a refutation is what triggers a view update in this proposed
approach, duplicate updates to the materialized view would be reported.

3.4 Example

Consider the following example, which is based on an elecwric power distribution network. Let the
materialized view LINK, defined by the predicate link, represent the reachability between source and
destination stations on the network. Let the EDB be represented by a single relation DIRECT_LINK. Let
predicate link be comprised of two rules that represent a simple left-recursive wansitive closure. The
program and underlying graph are shown in Figure 3 where the power stations are represented by the
abbreviations s1,s2,...,s7. The PF algorithm will compute the changes 10 relaton LINK when relation
DIRECT_LINK is updated.

Assume relation DIRECT_LINK is updated by removing directlink(s4,55), which is represented by
the Aset ADIRECT _LINK. To determine the changes to IDB relatons that are defined in terms of relation
DIRECT_LINK, which in this case is simply the relaton LINK, the routine update makes the following
call to procedure PF:

PF(direct link, {(s4,55)}, rem)

A trace of the execution of PF is given in Figure 4. The subscript to each call 10 PF shown in the
figure represents the recursive invocations and the rule being considered. The result of execution is the
union of all link tples formed with bindings indicated as new: {(s4,s5), (s4.57), (s2.55), (s2,s7)}. These
tuples correspond to network links lost as a result of the update and would therefore be deleted from the
materialized view.

3.5 Negation

An extension to PF provides support for stratified negation. Assume a rule defining an IDB relation P
contains a negated literal -/ that represents an updated relation Ry. Additions 1o Ry, labeled as Al,gq,
can only have the effect of generating potential removals for P. This is because tuples for P formed with
bindings that occur in tuples of Al.qg are no longer provable with the rule. Therefore, algorithm PF
processes additions to Ry, where [ appears in a negated context, as removals from Ry assuming ! had
appeared in a non-negated context
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PFi,1 Lit: directlink, Removals: {(s4,55)}, o7 (; 4 es)
Head: link, Approximation: {(s4,s5)}, New: {(s4,55)} ) A Q"/’%@ﬂ\, ( SL’"‘ £
PFy,;  Lit: link, Removals: {(s4,s5)}, Y ( 32)557
Head: link, Approximation: {(s4,57),(s4,58)}. New: {(s4.s7)}
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PFs,2  Lit: link, Removals: {(s4,s7)}, [
Head: link, Approximation: {0}, New: {0}

PFi,2  Lit direct_link, Removals: {(s4,55)},
Head: link, Approximation: {(s1,55),(s2,55)}, New: {(s2,s5)}

PFy,2  Lit link, Removals: {(s2,55)},
Head: link, Approximation: {(s2,57),(s2,58)}, New: {(s2,s7)}

PFs.»  Lit link, Removals: {(s2,s7)},
Head: link, Approximation: {0}, New: {0}

Figure 4: Trace of PF

Conversely, removals from Ry, labeled as AL, can only have the effect of generating potential
additions for P. This is because tuples for P that could be formed with bindings that occur in tuples of
Alrern are now provable with the rule. Algorithm PF processes removals from Ry where | appears in a
negated context as additions 1o Ry assuming / had appeared in a non-negated context. The modification
required to upgrade algorithm PF 1o support stratified negation is shown in Figure 5.

4 Related Work

This section describes related work that focuses on the problem of maintaining materialized views.
Tompa and Blakeley[TOMSS] and Blakeley et al.[BLA89] describe tests for identifying irrelevant and
autonomously computable updates. The tests are only applicable on views defined using an SPJ ex-
-pression. In [BLASG), a differential re-evaluation algorithm was described for incrementally updating
materialized views. Again, however, only views defined using an SPJ expression are supported. The PF
algorithm can be applied t0 a more general class of views. In addition, the PF algorithm identifies a
subset of the imrelevant updates using the dependency graph for the Datalog program.

The EKS-VI system [KUC91, VIES1] is a “knowledge base management system” under development
at ECRC. The system contains an update propagation mechanism thar was designed for integrity constraint
.checking and can also be used for materialized view maintenance. The EKS-VI update propagation
mechanism, which is described in both [VIES1] and [KUC91], was developed independently, and in
parallel, with the work presented in this paper.. The mechanism is based on concepts similar 1o those
inroduced in the description of the PF algorithm however there are some fundamental differences.

In the EXS-VI approach, additional rules, which are termed propagarion rules, are added 10 the
darabase to direct propagation. The EKS-VI propagation rules result in a significant increase in the toral
number of rules that must be maintained by the database. Specifically, for each candidate IDB rule with
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Procedure PF-(Pred,Updates,Type)
begin
Affected Rules = {candidate rules | 3 literal L € body, . representing Pred}
For each rule R € Affected_Rules do
For each occurrence L; of L € R do begin

end;

if positive(L;) then
propagate filter(R, L;, Updates, Type)

else {negative(L;)}
if Type = add then propagate_filter(R, L;, Updates, rem)
else {Type = rem} propagate_filter(R, L;, Updates, add)

end;

Figure 5: Modification to allow stratified negation

n literals, 2n propagation rules are created. With the PF algorithm, no additional rules need be added to
the database.

5 Summary and Future Work

This paper proposes an algorithm to support the maintenance of materialized views in a deductive database
that is defined using safe, recursive Datalog with stratified negation. Unlike previous approaches, the
PF algorithm can maintain relational views defined using union, difference (swratified negation), and
recursion. For future work, we plan to extend our optimized system prototype tO Support aggregales.
Since the PF algorithm only queries the database, there also appears to be an oppormnity to exploit
parallelism to increase performance. .
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