So far this semester, we have had an introduction to KINEMATICS, the
description of motion, and to DYNAMICS, the causes of motion -- or, more
accurately, the causes of changes in motion. We have learned to look at
dynamics from three perspectives, the FORCE perspective, the WORK AND ENERGY
perspective, and the MOMENTUM perspective; we can either say, "A net force
causes an acceleration", or that '"net work causes a change in kinetic energy",
or that "an impulse causes a change in momentum". Now we will apply the
things we have learned thus far to a problem which is very important for any
technological society, ROTATION OF RIGID BODIES, including ROLLING WITHOUT

SLIPPING.

A RIGID BODY is just a system of particles that are rigidly connected
to one another. We can imagine a set of point masses connected by massless
rigid sticks, but more often we just want to think of any solid object; the
particles are the atoms that make up that solid object —- these atoms cannot
change places, so they are "rigidly connected". We will begin our study by
considering a rigid body that is constrained to rotate about a fixed axis. The
axis can either pass through the body at some point, or it can even be outside
the rigid body, but in this case it would have to be connected to the rigid body
by "massless" rods -- like the spokes that connect the axle of a bicycle wheel

to the hoop and tire (where almost all the mass lies).

We start at the beginning, i.e. with the kinematics of the rotation of such
an object. What are the variables that we will use to describe the rotation
of such an object, or the motion of any particle within the rotating object?
Since each particle in the object will be going in a circle around the fixed
axis, it should come as no surprise that we will use the variables of circular
motion. Consider the crazily-shaped rotating object that I have drawn below.

It is rotating about a fixed axis L to the page and passing through point O, so
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Therigid object is rotated by an
angle AB. Both wedges thus have
angle AB. The wedge for point 2

has alonger arclength than the
wedge for point 1 because point 2
isat alarger distance from the axis O.

Every particle is going in a circle about point O. Every particle is possibly
at a different radius, so we will use r; for the radius of particle 7. We will
use Af for the angular displacement of any particle; IN THIS CASE WE DON’T NEED
AN ¢ SUBSCRIPT BECAUSE THE ANGULAR DISPLACEMENT OF EVERY PARTICLE MUST BE THE
SAME -- our object is a rigid body. As opposed to our work in Chapter 5, now we
want Af to be a 1D vector; traditionally CCW is positive and CW is negative.
The units of Af are still radians. And we will use s; for the arclength turned
through by particle ¢. Since by the DEF of Af, s; = r;Af (see required reading
5 if you have any uncertainty), s; is now also a 1D vector, with the same sign
convention as for Af.

We will finish our introduction to the variables of rotational kinematics
with formal definitions. The definitions are very similar to our definitions

for "translational" kinematics.

DEF The AVERAGE ANGULAR VELOCITY (w) of any point in a rigid rotating object

which turns through angular displacement Af in time At is
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w units are rad/s

w is a 1D vector with the same sign convention as for Af.

DEF The INSTANTANEOUS ANGULAR VELOCITY is the angular velocity at some instant

in time.



DEF The AVERAGE ANGULAR ACCLERATION () of any point in a rigid rotating

object which undergoes a change in angular velocity Aw in time At is
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units are rad/s

& is a 1D vector with the same sign convention as for Af.

DEF The INSTANTANEOUS ANGULAR ACCELERATION is the angular acceleration at some

instant in time.

Once again, we will primarily restrict our study to cases in which the
acceleration is constant. For those cases, it should be no surprise that we
get the same five equations that we used in cases of constant "translational"
acceleration. Here are those five equations for rotation (compare with Egs.

(1)-(5) in required reading 3 with Az — Af, v > w, and a — @) :

DEF of average velocity W= a0 = by = s (1)
At~ ty—1;

DEF of (average) acceleration a= Aw =YY (2)
At At

simple fact for constant a w= % (3)

1
derived equation Af = w; At + ia(At)2 (4)
derived equation wlzf —w? = 2aA0 (5)

Egs. (4) and (5) will appear on your equation sheet. We use these
equations so frequently in 111 that students often have trouble remembering
that they are only valid when the acceleration (in this case the angular

acceleration o) is constant.



Now we have to remember that our rotating object is a system of particles,
with particle ¢ going around in a circle of radius r;. So each particle is in
circular motion, but unless w is constant (o = 0) it is NOT UCM. Instead,
the particles may be speeding up or slowing down as they go around in their
circles. We can get the equations for the motions of the particles from the
DEF of Af, namely Af = s;/r;. In required reading 5, we have already used
this DEF to get the speed of the particle in circular motion, v = rw. Since w
is now a 1D vector, we now write this equation as v;; = r;w, where v;; stands
for the tangential velocity of particle ¢, and has the same sign convention
as for Af (i.e. r;w still gives us the speed of particle ¢, but now there is
also a sign indicating whether the particle is going around CCW or CW). The
radial velocity of each particle is of course zero. The radial acceleration
of each particle is still given by a,; = —(v7;/r;); just keep in mind that this
value can now change with time (it is often useful to substitute Vt,i = 7w into
this expression, yielding a,; = —(w?r;)) . The tangential acceleration of
the particle is zero only if w is constant; if w is not constant, we get the

average tangential acceleration a;; from the following short derivation:

__ Avy Awry) Aw
At = = =T

’ At At

A version of this equation will appear on your equation sheet; because we
usually deal with constant acceleration, the average bars are often omitted.
(I hope that you have noticed that any particle’s tangential quantity is
gotten by multiplying the corresponding angular quantity by the radius

at which the particle is located, i.e. s; = A0, vy; = rw, and ay; = r;00.)
Remember that to get the total acceleration of particle : from the radial and

tangential components of its acceleration, you must use your knowledge of

vectors from Chapter 1, i.e. a; = (/a?, + a2, etc.
? ?
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A1l of the above relationships are for a RIGID BODY rotating about a FIXED
AXIS. In lecture, we will extend some of these ideas to the problem of ROLLING
WITHOUT SLIPPING, in which the axis of rotation is translating at the same time
that the object is rotating. To check your grasp of the concepts involved in
ROTATIONAL KINEMATICS, I suggest that you try Self-Assessment Test (SAT) 8.1.
Before starting on the HW for lecture 13, I suggest you also try SAT 8.2.

We begin the study of ROTATIONAL DYNAMICS in the same way that we
began translational dynamics -- we ask the question, "What is the cause of

acceleration?" (angular acceleration in this case). The answer is TORQUE.

DEF The TORQUE (7) about axis O due to force F acting at a distance r from O is

7 = (Fy)r units are N-m

where F; is the tangential component of F. 7 is thus a 1D vector with CCW

usually taken as positive.

The symbol "7" is the Greek letter "tau". While the units of torque, N-m, have
the same dimensions as the units of energy, J, it is traditional to reserve
the J unit for energy only. This duplication of units arises (as you will see
in lecture 15) because radians is a dimensionless unit. Sometimes multiple
subscripts are used for torque, i.e. Tor would mean the torque about axis O
due to force F, and sometimes only the axis subscript is used; our choice may
depend on the particular problem we are doing.

In lecture 13, I will do a DEMO which will hopefully convince you that this
is the right DEF for the cause of angular acceleration, and we will do some
examples to help you understand the DEF. As was the case for the DEF of work,
we will find that the DEF of torque can be written in three equivalent ways. I

will give you these three ways in lecture.



