
Verification of Automotive Control Applications using S-TaLiRo

Georgios E. Fainekos, Sriram Sankaranarayanan, Koichi Ueda and Hakan Yazarel

Abstract— S-TALIRO is a software toolbox that performs
stochastic search for system trajectories that falsify real-
time temporal logic specifications. S-TALIRO is founded on
the notion of robustness of temporal logic specifications. In
this paper, we present a dynamic programming algorithm
for computing the robustness of temporal logic specifications
with respect to system trajectories. We also demonstrate that
typical automotive functional requirements can be captured and
falsified using temporal logics and S-TALIRO.

I. INTRODUCTION

Models of automotive control systems can be fairly com-

plex. Such models are usually developed in a modeling

environment that supports a block diagram graphical user

interface for modeling the continuous plant and control

components, enhanced with finite state machines. Examples

of commonly used modeling and simulation environments

include Simulink/Stateflow (TM), Scade (TM), LabVIEW

(TM) and Ptolemy [1]. A typical system model may contain

thousands of blocks organized in hierarchical subsystems that

go several levels deep. The complexity is further exacerbated

by discrete switches in the form of switching blocks, lookup

tables, communication of subsystems through shared global

variables and so on. Therefore, capturing such an overall

model in an analytical form amenable to traditional control

theoretic analysis (and possibly design) is not a feasible task.

Testing is a commonly used approach to check that the

model satisfies the correctness properties stated in the re-

quirements. However, the success of testing depends primar-

ily on the ability to write test cases that exhaustively cover all

the possible corner cases under which a property can possibly

fail. For the case of control systems, the space of behaviors

is (uncountably) infinite. As a result, the process of testing

often fails to expose potential failures in the model. This has

lead to work on uniform random testing or “guided” random

testing, where the choice of inputs is stochastic, based on

some guidance criteria [2]–[5].

Yet, the problem of systematically guiding the search for

an input that falsifies a given property has not been well-

understood. At its heart, the problem lies in defining mathe-

matically sound notions of “how far away” a given execution

This work was partially supported by a grant from the NSF Indus-
try/University Cooperative Research Center (I/UCRC) on Embedded Sys-
tems at Arizona State University and NSF awards CNS-1017074, CNS-
1116136 and CNS-1016994.

G. Fainekos is with the School of Computing, Informatics and
Decision Systems Engineering at Arizona State University. E-mail:
fainekos@asu.edu.

S. Sankaranarayanan is with the Department of Computer Science,
University of Colorado, Boulder. E-mail: srirams@colorado.edu

K. Ueda and H. Yazarel are with the Toyota Technical Center. E-mail:
{koichi.ueda,hakan.yazarel}@tema.toyota.com

of the system is from violating a property. If such a notion of

distance were available – and at the same time easy to com-

pute – it could be used as an objective function in a global

optimization setting. The goal would be to choose inputs that

minimize the distance between the resulting execution trace

and a violation of the property of interest. Recently, we have

made progress towards obtaining mathematical notions of

robustness metrics [6]–[8] that quantify the distance between

the execution trace of a given hybrid system combining

continuous evolution of state variables with discrete mode

switches and a property stated in a commonly used logic

for real-time trace properties called Metric Temporal Logic

(MTL) [9]. The overall framework has been implemented

in a Matlab toolbox called S-TALIRO [10]. This frame-

work allows us to use robustness computations over traces

guided by a large class of global optimization techniques

including genetic algorithms, ant-colony optimization [11]

and stochastic optimization techniques using Monte-Carlo

simulations [6], [7] and the Cross-Entropy Method [12].

Frameworks such as S-TALIRO can be used to system-

atically test a given model by searching for an input that

falsifies the given property of interest. Even if a falsifica-

tion cannot be found by this process, the traces with least

robustness discovered by the search are often useful to the

developers in showing examples where the simulation comes

“closest” to violating the property.

The goal of this paper is to demonstrate how S-TALIRO

can be applied to problems in the automotive domain. To this

end, we identified as one of the major challenges to applying

S-TALIRO to industrial applications the computation time of

the robustness metric.

Contributions: We present an improved algorithm for the

computation of the robustness value based on the dynamic

programming principle [13]. The new algorithm has linear

worst case execution time with respect to the size of the

formula, the number of samples of the system trajectory and

the bounds of the temporal operators. We compare the new

algorithm with the algorithm of our earlier work [8]. Finally,

we present two case studies on automotive applications.

Related Research: The applicability of metaheuristics for

test generation on industrial size problems has been es-

tablished by Zhao et al. [14]. The authors utilize genetic

algorithms to generate tests for Simulink/Stateflow models.

The cost function is the number of regions and states

that have been covered. The work in [15] utilizes rapidly

exploring random trees guided by automata that recognize all

the prefixes that violate a syntactically safe Linear Temporal

Logic (LTL) formula. A different algorithm for computing

the robustness of MTL formulas as defined in [8] is presented

in [16]. In [17], a different notion of robustness for temporal

logic specifications is developed, which is also used as a

fitness function for optimization problems.

II. THE MTL FALSIFICATION PROBLEM

In this work, we target directly executable models of auto-

motive control applications. As such, we will assume that the

system will be tested for a range of initial conditions, system

parameters and input signals. In particular, we will assume

that the system under study is modeled in Simulink/Stateflow.

However, what we propose here can be readily applied to any

other model based design environment such as Ptolemy [1]

or LabVIEW.

Formally, we view a system Σ as a mapping from initial

conditions X0, system parameters P and input signals UR

to output signals YR. Here, R is an abstract time domain,

U is the set of input values (input space) and Y is the set of

output values (output space). Thus, a system Σ is a function

∆Σ : X0 × P × U
R → YR which takes as input an initial

condition χ0 ∈ X0, a parameter vector p ∈ P and a signal

u : R→ U and produces as output a signal η : R→ Y .

Since our analysis is based on performing system simula-

tions, we will assume the existence of a sampling function

τ : N → R that returns for each sample i its time stamp

τ(i). In practice, τ is a partial function τ : N → R with

N ⊂ N and |N | < ∞. We will abuse notation and denote

by |τ | the cardinality of the domain of τ , i.e., |τ | = |N |. A

timed state sequence or trace is the pair µ = (η ◦ τ, τ). We

will also denote η ◦ τ by σ.

Our goal – in the line of work that we initiated in [7]

– is to infer the correctness of the system Σ by observing

its response (output signals) to particular input signals,

initial conditions and parameter values. In particular, we are

interested in finding witnesses, i.e., output signals, which

prove that a requirement or specification is not satisfied by

the system. The process of discovering such witnesses is

usually referred to as falsification.

The next question that needs to be answered is how do

we formally capture informal specifications regarding the

correct or expected behavior of the system. We observe

that Metric Temporal Logic (MTL) [9] is an appropriate

mathematical formalism that can capture such requirements

for automotive control systems. MTL formulas are built over

a set of propositions using combinations of the traditional and

temporal operators. In our case, the set of atomic propositions

AP label subsets of the output space Y . In other words,

we define an observation map O : AP → P(Y) such that

for each π ∈ AP the corresponding set is O(π) ⊆ Y .

Here, P(S) denotes the powerset of a set S. Traditional

logic operators are the conjunction (∧), disjunction (∨),

negation (¬), implication (→) and equivalence (↔). Some

of the temporal operators, which we will be using here, are

eventually (✸I), always (✷I) and until (UI). The subscript

I imposes timing constraints on the temporal operators.

The interval I can be open, half-open or closed, bounded

or unbounded, but it must be non-empty (I 6= ∅). For

example, MTL can capture the requirement that “all the

System �
Temporal Logic

Robustness

Optimization

Algorithm

Minimum

Robustness

Falsifying

Trajectory

output signal �

robustness 0

initial

conditions $
0

&

input signal u

Fig. 1. Overview of the solution to the MTL falsification problem posed
as an optimization problem.

observable trajectories y(t) ∈ R attain a value in the set

[10,+∞)” (✸p1 with O(p1) = [10,+∞)) or that “whenever

the value of y drops below 10, then it should go above

10 within 5 sec and remain above 10 for at least 10 sec”

(✷(¬p1 → ✸[0,5]✷[0,10]p1)).
The MTL falsification problem can be stated as follows.

Problem 2.1 (MTL Falsification): For an MTL specifica-

tion ϕ, the MTL falsification problem consists of finding

an output signal η of the system Σ starting from some valid

initial state χ0 under a parameter vector p and an input signal

u such that η does not satisfy specification ϕ.

The challenges in solving the MTL falsification problem

are multiple. The main problem is essentially how to guide

the search for such a falsifying trajectory. We remark that

the system dynamics of Σ are not known to us in some

analytical form because most of industrial size models will

contain look-up tables and black-box blocks (object code)

from various suppliers.

In our previous work, we utilized the notion of robustness

of temporal logic formulas [8] in order to convert the

falsification problem into an optimization problem [6], [7],

[10]–[12]. Briefly, temporal logic robustness provides a mea-

sure of how robustly a trajectory satisfies a temporal logic

specification. Positive robustness implies that the trajectory

satisfies the specification and, moreover, that there exists a

neighborhood of trajectories (or signals) that also satisfy the

specification. Negative robustness implies that the trajectory

does not satisfy the specification. Thus, in order to falsify

the specification, we can use the temporal logic robustness

as a cost function which we attempt to minimize.

The general overview of the solution of the MTL fal-

sification problem as an optimization problem appears in

Fig. 1. Based on that principle, we have developed the

Matlab toolbox S-TALIRO [10]. Given a system and its

specification, S-TALIRO searches for a system trajectory that

minimizes the robustness value of the specification.

III. MTL ROBUSTNESS

In this section, we review the robust semantics of MTL

formulas. Details are available in our previous work [6], [8].

Definition 3.1 (MTL Syntax): Let AP be the set of atomic

propositions and I be any non-empty interval of R+. The

set MTL of all well-formed MTL formulas is inductively

defined as ϕ ::= T | p | ¬ϕ | ϕ ∨ ϕ | ϕUIϕ, where

p ∈ AP and T is true. If there are no timing constraints on

the operators, then the formula is in LTL.

We provide semantics that maps an MTL formula ϕ and

a trace µ to a value drawn from a partially ordered set V .

The semantics for the atomic propositions evaluated for µ(i)
consists of the distance between σ(i) and the set O(p) label-

ing atomic proposition p. Intuitively, this distance represents

how robustly the point σ(i) lies within (or is outside) the set

O(p). If this distance is zero, then the smallest perturbation

of the point σ(i) can affect the outcome of σ(i) ∈ O(p).
We denote the robust valuation of the formula ϕ over the

trace µ at sampling instance i by [[ϕ,O]]d(µ, i). Formally,

[[·, ·]]d : (MTL × P(Y)AP) → (L(H) × N → V), where

N = τ−1(R) = {i ∈ N | τ(i) ∈ R}.
Definition 3.2 (Discrete-Time Robust Semantics):

Consider an extended generalized quasi metric space (Y,d)
(see [6] for a definition). Let µ be a trace of Σ, v ∈ V and

O ∈ P(Y)AP , then the robust semantics of any formula

ϕ ∈MTL with respect to µ is recursively defined as:

[[T,O]]d(µ, i) :=
⊔
V := ⊤

[[p,O]]d(µ, i) :=Distd(σ(i),O(p))

[[¬ϕ1,O]]d(µ, i) :=− [[ϕ1,O]]d(µ, i)

[[ϕ1 ∨ ϕ2,O]]d(µ, i) :=[[ϕ1,O]]d(µ, i) ⊔ [[ϕ2,O]]d(µ, i)

[[ϕ1 UIϕ2,O]]d(µ, i) :=
⊔

i′∈τ−1(τ(i)+RI)

([[ϕ2,O]]d(µ, i
′)⊓

⊓i≤i′′<i′ [[ϕ1,O]]d(µ, i
′′)

where Distd(σ(i),O(p)) is the signed distance of σ(i)
from O(p) under the metric d (see [8] for a definition),

− is an unary operator for complement over V , t +R I =
{t′′ ∈ R | ∃t′ ∈ I . t′′ = t + t′} and ⊔ and ⊓ stand for

the supremum and infimum, respectively. The semantics of

the other operators can be defined using the above basic

operators. E.g., ✸Iφ ≡ TUIφ and ✷Iφ ≡ ¬✸I¬φ.

For the purposes of the following discussion, let

(µ, i,O) |= ϕ denote the standard Boolean MTL satisfiabil-

ity. For clarity in the presentation, we define the satisfiability

relation for the base case, i.e., for atomic propositions:

p ∈ AP , (µ, i,O) |= ϕ if σ(i) ∈ O(p). It is easy to show

that if the signal satisfies the property, then its robustness is

non-negative and, similarly, if the signal does not satisfy the

property, then its robustness is non-positive.

In our previous work [8], we had implemented the MTL

robustness computation algorithm using a forward progres-

sion algorithm. The precise complexity of the computation of

MTL robustness using formula rewriting procedures is still

an open problem [8]. However, the time complexity is at least

as hard the time complexity of the Boolean version of the

same algorithm [18], which is in the worst case exponential

in the size of the formula.

IV. DYNAMIC PROGRAMMING ALGORITHM FOR

TEMPORAL LOGIC ROBUSTNESS

In this section, we present a dynamic programming al-

gorithm for computing the robustness of temporal logic

formulas with respect to a timed state sequence.

The basic principle of the dynamic programming algo-

rithm is that it can reuse previously computed results [13].

Here, the results which are going to be reused are the

Algorithm 1 Temporal Logic Robustness Computation

Input: The MTL formula φ, the trace µ = (σ, τ), the metric

d and the observation map O
Output: Return the value stored in r[1, 1]

1: procedure DP-TALIRO(φ,O, µ,d)

2: for j ← |τ | to 1; for i← |φ| to 1 do

3: if ψi = T then r[i, j] = ⊤ ⊲ ⊤ := ⊔V
4: else if ψi = p then r[i, j]← Distd(σ(j),O(p))
5: else if ψi = ¬ψk then r[i, j]← −r[k, j]
6: else if ψi = ψk1

∨ ψk2
then

7: r[i, j]← r[k1, j] ⊔ r[k2, j]
8: else if ψi = ψk1

UIψk2
then

9: if j = |τ | then r[i, j]← K∈(0, I) ⊓ r[k2, j]
10: else if I = [0,+∞) then

11: r[i, j]← r[k2, j] ⊔ (r[k1, j] ⊓ r[i, j + 1])
12: else

13: bl ← min J(j, I); bu ← max J(j, I);
14: rmin ← ⊓j≤j′<blr[k1, j

′];
15: r[i, j]← ⊥; ⊲ ⊥ := ⊓V
16: for j′ ← bl to bu do

17: r[i, j]← r[i, j] ⊔ (r[k2, j
′] ⊓ rmin);

18: rmin ← rmin ⊓ r[k1, j
′];

19: end for

20: if sup I = +∞ then

21: r[i, j]← r[i, j]⊔(r[k1, j]⊓r[i, j+1])
22: end if

23: end if

24: end if

25: end for

26: end procedure

where k, k1, k2 > i; K∈(a,A) = ⊤ if a ∈ A and ⊥
otherwise; and J(j, I) = τ−1((τ(j)+RI)∩(τ(j+1)+RI))
if sup I = +∞ and J(j, I) = τ−1(τ(j) +R I) otherwise.

temporal logic robustness of the subformulas of a formula

φ at the current and future points in time. In brief, the

algorithm starts by constructing the parse tree of the temporal

logic formula φ. Each subformula ψi of φ is uniquely

identified starting from the leafs and represents a row i in

the dynamic programming table. The columns j of the table

represent the different timing instants of the trace. Then, the

algorithm starts by filling the values of each φi at the last

signal sampled and, then, proceeds backwards until the initial

sampling time is reached. The pseudocode for the dynamic

programming algorithm appears in Algorithm 1.

Theorem 4.1: Given an MTL formula φ, a trace µ =
(σ, τ), a metric d and an observation map O, then

[[φ,O]]d(µ, 0) = DP-TALIRO(φ,O, µ,d)

Moreover, Algorithm 1 has worst case running time

O(|φ||τ |c), where c = max0≤j≤|τ |,I∈T (φ) |[j,max J(j, I)]|
and T (φ) contains all the timing constraints I of the temporal

operators that appear in φ.

The proof of Theorem 4.1 is based on rewriting the robust-

ness semantics of Def. 3.2. Similar proofs have appeared in

TABLE I

COMPARISON OF DP-TALIRO VS FW-TALIRO ON THE SPECIFICATIONS

OF EXAMPLE 5.2. THE SIMULATION TRAJECTORY HAS 1673 SAMPLES.

Spec. DP-TALIRO (sec) FW-TALIRO (sec)

φe1 0.0183 60 <

φe2 0.0171 1.0984

φe2.1 0.0175 60 <

φe2.2 0.0274 60 <

φe3 0.0127 0.0069

[8]. The running time of the algorithm for an LTL formulae ϕ

is O(|ϕ||τ |), i.e., it is linear in the size of the formula and the

number of samples in the simulation trajectory. This is easy

to verify since all the entries r[i, j] of the table in Algorithm

1 require at most 3 inf or sup operations. On the other hand,

when an MTL formula is considered, then at most c inf
and/or sup operations are required for the until operator. c is

the maximum number of samples that can appear from any

sampling point j up to the maximum sampling point allowed

bu by the timing constraints of the operator. In detail, c is

the sum of ⊓ operations in line 14 of Alg. 1 plus the number

of iterations in the for loop in lines 16-19.

The hidden cost in the above analysis is the running time

of the distance computation function. The computational

complexity of the distance computations depends on the type

of the sets used for modeling the regions of interest in the

state-space. Details for the Euclidean distance metric are

presented in [8].

A. Experimental Comparison of two Robustness Computa-

tion Algorithms

In [8], we presented an algorithm for computing temporal

logic robustness which is based on rewriting techniques.

Even though the exact computational complexity is still an

open problem, it is as hard as the Boolean version of the

algorithm [18], which is at least linear in size of the input

trajectory and exponential in the size of the formula and the

timing constraints on the operators.

We have implemented both algorithms in ANSI C and

both can be executed within the Matlab environment. The

dynamic programming version of the algorithm is referred to

as DP-TALIRO while the rewriting version of the algorithm

is referred to as FW-TALIRO. Both are available at [19].

In order to compare the two algorithms on realistic spec-

ifications and signals, we use the formulas and trajectories

generated for the examples in Section V. The results are

presented in Table IV-A. We observe that the experimental

running time of FW-TALIRO is highly dependent on the

structure of the formula. On the other hand, DP-TALIRO

essentially has constant running time with respect to the

length of the simulation trajectory. Thus, DP-TALIRO is

better suited for our falsification framework.

V. S-TALIRO APPLICATION TO AUTOMOTIVE EXAMPLES

In this section, we present the application of S-TALIRO

to two automotive applications available in the literature.

First, we demonstrate S-TALIRO on the illustrative example

from [14]. We establish that S-TALIRO can capture and

gear_state 1
fourth
entry:
gear = 4;

third
entry:
gear = 3;

second
entry:
gear = 2;

first
entry:
gear = 1;

selection_state
during: CALC_TH ;

2

steady_state

upshiftingdownshifting

UP

1

UP UP

1

DOWN

2

DOWNDOWN

2

[speed > up_th]
1

[speed < down_th]
2

[speed > down_th]

2

after(TWAIT,tick)
[speed <= down_th]
{gear_state.DOWN }

1

after(TWAIT,tick)
[speed >= up_th]
{gear_state.UP }

1

[speed < up_th]

2

Fig. 2. The switching logic for the automatic drivetrain in Example 5.1.

TABLE II

THE STATE MAPPING OF THE COMPOSITION OF THE TWO FSM.

First Second Third Fourth
steady state q1 q2 q3 q4
upshifting q5 q6 q7 q8

downshifting q9 q10 q11 q12

falsify the requirements posed in [14] on the same problem.

Therefore, S-TALIRO can be thought as a generalization

of the approach proposed in [14]. Second, we demonstrate

that S-TALIRO can not only solve the challenge problem

posed in [20], but help the designer easily explore other

properties of the system. All the case studies presented here

are included with the S-TALIRO distribution [19].

Example 5.1: The illustrative example that is presented in

[14] is the Automatic Transmission model provided by Math-

works as a Simulink demo (http://www.mathworks.

com/products/simulink/demos.html). This is a

model of an automatic transmission controller. According

to the report generated by sldiagnostics (a Matlab

function), the model contains 69 blocks out of which there

are 2 integrators (i.e., 2 continuous state variables: wheel

speed and engine speed (RPM)), 3 look-up tables, 3 look-up

2D tables and a Stateflow chart. The Stateflow chart (see Fig.

2) contains two concurrently executing Finite State Machines

(FSM) with 4 and 3 states, respectively, and non-constant

switching guard conditions. Even though this is a small size

model, it already exhibits all the complexities that prevent

formal modeling and analysis.

For comparing our results with [14], we made the same

modifications to the model in terms of inputs-outputs. That

is, the only input to the system is the throttle schedule, while

the break schedule is set simply to 0 for the duration of

30 sec. Also, we modified the model to output the state of

the synchronous composition of the two FSM (see Table 5.1).

The method proposed in [14] generates tests such that

certain regions of the hybrid state space of the system are

visited (coverage requirement). In particular, the requirement

is to generate tests such that: (i) the vehicle speed v exceeds

120km/h, (ii) the engine speed ω exceeds 4500RPM, and,

(iii) all states are reached in the switching logic. Assuming

that the state vector is [v ω]T and that the states in the

FSM are Q = {q1, . . . , q12} (see Table 5.1), then the

coverage requirement above can be captured by the LTL

formula φe0 = ¬(∧9i=1pi), where each atomic proposition

pi is mapped to: O(p1) = Q × [120,+∞) × R, O(p2) =
Q×R× [4500,+∞), and p3 to p9 are mapped to a column

or a row in Table 5.1, e.g., O(p3) = {q1, q5, q9}×R
2. Note

that we add the negation in φe0 because we are trying to

falsify the requirement.

The outcome of the S-TALIRO appears in Fig. 3. The

Simulink model was simulated 41 times for this particular

test. As evident from the figure, the vehicle indeed reaches

the specified thresholds. Running the Simulink toolbox for

Model Coverage of Stateflow charts, we can also verify that

all the states were indeed visited. △
Example 5.2: The second example concerns a more com-

plex model of a powertrain system [20]. The system is mod-

eled in Checkmate [21]. It has 6 continuous state variables

and 2 Stateflow charts with 4 and 6 states, respectively. The

Stateflow chart for the shift scheduler appears in Fig. 4.

The system dynamics and switching conditions are linear.

However, some switching conditions depend on the initial

conditions of the system. The latter makes the application

of standard hybrid system verification tools not a straight-

forward task.

The system is operating under constant road grade and

throttle position, which are the initial parameters for the

system. The challenge problem posed in [20] is to find values

for the initial parameters such that starting from 0 speed, the

gear transitions from second to first to second.

The LTL specification that captures the requirement for

switching between gears is: φe1 = ¬✸(g2 ∧ ✸(g1 ∧ ✸g2))
where g1 and g2 are the atomic propositions indicating that

the system operates in first and second gears, respectively.

That is, O(g1) = {1}×R
6 and O(g2) = {3}×R

6. Note that

in this example, the atomic propositions do not constrain the

continuous state space. However, the information regarding

the switching conditions that enable a transition is utilized

in the hybrid distance metric for the robustness computation

of the specification (see [6]). Again, we are looking for

a trajectory that satisfies ¬φe1. Since S-TALIRO performs

falsification, the user must provide φe1.

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

5000
RPM

0 5 10 15 20 25 30
0

100

200
Speed

Fig. 3. The falsifying inputs/outputs of Example 5.1.

first_gear
entry: schedule =1;
STaliro_StateVar = 1;

transition12_shifting
entry : schedule = 2;
STaliro_StateVar = 2;

transition21_shifting
entry:schedule = 4;
STaliro_StateVar = 4;

second_gear
entry: schedule =3;
STaliro_StateVar = 3;

to_first

1

shift_speed12

shift_speed21

2

shift_speed12

2

to_second

1

shift_speed21

Fig. 4. The shift scheduler of Example 5.2.

Applying S-TALIRO to the above problem returns several

different initial parameters that generate trajectories that

falsify φ. Figure 5 displays the shifting schedule for initial

conditions throttle ≈ 18.8 and road grade ≈ 0.0663. Thus,

it is possible indeed to have a non-required change of gears.

However, note that specification φe does not pose any

restrictions between the timing of events. A more useful

property is that the gear change from second to first to

second should not happen within 2.5 sec, for example. The

requirement φe2.1 = ¬✸(g2 ∧✸(g1 ∧✸[0,2.5]g2)) would not

work because we have to measure time since the first time

that event g1 happened. The subformula ✸(g1∧✸[0,2.5]g2) is

allowed to measure time from the last time that g1 occurred.

If we attempt to use the specification φe2.2 = ✷(g1 →
✸[2.5,+∞)g2), then φe2.2 would also not work since there

exist initial parameters that will force the vehicle to go

downhill and, thus, never switch to gear 2. That is, the

falsification is achieved simply because we do not switch

to gear 2. This implies that in terms of falsification we must

also require the system to switch to gear 2, i.e., φe2.2 =
✷(¬g2∨✷(g1 → ✸[2.5,+∞)g2). But, again the property may

be falsified simply because the duration of the simulation

time is short enough that g2 does not occur for a second

time. This requirement might also fail simply because the

last occurrence of g1 happens too close to the end of the

simulation that even though g2 occurs for the second time

the operator ✸[2.5,+∞) trivially evaluates to F because the

timing bounds are outside the time domain of the simulation.

If we were to restate the requirement that we are trying to

impose on the system, then we would specify that “whenever

the system enters state first gear, then it should not enter

0 10 20 30 40 50 60
1

2

3

4

Fig. 5. The shift schedule falsifying requirement φe1 in Example 5.2.

0 10 20 30 40 50 60
1

2

3

4

Fig. 6. The shift schedule that falsifies requirement φe2 of Example 5.2.

0 10 20 30 40 50 60
0

1000

2000

3000
Torque

0 10 20 30 40 50 60
1

2

3

4
Shift Schedule

Fig. 7. The torque signal that falsifies requirement φe3 of Example 5.2.

the state second gear within 2.5 sec”. This requirement is

formally captured by: φe2 = ✷((¬g1∧Xg1)→ ✷[0,2.5]¬g2).
Figure 6 presents a shift schedule that falsifies formula φe2.

For this specification, the initial conditions were throttle

≈ 93.9 and road grade ≈ 0.2453 and S-TALIRO used

742 simulations. We remark that on an Intel Core Duo at

3.33GHz with 4.00 GB RAM and Windows Vista 64-bit each

execution of the model takes about 3 sec and each robustness

computation about 0.02 sec.

Another property of interest for powertrain systems is

to verify that the jitter is within acceptable limits. This

specification can be captured by requiring that whenever

the system is in transition from gear 2 to gear 1, then the

derivative of the torque is within certain bounds, or formally,

φe3 = ✷(g21 → b) where O(g21) = {4} × R
7 and O(b) =

{x ∈ R
7 | x7 ≤ 450}. In this case, the approximation of

the derivative is outputted from the Simulink model and it

is appended to the output signals. A falsifying trajectory

that corresponds to initial parameters 91.86 and 0.2478 is

presented in Fig. 7 and it was derived after 245 tests. △

VI. CONCLUSIONS

In this paper, we presented how S-TALIRO [10] – a

tool for the falsification of temporal logic properties of

hybrid systems – can be utilized for the verification of au-

tomotive applications. S-TALIRO can be used for analyzing

Simulink/Stateflow models and it is publicly available [19].

We also demonstrated how improvements in the techniques

used to compute robustness using dynamic programming

techniques are key towards enhancing the performance of

the falsification technique, as a whole. We believe that

approaches along the lines of S-TALIRO offer a good trade-

off between the exhaustiveness of model-checking and the

scalability of techniques based on simulations.
Acknowledgments: The authors would like to thank

Hengyi Yang for his help with implementing DP-TALIRO.

REFERENCES

[1] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, and
Y. Xiong, “Taming heterogeneity - the ptolemy approach,” Proceed-

ings of the IEEE, vol. 91, no. 1, pp. 127–144, Jan. 2003.
[2] J. Kapinski, B. H. Krogh, O. Maler, and O. Stursberg, “On systematic

simulation of open continuous systems.” in Hybrid Systems: Computa-

tion and Control, ser. LNCS, vol. 2623. Springer, 2003, pp. 283–297.
[3] M. Branicky, M. Curtiss, J. Levine, and S. Morgan, “Sampling-based

planning, control and verification of hybrid systems,” IEE Proc.-

Control Theory Appl., vol. 153, no. 5, pp. 575–590, 2006.
[4] A. Bhatia and E. Frazzoli, “Incremental search methods for reacha-

bility analysis of continuous and hybrid systems,” in Hybrid Systems:

Computation and Control, ser. LNCS, vol. 2993. Springer, 2004, pp.
142–156.

[5] T. Nahhal and T. Dang, “Test coverage for continuous and hybrid
systems,” in CAV, ser. LNCS, vol. 4590. Springer, 2007, pp. 449–
462.

[6] H. Abbas, G. E. Fainekos, S. Sankaranarayanan, F. Ivancic, and
A. Gupta, “Probabilistic temporal logic falsification of cyber-physical
systems,” ACM Transactions on Embedded Computing Systems, vol.
(In Press), 2011.

[7] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic, A. Gupta,
and G. J. Pappas, “Monte-carlo techniques for falsification of temporal
properties of non-linear hybrid systems,” in Proceedings of the 13th

ACM International Conference on Hybrid Systems: Computation and

Control. ACM Press, 2010, pp. 211–220.
[8] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-

ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[9] R. Koymans, “Specifying real-time properties with metric temporal
logic.” Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[10] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankara-
narayanan, “S-taliro: A tool for temporal logic falsification for hybrid
systems,” in Tools and algorithms for the construction and analysis

of systems, ser. LNCS, vol. 6605. Springer, 2011, pp. 254–257.
[11] Y. S. R. Annapureddy and G. E. Fainekos, “Ant colonies for temporal

logic falsification of hybrid systems,” in Proceedings of the 36th

Annual Conference of IEEE Industrial Electronics, 2010, pp. 91–96.
[12] S. Sankaranarayanan and G. Fainekos, “Falsification of temporal

properties of hybrid systems using the cross-entropy method,” in
ACM International Conference on Hybrid Systems: Computation and

Control, 2012.
[13] G. Rosu and K. Havelund, “Synthesizing dynamic programming

algorithms from linear temporal logic formulae,” RIACS, Tech. Rep.,
2001.

[14] Q. Zhao, B. H. Krogh, and P. Hubbard, “Generating test inputs for
embedded control systems,” IEEE Control Systems Magazine, vol.
Aug., pp. 49–57, 2003.

[15] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Falsification of ltl safety
properties in hybrid systems,” in Proc. of the Conf. on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS),
ser. LNCS, vol. 5505. Springer, 2009, pp. 368 – 382.

[16] A. Donze and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in Formal Modelling and Analysis of Timed

Systems, ser. LNCS, vol. 6246. Springer, 2010.
[17] A. Rizk, G. Batt, F. Fages, and S. Soliman, “On a continuous degree

of satisfaction of temporal logic formulae with applications to systems
biology,” in International Conference on Computational Methods in

Systems Biology, ser. LNCS, vol. 5307. Springer, 2008, pp. 251–268.
[18] P. Thati and G. Rosu, “Monitoring algorithms for metric temporal

logic specifications,” in Runtime Verification, ser. ENTCS, vol. 113.
Elsevier, 2005, pp. 145–162.

[19] TaLiRo Tools. [Online]. Available: https://sites.google.com/a/asu.edu/
s-taliro/

[20] A. Chutinan and K. R. Butts, “Dynamic analysis of hybrid system
models for design validation,” Ford Motor Company, Tech. Rep., 2002.

[21] B. I. Silva and B. H. Krogh, “Formal verification of hybrid systems
using CheckMate: a case study,” in Proceedings of the American

Control Conference, vol. 3, Jun. 2000, pp. 1679 – 1683.

