
In this exercise, we will use Excel (or something similar) to compute the motion of a

mass (treated as a particle) moving in one dimension and subject to a net force which

is NOT constant. If we are able to compute the net force (either based on the elapsed

time, or else on the particle’s position), then the 2nd Law will provide the acceleration.

If we choose an appropriately small ∆t (during which the net force is almost constant),

we can calculate the change in velocity and position for that tiny ∆t. We then update

the net force, and calculate the change in velocity and position for the next ∆t. In the

limit that ∆t → 0, this method must give us the correct motion of our particle.

As a first example, assume that the net force on the mass is always directed towards

the origin, with a magnitude proportional to distance from the origin, i.e. ΣFx = −Kx,

where K is a proportionality constant in units of N/m. For any time t, the 2nd Law

then gives ax(t) = −(K/m)x(t). We will begin with the mass at rest and located

somewhere away from the origin, and then compute and graph the subsequent motion.

1. Open a blank spreadsheet. The parameters for our calculation will be ∆t, K, and

m; enter these parameter names in cells H1-3 respectively (i.e. enter deltaT= in cell

H1, etc). In cells I1-3, enter our selected values for these parameters. Begin with

∆t = 0.1 s, K = 4 N/m, and m = 1.0 kg (enter only the numbers, not the units).

You will have the freedom to change these parameters in the completed spreadsheet.

2. Make the column for time. Enter the label t in cell A1. In cell A2, enter a zero

(our initial value of time). In cell A3, enter a formula which will be applied to

all subsequent times, namely that the next time value is equal to the previous

time value plus ∆t; so enter =A2+$I$1 as the formula for cell A3 (the dollar signs

indicate that the cell I1 is the fixed location of the value of ∆t), then click in cell A3

and drag the dot at the lower right-hand corner of the cell down to cell A100.

3. Now make the columns for x, vx, and ax. Enter the appropriate labels in cells B1,

C1, and D1, respectively, then enter the initial conditions in the second row cells

for x and vx, namely that at time zero the mass is at location x = 1 m with zero x

velocity. For ax, use a formula, namely = −(K/m)x (in the formula bar for cell D2,

enter = (−1) ∗ ($I$2/$I$3)∗B2, and then apply to cells D2-D100).

4. We next need formulas for x and vx for each subsequent time. For infinitesimal

∆t’s, the correct formula for x would be x(t + ∆t) = x(t) + vx(t) ∗ ∆t. For

larger values of ∆t (such as 0.1 s), our calculation is improved by using an estimate

of the average velocity during the time interval t to t + ∆t, namely vx,avg =

vx(t)+ ax(t) ∗ 0.5 ∗∆t; enter this formula in cell C3 (i.e. =C2+D2*0.5*$I$1). In cell

C3, we now have an estimated average velocity for the interval from t=0 to t=0.1 s

instead of the computed x-velocity at time t=0.1 s. Alternatively, we can think of



this entry as the estimated x-velocity at time t=0.05 s. Therefore, for the remainder

of our velocity column, we will use vx(t + 0.5∆t) = vx(t − 0.5∆t) + ax(t) ∗ ∆t

(notice that, in this formula, we are using ax(t) as an estimate of the average value

of ax in the interval from t− 0.5∆t to t+ 0.5∆t). Enter this formula in cell C4 (i.e.

=C3+D3*$I$1) and apply it to cells C4-C100. Finally, we can enter a formula for

x(t); in cell B3, enter =B2+C3*$I$1, and apply to cells B3-B100.

5. Check your work. If everything is correct, you should have the following results in

row 100: t=9.8 s, x=0.708618 m, vx=−1.26239 m/s, and ax=−2.83447 m/s2.

6. Graph your results. Choose INSERT Chart > Scatter with Smooth Lines

and Markers, then right click on the chart and Select Data. Remove any data

automatically placed on the chart by Excel, then Add data. Click on cell B1 for

the Series name, then select cells A2-A100 (time) for Series X values, and cells B2-

B100 (position) for Series Y values (for the Y values, you must first delete anything

automatically placed there by Excel). Now add a second curve to your graph. Right

click to Select Data > Add data then click on cell D1 for the Series name, once

again select cells A2-A100 for Series X values, and this time select cells D2-D100

(ax) for Series Y values. Enable Legend under Chart Elements to label the curves.

7. Your graph should show a simple oscillatory motion for the mass, with slightly more

than three cycles in the 9.8-s duration of our calculation. You should observe that

ax is always in the opposite direction of x, as is required by ax = −(K/m)x.

Congratulations. You now have a spreadsheet that can be used to determine the

motion of particles moving in 1D and subject to varying forces (as, for example, in the

HW2 problem entitled “1D Motion with Variable Acceleration”). You can add extra

parameters if needed; for example, you could add a parameter for a non-zero initial x-

velocity. At our next recitation, we will expand the spreadsheet to handle 2D motions.

8. Try out other possible values for the parameters. For example, it is easy to verify

that the amplitude of the acceleration depends linearly on the value of K. What

about frequency? Determine the frequency of the oscillations for K values of 1.0,

4.0, and 16.0 N/m. How does the frequency depend on the value of K? Be specific.

9. In Column F, add a cosine function of time, with
√

K/m as the conversion factor

between time in seconds and angle in radians. Put a label in cell F1, and put

an appropriate formula in cell F2; apply that formula to cells F2-F100. Add this

cosine function to the graph; for several cycles of the motion, you should find little

difference between your graph of x(t) and the graph of the cosine function.



10. Follow the steps below to verify that the function x(t) = Acos(ωt + φ) is, in fact, a

solution of the differential equation −Cx(t) = ax(t), provided that ω =
√
C.

a. Write the first time derivative of x(t) (i.e. the x-velocity equation).

b. Write the second time derivative of x(t) (i.e. the x-acceleration equation).

c. Plug the position and acceleration equations into the differential equation, and

simplify as much as possible. Is the claim correct?
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11. The position-versus-time graph shown is for a particle in simple harmonic motion.

Assume x(t) is written in terms of a cosine function with a phase constant. Each

tick on the time axis is one-half a period.

a. What is the phase constant φ? Choose a

number with the smallest possible absolute value.

Explain how you determined it.

b. Draw the corresponding velocity and

acceleration graphs.

c. When x is less than zero, is ax ever less

than zero? If so, at which points in the cycle?

d. Can you make a general conclusion about the

relationship between the signs of x and of ax?

e. When x is greater than zero, is vx ever greater

than zero? Describe the motion of the oscillator

while x is greater than zero.


