Before beginning this required reading for lecture 11, I suggest you try
Self-Assessment Test 6.1, available at the "C&J 6th Ed Web Site" link on our
course web page. This will double-check your understanding of the concepts we
covered in lecture 10.

At the end of lecture 10, we learned that the MECHANICAL ENERGY of an
object is constant whenever only the force of gravity is doing work on the
object; this idea is called the CONSERVATION OF MECHANICAL ENERGY. We must
always remember that, while it is common to talk about the mechanical energy
"of an object", strictly speaking we can only have potential energy for a
system of two (or more) objects. We are allowed to talk about the potential
energy "of an object" only because the stationary Earth is usually understood
to be the second object in the system.

But can we talk about energy conservation for an object (or system of
objects) if forces other that gravity are doing work? The answer turns out to
be yes, but we have to talk about the conservation of TOTAL ENERGY, not just
mechanical energy. I will begin lecture 11 by discussing this PRINCIPLE OF
THE CONSERVATION OF (TOTAL) ENERGY, and how it relates to the work done by
forces other than gravity. We will begin to think of WORK as a transformation
of energy from one form to another, or as a transfer of energy from one object
to another.

Our final topic in the ENERGY perspective on DYNAMICS will then be the
subject of POWER. In science, it is important to distinguish the word "power"

from the word "energy". Here is the definition of average power:

DEF The AVERAGE POWER (P) associated with any force F which does an amount of

work Wp during elapsed time At is

o=~ units are J/s = Watts (W)



Power, 1like work, is a signed scalar. In words rather than symbols, power is
the RATE OF DOING WORK. Average power is just the average rate at which work
is done. So energy is not power, and power is not energy; the concepts are
related, but the units of the two quantities are different.

A useful shortcut in calculating power is revealed with the following

simple derivation:

_ Wg
DEF of average power F = AL
Far)Ar
use DEF of work, Wr = (Fa,)Ar = ( AATi
.o - _Ar .
use DEF of average velocity, v = AL = (Farp)v
and since dir. of Ar is also dir. of v = (Fp)v

We have derived this result for the average power, and thus used the average

velocity, but it is true for instantaneous power and velocity as well, i.e.

Pp(t) = (Fy)v(t) (1)

This equation tells us that the instantaneous power associated with any force
F (i.e. the rate at which F is doing work on the object in question at some
time t) can be gotten by multiplying the component of F in the direction of the
object’s velocity times the instantaneous speed of the object. Eq. (1) will
appear on your equation sheet.

Here is a simple example with power. Get a full can of pop (or something
similar - your numbers may change a little). It contains 0.355 L or 355 cm® of
what is essentially water. Water has a density of 1.0 g/cm®, so you have 0.355
kg of water (ignore the mass of the can). So the weight of this can of pop is
mg = (0.355 kg) (9.8 m/s?) or about 3.5 N. If you lift this can straight up for a

distance of 1.0 m (either at constant speed, or starting and ending with the
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same speed, so that AKFE = 0) then you do +3.5 J of work (the net work done

on the can of pop is of course zero). If you do this work in 1.0 s, then your
average power output during the 1lift is +3.5 J/s or +3.5 W. If you do the lift
at constant speed, then you can also get the same result by using Eq. (1); the
velocity of the can would be 1.0 m/s UP and the force on the can by your hand
would be 3.5 N UP, so the power would be (+3.5 N)(1.0 m/s) = +3.5 N-m/s = +3.5 W.
Human efficiency is typically in the 10-20% range. If your efficiency is 10%,
then during the 1ift you are consuming energy (i.e. burning sugars to operate
your muscles) at a rate of 35 W, a little over half (58)) of the rate of energy
consumption by a 60 W 1light bulb. (By the way, our calculation does not include
the baseline energy consumption rate of the human body -- the power your body
uses just to keep breathing and pumping blood, etc. This "basal metabolic
rate" is about 77 W even when you are sleeping.) How many Calories does your
action consume? The Calorie (Cal) is a unit of energy used by nutritionists;

1 Calorie = 4186 J. If you consumed energy at a rate of 35 W for 1.0 s, you would

thus have used 35 J of energy, which requires the burning of about 0.008 Cal.

Another commonly used unit of power is horsepower (hp); 1 hp = 746 W.
Students who work with engines may like to compare human power outputs to
typical engine power outputs. For our 1lift, the power output of 3.5 W is only
about 0.005 hp. On the other hand, a 60 kg person running up a 3.0 m high flight
of stairs in 1.0 s has an average power output of 1.76 kW or about 2.4 hp. You

should check your understanding of power by confirming my calculation.

The topic of POWER concludes our introduction to the ENERGY perspective
on DYNAMICS; the energy perspective is very useful and we will revisit it
many times during the semester. Next we would like to learn how to handle the
dynamics of general systems of particles (or objects). We have already dealt

with a few systems of objects, but always the objects were moving as a unit -
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- they were always tied together by a rope, or being pushed along in a stack
without slipping, etc. What if the objects in our system are not moving as a
unit (for example, a system of two balls that are thrown at one another and
collide, or the system consisting of all of the air molecules in a room)? Does
it make any sense to talk about the position of the system, or the velocity

of the system, or the acceleration of the system? The answer turns out to be
yes. We begin by defining the position of the system, also known as (AKA) the

position of the center-of-mass of the system.

DEF The POSITION of the CENTER OF MASS (rcoas) of a system of N particles
(AKA the position of the system) is

> mr; N
roymy = e vt with Z = Z
Msys i i=1

where m; is the mass of the ;" particle

r; is the position of the it* particle, and

Msys = Zz my .

This DEF may look complex, but it is actually rather simple. Look at a
simple 1D example. We have 3 balls located along a line, as shown below. The
2.0 kg ball is 0.5 m to the right of the 5.0 kg ball, and the 4.0 kg ball is 1.0 m
to the right of the 2.0 kg ball. Our task is to find the location of the center

of mass of this system of three balls.



We apply the DEF of the position of the center of mass. In order to do so, we
need to choose the location where z = 0; I choose z =0 at the 5.0 kg ball, then
the 2.0 kg ball is at 0.5 m, and the 1.5 kg ball is at 1.5 m. Now apply the DEF,

remembering to change over to 1D vector notation.

Msys
(5.0 kg)(0 m) + (2.0 kg)(+0.5 m) + (4.0 kg)(+1.5 m)
9.0 kg + 2.0 kg + 4.0 kg

= +0.636 m
So the center of mass of this system is located 0.636 m to the right of the
5.0 kg mass (or 0.136 m to the right of the 2.0 kg mass).
Now that we know how to find the position of the system, what can we mean by
the velocity of the system? This is easy to get from our DEF of the position of
the system simply by imagining some displacement Argjs of the system and then

dividing by the time At during which the displacement takes place. In symbols,

. _ Arouy
DEF of average velocity for CM VoM = AL
-m; Ar;
DEF of roum _ 2imiAr + At
Msys
Ar;
.M i3
algebra — use the distributive property = 2 MmNy
Msys
: : . L DimiYy
DEF of average velocity for particle : ==
Msys

We did this derivation for the average velocity of the CM, but it is true for
the instantaneous CM velocity as well, i.e. voum = (D, m;V;)/Myys. And we can

repeat the whole process over again with a Avgys to get the acceleration of the

center of mass, which will be

2o mid;

acmMm =
Msys

So now we have a DEF for the position of any system of particles. And we

use a similar expression to get the velocity of the system or the acceleration
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of the system. In each case, we do a sum over all the particles within which
we multiply the mass of each particle times its relevant kinematic variable
(either its position, or its velocity, or its acceleration), and then divide
the sum by the mass of the entire system. But why is this the right DEF for
the position of the system? I will show in lecture that, with this DEF for the

position of the system, Newton’s 2nd Law for the system is just

ZFewt = (Msys)aC’Ma

i.e. the sum of the external forces acting on the system equals the mass of the
system times the acceleration of the center of mass of the system. Once we have
done that proof, we can see that the DEF of rgjs must be right, because the acy

turns out to be correct for the acceleration of the system.



