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ABSTRACT

This paper describes a layered meta-data approach to the support of active, deductive, object-oriented
database (ADOOD) environments. The integration of these three database paradigms, together with the
need to support active rule analysis, testing, and debugging activities has created the need for
sophisticated data structures to manage meta-data. The unique aspect of our layered approach to
meta-data is the division of meta-data into static and dynamic components. Static components manage
the meta-data generated from the compilation of structural schema definitions together with the
language components of the database application code, including active and deductive rules as well as
methods and transactions. Static meta-data is enhanced with additional meta-data that is generated by
static rule analysis and testing tools for use by run-time rule analysis and debugging tools. Dynamic
components store meta-data that is associated with the evolving database state that occurs as a result of
transaction and rule processing. Dynamic meta-data components therefore provide abstractions of state
changes associated with different language components, thus allowing the development of more
sophisticated tools for run-time analysis and debugging of active database rules. This paper elaborates
on the static and dynamic components of our layered meta-data architecture in the context of the tools
needed for language evaluation and active rule development.

1.0 INTRODUCTION

Active database systems incorporate rule processing capabilities into traditional database environments
for the purpose of providing reactive behavior to events that occur within database applications. Since
the development of active applications is a complex task, we have been investigating innovative
techniques for the analysis, testing, and debugging of active rules as part of the ADOOD (Active,
Deductive, Object-Oriented Database) RANCH Project (NSF Grant No. IRI-9410993). In particular, our
work has focused on the use of rules within the Comprehensive, Declarative Object Language
(CDOL)[17]. CDOL is a language that integrates active, deductive, and object-oriented capabilities to
create a knowledge-oriented approach to the specification of active rules. A rule-based query language is
the most central feature of the environment, supporting additional language layers for the declarative
specification of constraints, updates, and active rules.

The integration of active, deductive, and object-oriented database concepts, and our objective to support



rule analysis, testing, and debugging activities has created the need for sophisticated data structures to
manage meta-data. At a minimum, the system requires traditional meta-data components to describe the
structural aspects of the database schema. The additional processing needs of our research, however,
have required the development of new forms of meta-data to support ADOOD language and rule
execution as well as the creation of meta-data abstractions that better support active rule development
tools. In this paper, section 2 initially provides an overview of the meta-data for our ADOOD
development environment. The following sections then describe the base meta-data in more detail,
where Section 3 describes the class meta-data for CDOL and Section 4 describes the meta-data in
support of active and passive rules. An overview of the dynamic meta-data for an ADOOD development
environment is presented in Section 5. Section 6 briefly addresses related work. Section 7 concludes the
paper with a discussion of our contributions and future research directions.

2.0 META-DATA FOR AN ADOOD DEVELOPMENT ENVIRONMENT
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Figure 1. Meta-data Layers.

Our approach to the development of an ADOOD meta-data component for CDOL consists of layers of
meta-data, illustrated by Figure 1. A base layer of meta-data known as the Schema Compilation Layer is
generated from the compilation of a CDOL schema definition and the CDOL rules that specify the
application code. The Schema Compilation Layer of meta-data for CDOL consists of structural schema
information (i.e., class and attribute definitions), the description of active and passive (i.e., deductive)
rules, the description of behavioral language components such as methods and transactions, and links
that establish the relationships between classes, attributes, rules, methods, and transactions. The
structural schema meta-data and rule meta-data will be described in more detail in sections 3 and 4,



respectively.

The Schema Compilation Layer is then analyzed to construct an additional layer of meta-data known as
the Schema Analysis Layer. The Schema Analysis Layer contains meta-data that is generated by various
static rule analysis and testing tools [6, 16] for use by run-time rule analysis and debugging tools [9].
Both the Schema Compilation Layer and Schema Analysis Layer contain meta-data that is static,
meaning that it is not modified during the execution of the active database application.

The Schema Analysis Layer of meta-data includes various graphs and tables based upon static analysis
of CDOL rules. Triggering graphs are needed to support an active rule testing tool as well as static rule
analysis tools that examine active rules for termination and confluence behavior. Basic triggering graphs
show the triggering relationships among active rules based upon potential event generation, while
refined triggering graphs [16, 18] use more sophisticated analysis that is able to remove false triggering
relationships. Priority graphs establish the order in which the rules should be executed according to the
rule programmer, based upon keywords in the active rule definitions. Conflict graphs show the rules that
access the same underlying database values, therefore potentially resulting in non-confluent behavior if
the rules are executed concurrently. Confluence tables are generated from more sophisticated analysis
[11] of the potential conflicts, eliminating false conflicts and thereby generating reduced sets of
conflicting rules and enabling greater concurrency. Dependency graphs show the relationships between
rules and the data used in the rules. Dependency graphs are used to guide the incremental update of
materialized virtual data, which are defined by deductive rules, when any underlying objects are
modified. Dependency graphs are also needed to support condition monitoring activities to perform
incremental evaluation of the condition of Condition-Action rules.

The Database Instance layer shows the root class, CDOL Object, of the application inheritance hierarchy
in the ADOOD RANCH system. A CDOL Object contains meta-data associated with each instance of
an application object. For example, a CDOL Object contains references to the application object’s type
meta-data in the Schema Compilation Layer. The Database Instance Layer is not static information since
it changes during execution as application object instances are created and destroyed.

If the term meta-data is defined simply as "data that represents characteristics of data", then there is no
inherent restriction that meta-data consist solely of static information. Due to the complexity of the
CDOL processing environment, we have discovered the need to define a Dynamic Layer of meta-data
that exists on top of the Database Instance Layer. The Dynamic Layer contains meta-data that is
concerned with representing information about the processing of CDOL rules in forms that can be used
by dynamic rule debugging and analysis tools. The meta-data at this level is generally short-lived,
representing evolving database state information generated by transactions and rule processing. Delta
Objects capture incremental changes to objects in the database. Language Construct Instances represent
execution instances of CDOL Transactions and CDOL rules. Delta Abstractions organize and filter
dynamic meta-data into forms that can be easily used by run-time tools for rule analysis and debugging.
Execution Graphs represent scheduling information for concurrently executing active rules. The
Dynamic Layer will be described in more detail in section 5.

3.0 META-DATA FOR CDOL STRUCTURAL SCHEMA DEFINITION

The CDOL rule language influenced every aspect of the design of the ADOOD RANCH system. CDOL
has a data definition language based on the ODMG ODL (Object Definition Language) [4]. In the
' ADOOD Ranch system, all meta-data for an application is defined by a programmer through the CDOL



data definition language or through the use of a graphical interface to the meta-data. This section of the
paper briefly describes the meta-data for the ADOOD RANCH Project that stores structural schema
definitions for classes, attributes, and relationships. The CDOL Class Meta-data is shown in Figure 2 in
UML notation [8]. Figure 2 primarily illustrates classes and relationships between classes, but omits
most attributes and methods from classes for the sake of brevity. The ADOOD RANCH Project team
initially implemented the CDOL meta-data and object storage using Shore (Scalable Hetereogeneous
Object REpository) [3, 13] and provided C++ access APIs to the meta-data and object storage. The
CDOL object model is similar to C++ [7] because it supports multiple inheritance of both properties and
methods. The CDOL meta-data has also been implemented in Java. The Java language [10] does not
support multiple inheritance in the same manner, but instead uses Interfaces to promote method
signature inheritance without implementation inheritance. Figure 2 therefore represents some class types
as interfaces.
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Figure 2. CDOL Class Meta-data.

The CdolNameConstruct in Figure 2 is one of the most commonly used interfaces in our schema,
requiring that many meta-data classes implement a getName method to provide named access. A
CdolClass represents the class of a CDOL Object, and has recursive relationship superclasses to
represent inheritance hierarchies. In Figure 2, CdolClass is a subclass of CdolType, representing the fact
that classes are types. A class can have properties, represented by a relationship with CdolProperty,
which are either attributes or relationships. CdolAttribute represents attributes of simple types, while
CdolRelationship represents relationships with other classes. Since CDOL always specifies inverse
relationships, instances of CdolRelationship are paired for related classes. CDOL provides some
additional features to describe structured, multi-valued, and enumerated properties, hence the CdolStruct



nd CdolEnum meta-data classes.

DOL derived classes and properties are described in the reference for the CDOL Language [17] in
etail, but the basic notion of a derived type is to create an intensional value based on a deductive rule.
‘The intensional value is not stored in the database, but instead is computed upon use. CdolVirtual is an
terface that relates a virtual property or virtual class to the deductive rule that defines its value.
dolVirtualRelationship and CdolVirtualAttribute override inherited operations from their superclasses
:CdolRelationship and CdolAttribute to return type, name, or class domain information. A virtual
property appears like a database value to the referencing query or rule. CdolVirtualClass uses a
deductive rule to derive a subset of the membership of a base CdolClass.

CdolParameter represents formal parameters to several of the CDOL constructs. For example,

-~ CdolMethod or CdolTransaction, which will be described in the section on rule meta-data, may require
parameters for invocation. In addition, virtual properties or classes may be parameterized thereby

restricting derived data to certain limits.

4.0 META-DATA FOR CDOL RULES

Structural schema meta-data for representing classes and properties is only part of the base layer of
CDOL meta-data. The other component of the base layer represents CDOL rules as shown in Figure 3.
The left side of Figure 3 represents both passive and active rules in CDOL. The right side of Figure 3
represents CDOL Transactions and Methods, which are integral to the specification of rules.
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Figure 3. CDOL Rule Meta-data.

The CdolRule interface extends from CdolNameConstruct, thereby requiring rules to have names.



CdolRule is implemented by classes for both passive and active rules. The term passive rule typically -
refers to a declarative rule that derives data. An active rule is a rule that is triggered by some occurrence
during transaction processing. In CDOL, any method invocation is an event that can trigger an active
rule. -

The CdolPassiveRule abstract class is a superclass for CdolDeriveRule and Cdol UpdateRule. In the
CDOL language, a passive rule may consist of a sequence of rules. The CdolPassiveRule class therefore
aggregates an ordered list of CdolSequenceRule objects. Each CdolSequenceRule in the CDOL language
has a head and body, represented by the CdolRuleHead and CdolRuleBody classes. The CDOL language
evaluator can evaluate rule heads and rule bodies, therefore both CdolRuleHead and CdolRuleBody
implement the CdolEvaluable interface. In general, bindings obtained from the evaluation of the rule
body are passed to the rule head. The CdolEvaluable interface has a getBinary() method to retrieve
intermediate code [14] that is used for interpreting CDOL by the evaluation engine. When CDOL is
compiled, the intermediate code is stored as part of the meta-data. A Cdol UpdateRule is a sequence of
rules to update values in the database. A CdolDeriveRule is a deductive rule to derive a virtual value
from the database, therefore derived rules have a relationship to the CdolVirtual property or class they
derive.

The CdolActiveRule abstract class is a superclass for all active rules. All active rules have an Action that
is represented by the sequence of rules in a CdolUpdateRule. The subclasses of CdolActiveRule such as
CdolEARule, CdolECARule, and CdolCARule, are all concrete classes. CdolEARule and CdolECARule
implement the CdolEPart interface to specify the events that trigger the active rule. CdolCARule and
CdolECARule implement the CdolCPart interface to specify the condition of the rule, which is a CDOL
query represented by a CdolRuleBody.

The right side of Figure 3 shows the CdolStoredProcedure abstract class. The CdolStoredProcedure
class represents executable operations that can be called on the database directly from a user program.
For example, CdolTransaction represents the list of user transactions defined on the database.
CdolMethod represents the list of user accessible methods that can be called on application objects.
CdolTransaction and CdolMethod are different only because a CdoIMethod is associated with a
particular CdolClass. In both cases, CdolTransaction and CdolMethod are written in the CDOL
language as declarative update rules, not in an imperative programming language like C++ or Java. The
rules that perform the operations of the transaction or method are defined within a Cdol UpdateRule
object accessed through the bodyRule relationship defined by the CdolTransactional interface. Active
rules are triggered before or after the execution of a CdolTransactional type based upon a before/after
specifier in the declaration of an active rule. This is shown as the relationships to the CdolEPart
interface implemented by event-driven active rules.

5.0 META-DATA EXTENSIONS FOR RULE ANALYSIS AND EXECUTION

The Dynamic Layer of meta-data shown in Figure 1 contains meta-data that is concerned with
representing information about the processing of CDOL rules in forms that can be used for rule
execution and for dynamic rule debugging and analysis tools [9]. The Dynamic Layer contains
Language Construct Instances, Execution Graphs, Delta Objects, and Delta Abstractions.

*Language Construct Instances represent meta-data for the execution-time instances of CDOL
Transactions and CDOL rules. The CDOL processing environment creates meta-data objects to
represent the status of rules that are executing. The active rule processing algorithms [2] manipulate




Language Construct Instances similarly to the way an operating system manipulates and schedules
processes. The Execution Graph contains the active rules that have been triggered and scheduled for

- execution. The Execution Graph uses the Refined Triggering Graph, the Priority Graph, and the
Confluence Tables to guide a rule execution schedule in avoiding non-terminating and non-confluent
rule behavior. In addition, the Execution Graph is capable of logging the execution history of active
rules in the context of the executing user transaction. During rule debugging activity, the logged

- information can be used dynamically to make decisions about rule scheduling during the execution of
user transactions or in a post mortem analysis process to assist in redesigning the user transactions if the
execution behavior of the active rules was not as expected.

Object deltas provide an object-oriented version of relational deltas for capturing the incremental
changes to objects that occur in the database state due to the execution of update rules within
transactions and active rules. Object deltas are needed within the condition monitoring facility and
within the rule analysis and debugging component for active rules. We have a unique structure in our
Dynamic Layer of meta-data for capturing object deltas [15]. Object deltas were designed to behave as a
natural extension to objects through object-oriented concepts such as inheritance, delegation,
encapsulation, and abstraction. All database objects inherit the ability to create and manage deltas from
features built into the CDOL Object class. Objects are responsible for creating and managing their own
deltas as user transactions modify the state of the database objects. The meta-data structure for
representing object deltas was created as a generic, collapsible object known as a DeltaObject, which
dynamically grows and shrinks according to the incremental changes in the associated CDOL Object.

Due to the magnitude of the number of deltas that can potentially be created, a mechanism was needed
to organize and abstract the manipulation of deltas. Delta abstractions [1] are a unique form of meta-data
in that they are delegated with the responsibility of providing a view of the internal database changes
associated with different language components that can cause changes to the database state. For
example, in CDOL, delta abstractions exist for objects, properties, update rules, active rules, methods,
and transactions. Using delta abstractions, active database programmers can more closely examine the
execution of active rules, displaying the database state before and after the execution of different
language components and performing rollback and replay of rule execution sequences. Delta
abstractions therefore provide an intelligent and interactive state and meta-data management facility,
thus allowing the development of more sophisticated tools for run-time analysis and debugging of active

database rules.

6.0 RELATED WORK

We are not aware of any published results on the meta-data for an active, deductive, and object-oriented
database. However, meta-model standards have recently emerged for object-oriented systems, such as
the Object Data Management Group’s ODMG 2.0 standard [5] and the Object Management Group’s
object model for CORBA [12].

The ADOOD project began in 1995, and developed its object model to be consistent with release 1.1 of
the ODMG-93 standard [4]. CDOL supports the standard features of ODMG-93, extending the
ODMG-93 Object Definition Language (ODL) with additional features required to define the derivation
of virtual attributes and classes, integrity constraints and active rules. Since CDOL is a comprehensive
declarative object language, it also includes a manipulation language for the declarative specification of
update rules used to define methods, transactions and the action of active rules. A comprehensive
example of CDOL can be found on the ADOOD web (http://www.eas.asu.edu/~adoojl



Although the ODMG-93 standard provided a detailed description of the object model, it did not specify
a standard meta-model. Since meta-data was crucial to the implementation of our system, we designed
and implemented our own meta-model, which is shown in Figures 2 and 3. The CDOL meta-model is a
superset of the meta-model of an ODMG-93 compliant database, since CDOL supports add1t10na1
features beyond that of a standard object-oriented database system.

The successor of ODMG-93, ODMG 2.0 [5] provided the definition of a standard meta-model. There are
similarities and differences between the CDOL meta-model and the ODMG 2.0 meta-model. Both the
CDOL and ODMG 2.0 meta-models are defined in terms of their target object model. For example,
CDOL defines its meta-model in terms of the CDOL object model and ODMG 2.0 defines its
meta-model in terms of the ODMG 2.0 object model. Although it is not required to define the
meta-model using the target object model, doing so usually provides ODBMS implementers an easier
path to bootstrap meta-data implementation with a limited functioning version of the ODBMS
implementation itself. For the same reason, relational DBMS implementers usually implement their
meta-data with a limited functioning version of their own relational DBMS. There are also various
similarites between the structural meta-data maintained for CDOL and ODMG 2.0. For example, both
meta-models provide an interface near the root of the meta-model class hierarchy to require many
meta-data classes to implement a getName method in order to support named access. The interfaces are
CdolNameConstruct in CDOL and MetaObject in ODMG-2.0.

Despite these similarities, there are differences between the two meta-models after ODMG 2.0 made
substantial changes to the object model for increased compatibility with the object model of the CORBA
standard [12] by the Object Management Group (OMG). The single most significant change in the
object model is the introduction of the state versus behavior inheritance. In ODMG-2.0, interfaces define
only the behavior of objects. Classes, instead, define the state of objects, which can also implement
interfaces. State inheritance is provided through the EXTENDS relationship, which supports single class
inheritance with the capability to inherit multiple interfaces. Another significant change of ODMG-2.0
from ODMG-93 is the revised interpretations of attributes and relationships. In ODMG-93 Release 1.1,
attributes can only take values of literal (immutable object) types such as Integer and Enumeration.
Properties of (mutable) object values are, instead, defined by relationships, which can support either
unidirectional or bi-directional traversal. In ODMG-2.0, attributes with object values become the new
approach to define unidirectional relationships, while relationship definitions always define
bi-directional relationships. Furthermore, ODMG-2.0 also introduces the module concept to organize
name scopes. In summary, although the current CDOL meta-data is compliant with ODMG-93, it is not

ODMG-2.0 compliant.

Although we do not anticipate changing the existing object and meta-models of CDOL to be compliant
with ODMG 2.0, we will use the ODMG 2.0 standard and the knowledge obtained from our
implementation of the CDOL meta-data to form the basis of our future work on the development of
meta-data in support of active rule processing in a distributed object computing environment.

7.0 CONCLUSION

This paper has presented a layered approach to the management of meta-data for an ADOOD
environment with support for rule analysis, testing, and debugging activities. The contribution of our
work is found in the extension of structural meta-data components for an object-oriented schema to
include 1) meta-data for active and deductive rules as well as ADOOD language components, and 2)
meta-data for static rule analysis and testing tools. In addition, we have defined a dynamic meta-data




component for capturing semantic and run-time abstractions that more readily support the development
of tools for examining rule execution. Due to the complex nature of active applications, the development
of such tools is critical to the successful use of active rule technology. Our meta-data framework follows
similar developments with current standards for object-oriented models and provides a prototype of the
meta-data components that are needed as such standards expand to include more sophisticated forms of
rule processing. Our future work is focused on the development of meta-data in support of active rule
processing in distributed object computing environments.
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