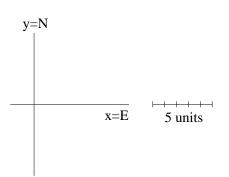
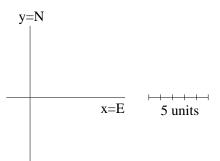
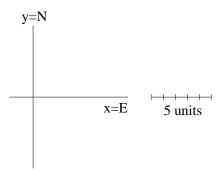

1. Given vectors \vec{A} and \vec{B} below, find the vectors $\vec{A} + \vec{B}$, $\vec{B} + \vec{A}$, $\vec{A} - \vec{B}$, and $\vec{B} - \vec{A}$.


2. Given vectors \vec{A} , \vec{B} , and \vec{C} below, find the vector $\vec{A} + \vec{B} + \vec{C}$. Use your drawing to show that $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$


3. $\vec{A} = 5$ units @ 30° above right on the page. First draw the components A_x and A_y (with arrowheads) in each coordinate system, then determine the proper expressions.


4. $\vec{A} = 5$ units E, and $\vec{B} = 5$ units @ 37° N of E. Given that $\vec{C} = \vec{A} + \vec{B}$, draw the vector triangle and find \vec{C} in unit vector notation and as magnitude and direction.

5. $\vec{A} = 10$ units with unknown direction, $\vec{B} = 4$ units E, and $\vec{C} =$ unknown magnitude with direction 10° E of S. Given that $\vec{C} = \vec{A} + \vec{B}$, draw the vector triangle, and find the direction of \vec{A} and the magnitude of \vec{C} . (Use the Law of Sines.)

6. $\vec{A} = 10$ units somewhat S of E but with the actual angle unknown, $\vec{B} = 5$ units with unknown direction, and $\vec{C} = 12$ units E. Given that $\vec{C} = \vec{A} + \vec{B}$, draw the vector triangle, and find the directions of \vec{A} and \vec{B} . (Use the Law of Cosines.)

