1. Given vectors \vec{A} and \vec{B} below, find the vectors $\vec{A}+\vec{B}, \vec{B}+\vec{A}, \vec{A}-\vec{B}$, and $\vec{B}-\vec{A}$.

2. Given vectors \vec{A}, \vec{B}, and \vec{C} below, find the vector $\vec{A}+\vec{B}+\vec{C}$. Use your drawing to show that $(\vec{A}+\vec{B})+\vec{C}=\vec{A}+(\vec{B}+\vec{C})$

3. $\vec{A}=5$ units @ 30° above right on the page. First draw the components A_{x} and A_{y} (with arrowheads) in each coordinate system, then determine the proper expressions.

$\mathrm{A}_{\mathrm{x}}=$ \qquad
$A_{y}=$
$\mathrm{A}_{\mathrm{x}}=$ \qquad
$\mathrm{A}_{\mathrm{x}}=$ \qquad
$\mathrm{A}_{\mathrm{y}}=$ \qquad

$$
\mathrm{A}_{\mathrm{y}}=
$$

4. $\vec{A}=5$ units E , and $\vec{B}=5$ units @ $37^{\circ} \mathrm{N}$ of E . Given that $\vec{C}=\vec{A}+\vec{B}$, draw the vector triangle and find \vec{C} in unit vector notation and as magnitude and direction.

5. $\vec{A}=10$ units with unknown direction, $\vec{B}=4$ units E , and $\vec{C}=$ unknown magnitude with direction $10^{\circ} \mathrm{E}$ of S . Given that $\vec{C}=\vec{A}+\vec{B}$, draw the vector triangle, and find the direction of \vec{A} and the magnitude of \vec{C}. (Use the Law of Sines.)

6. $\vec{A}=10$ units somewhat S of E but with the actual angle unknown, $\vec{B}=5$ units with unknown direction, and $\vec{C}=12$ units E. Given that $\vec{C}=\vec{A}+\vec{B}$, draw the vector triangle, and find the directions of \vec{A} and \vec{B}. (Use the Law of Cosines.)

