- 1. Some object is found to have constant acceleration. Choose the x direction as being the direction of that constant acceleration, and write the constant acceleration as a_{x0} .
- a. Since by definition $a_x(t) \equiv dv_x(t)/dt$, therefore $v_x(t) = \int a_x(t)dt + C$. Do the necessary integration to produce the x-velocity equation; let the x-velocity at time zero be v_{x0} .
- b. Since by definition $v_x(t) \equiv dx(t)/dt$, therefore $x(t) = \int v_x(t)dt + C$. Do the necessary integration to produce the x-position equation; let the x-position at time zero be x_0 .
- c. Solve for time in equation (a); use that to eliminate time from (b), and solve for displacement $\Delta x \equiv x_f x_i = x(t) x_0$. Simplify as much as possible.

d. Average x-velocity is defined by $\bar{v}_x \equiv \Delta x / \Delta t$. If we choose $t_i = 0$, then $\Delta t = t$. Use (b) to solve for \bar{v}_x and use (a) to eliminate $a_{x0}t$ from the resulting expression. Interpret your result.

- 2. A Civil War cannon is located on a low plain; there is a high cliff at the edge of the plain (the distance from cannon to cliff is larger than the cliff height). A cannonball is fired so that it is coming down when it lands somewhere atop the cliff.
- a. Show the cannonball's motion from the instant it leaves the cannon until the instant before it hits the ground. Draw a complete motion diagram with labeled velocity and acceleration vectors. Show the horizontal and vertical components of velocity. Try to have at least 7 dots, with one of the dots located at the high point of the trajectory.

launch

b. In your motion diagram, suppose the launch speed v_0 , the cliff height h, and the time of flight Δt are known. All other parameters of the flight, such as the launch angle θ , are unknown. Write the velocity $(v_y(t))$ and position (y(t)) equations for the vertical motion and the position equation (x(t)) for the horizontal motion. Then write a strategy for finding launch angle, maximum altitude, and range of flight (horizontal distance from launch to landing).