
DisCoF+: Asynchronous DisCoF with Flexible Decoupling for
Cooperative Pathfinding in Distributed Systems

Kangjin Kim, Joe Campbell, William Duong, Yu Zhang and Georgios Fainekos

Abstract— In our prior work, we outlined an approach,
named DisCoF, for cooperative pathfinding in distributed sys-
tems with limited sensing and communication range. Contrast-
ing to prior works on cooperative pathfinding with completeness
guarantees which assume access to global communication and
coordination, DisCoF does not make this assumption. The
implication is that at any given time in DisCoF, the robots
may not all be aware of each other which is often the
case in distributed systems. As a result, DisCoF represents
an inherently online approach since coordination can only
be realized in an opportunistic manner between robots that
are within each other’s sensing and communication range.
However, there are a few assumptions made in DisCoF to
facilitate a formal analysis which must be removed to work
with distributed multi-robot platforms. In this paper, we present
DisCoF+ which extends DisCoF by enabling an asynchronous
solution, as well as providing flexible decoupling between robots
for performance improvement. Furthermore, we evaluate our
implementation of DisCoF+ by implementing our distributed
multi-robot algorithm in the Webots simulator. Finally, we
compare DisCoF+ with DisCoF in terms of plan quality and
planning performance.

I. INTRODUCTION

While cooperative pathfinding in multi-robot systems has
many applications, it is also fundamentally hard to solve
(i.e., PSPACE-hard [6]). The difficulty lies in the poten-
tial coupling between robots: when robots are completely
decoupled (e.g., when robots do not impose constraints
on each other’s plan to the goal), cooperative pathfinding
becomes polynomial-time solvable.1 As a result, most recent
approaches (e.g., [15], [16], [17], [18]) for pathfinding con-
centrate on how to identify the dependencies between robots
in order to couple robots only when necessary.

In these approaches, the solution is constructed for a subset
of the robots which are coupled to each other and which
are decoupled from the remaining robots. The computational
complexity is exponential only in the maximum number of
robots in these subsets. While optimistic decoupling can lose
optimality and even completeness (e.g., [16]), pessimistic
decoupling can only handle situations in which robots are
loosely coupled (e.g., [17]).

Meanwhile, to ensure completeness, these approaches of-
ten assume access to global communication and coordination

This work has been partially supported by NSF award CNS-1116136
and CNS-1446730, the ARO grant W911NF-13-1-0023, the ONR grants
N00014-13-1- 0176, N00014-13-1-0519 and N00014-15-1-2027.

K. Kim, J. Campbell, W. Duong, Y. Zhang and G. Fainekos
are with the School of Computing, Informatics and Decision
Systems Engineering, Arizona State University, Tempe, AZ
85281, USA {Kangjin.Kim, jacampb1, tbduong,
Yu.Zhang.442, fainekos}@asu.edu

1 A single robot pathfinding problem is polynomial-time solvable.

which implies that all robots have access to the current
positions of the other robots, their individual plans and
goals. With this information, any robot can consider all other
robots when creating its own plan. While this assumption
can be made in many common applications of cooperative
pathfinding where planning can be centralized and performed
offline (e.g., cooperative pathfinding in computer games), it
does not hold in distributed systems with limited sensing and
communication range.

In our prior work [23], we introduced a window-based
approach, called DisCoF, for cooperative pathfinding in
distributed systems with limited sensing and communication
range. In DisCoF, the window size corresponds to the sensing
range of the robots. Robots can communicate with each other
either directly if in range or indirectly if out of range. In
the latter case, it is still possible to communicate indirectly
through other robots using a communication relay protocol.
This allows for coordination beyond a single robot’s sensor
range.

To ensure completeness, DisCoF uses a flexible approach
to decoupling robots such that they can transition from
optimistic to pessimistic decoupling when necessary. Robots
are assumed to be fully decoupled initially. During the
online pathfinding process, robots only couple together when
necessary (i.e., when there are predictable conflicts [23]).
Since access to global communication and coordination is
not assumed, the creation of local couplings (i.e., subsets
of robots) may not be sufficient to avoid live-locks. In such
cases, a mechanism (called push and pull) is introduced in
which robots in a local coupling can form a coupling group
[23] in order to coordinate more closely. Robots in a coupling
group move to their goals sequentially in a certain order
while keeping others (i.e., those that have not yet reached
their goals) within communication range. Coupling groups
may increase in size (e.g., when previously undetected robots
come within sensing range of a robot in the coupling group)
and decrease in size (e.g., when robots reach their goals).
This mechanism can potentially lead to a global coupling.

Contributions: In this paper, first, we introduce an asyn-
chronous variant of DisCoF, refereed to as DisCoF+, in
order to remove DisCoF’s assumption that time steps are
synchronized.2 That is, we provide an asynchronous algo-
rithm and its communication strategy. Then, we introduce
a new decoupling strategy in DisCoF+ with the goal of

2 This is achieved in DisCoF for all robots by 1) maintaining a
synchronized clock at the beginning of the task and 2) limiting each robot
to have the same planning and execution time at each step. However, this
is generally too strong an assumption to make in a distributed system.

improving efficiency. In DisCoF, only a directional transition
from optimistic to pessimistic decoupling is allowed. On
the other hand, DisCoF+ allows bi-directional transitions
between optimistic and pessimistic decoupling.

Furthermore, for evaluation, we first demonstrate a sim-
ulation of DisCoF+ in a distributed multirobot environment
modeled in Webots. Then, we compare the performance of
DisCoF and DisCoF+ in terms of computation time and
length of plans on randomly generated environments.

II. RELATED WORK

To address the cooperative pathfinding problem, re-
searchers have used a complilation approach [9], [1], [5],
[22], in which the problem is first transformed into other
related problems, and then the existing solutions or al-
gorithms for these problems can be applied. Abstraction
methods to reduce the search space have also been used
[19], [14]. However, due to the inherent complexity of the
problem, these approaches do not scale. While approaches
that constrain the topologies of the environment [21], [12],
[13] can significantly reduce the complexity, they cannot be
applied to general problem instances.

Given that pathfinding for a single robot is polynomial-
time solvable, the complexity of multi-robot pathfinding is
a result of coupling between robots. Then, researchers have
studied on various ways to decouple robots. For approaches
that perform optimistic decoupling, robots are considered
as coupled only when necessary. One of the representative
approaches is hierarchical cooperative A∗ (HCA∗ [16]) in
which robots plan one at a time while respecting plans that
have already been computed. To limit the influence of the
previous robots on the following robots, a windowed HCA∗

is introduced to restrict this influence based on a pre-specified
window size [16]. Recently, an extension of WHCA∗ (CO-
WHCA∗ [2]) was introduced to further reduce this influence
based on the notion of conflicts. Although many problem
instances can be solved efficiently, optimistic decoupling
leads to loss of optimality and completeness.

One of the earlier approaches that performs decoupling
while maintaining optimality and completeness relies on
pessimistic decoupling [17] and [20]. That work couples
robots when conflicts are detected in the individual robot
plans. As a result, the approach tends to over-couple and,
hence, remains intractable for many problem instances. More
recent approaches relax optimality to achieve better effi-
ciency [10], [4], [18]. However, to maintain completeness,
these approaches assume access to global communication
and coordination and therefore are inapplicable to distributed
systems in which robots have limited sensing and commu-
nication range.

While there are extensible approaches to distributed sys-
tems (e.g., [7]) and approaches that are designed for dis-
tributed systems (e.g., [11], [3]), they do not provide com-
pleteness guarantees. The difficulty lies in planning without
access to global communication and coordination. This is
further discussed in [23].

III. DISCOF
In this section, we provide the problem formulation and

we review DisCoF [23]. Extensions to DisCoF, DisCoF+,
are discussed in Section IV.

A. Problem Formulation
We assume that the workspace is represented by a undi-

rected graph G(V,E). We assume the existence of a set of
robots R with initial positions I ⊆ V and goal positions
G ⊆ V . Any robot can move to any adjacent vertex in
one time step or remain where it is. A plan P is a set of
individual plans of robots, and P[i] denotes the individual
plan for robot i ∈ R. Each individual plan is composed of a
finite sequence of actions. For simplicity, in this paper, each
action is represented by the next vertex to be visited. For
example, Pk[i] (k ≥ 1) denotes the action to be taken at
time step k− 1 (or the vertex to be visited at k) for robot i.
Pk,l[i] (k ≤ l) denotes the subplan that contains the actions
from Pk[i] to Pl[i].

The goal of cooperative pathfinding is to find a plan
P , such that robots start in I and end in G without any
collisions.

A set of locations of robots R at time step k is denoted
by Sk and a location of each robot i ∈ R at time step k is
denoted by Sk[i] for convenience. If robots R execute plan
P from a set of locations S to another set of locations S ′, it
is denoted by S P

; S′. Likewise, if a robot i ∈ R executes
its plan P[i] from a location S[i] to another location S ′[i],
it is denoted by S[i]

P[i]
; S′[i]. In addition, given S P; S′,

we denote S ′ as S(P), and given S[i] P[i]; S′[i], we denote
S ′[i] as S[i](P[i]). Hence, S0 = I, S0

P
; G, G = S0(P),

S0
P1,k
; Sk and Sk = S0(P1,k), and for some robot i ∈ R,

S0[i] = I[i], S0[i]
P[i]
; G[i], G[i] = S0[i](P[i]), S0[i]

P1,k[i]
;

Sk[i] and Sk[i] = S0[i](P1,k[i]).
A conflict happens at time step k, if the following is

satisfied:

Sk[i] = Sk[j] ∨ (Sk[i] = Sk−1[j] ∧ Sk−1[i] = Sk[j]) (1)

in which i, j ∈ R and i 6= j. In other words, if two robots
move to the same place at time k or two robots switch their
locations in one consecutive time step (from k − 1 to k),
then we have a conflict. This definition of conflict can be
generalized to capture other conditions.

Each robot has a planner that can compute a shortest path,
P (u, v) that moves a robot from vertex u to v. The length of
P (u, v) is denoted as C(u, v), i.e., C(u, v) = |P (u, v)|. The
following simplifying assumptions are also made in DisCoF:

1) Robots are homogeneous and equipped with a commu-
nication protocol for message relay.

2) Robots know G and are synchronized at every time step.
Initially, for each robot i, the individual plan is constructed

as P[i] = P (I[i],G[i]). Robots then start executing their
individual plans until conflicts can be predicted (i.e., pre-
dictable conflicts in [23]) at time step k. In such cases, the
individual plans of the robots which will lead to conflicts are
updated in Pk+1 to avoid these conflicts.

r1 r1

r2 r1 r1

r2 r2,r3 r2 r1

r2,r3
r2,r3,
r4

r2

r2,r3 r3,r4

r3,r4 r3,r4 r4 r4

r1

r2

r3

r4

Fig. 1. [23]: Scenario that illustrates OC and IC. Two OCs are present {r1}
and {r2, r3, r4}, out of which one has an IC {r3, r4} with a predictable
conflict. The sensing ranges of the robots are shown in gray. The arrows
show the next few steps in the individual plans.

B. Optimistic Decoupling

In DisCoF, the window size corresponds to the sensing
range of the robot. To reduce communication overhead, a
robot is only allowed to communicate with other robots when
it can sense them. However, robots that cannot sense each
other can communicate using the message relay protocol
through other robots. A closure of the set of robots that
can communicate (directly or via message relay) in order to
coordinate is called an outer closure (OC). In an OC, there
can be multiple predictable conflicts. A closure that contains
agents with potential conflicts is the inner closure (IC) of the
OC. Figure 1 shows an example of OC and IC. For details,
refer to [23].

In DisCoF, decoupling is optimistic initially, and gradually
becomes more pessimistic when necessary. Given an OC
with predicted conflicts, in optimistic decoupling DisCoF
updates the individual plans of robots to proactively resolve
these conflicts, while avoiding introducing new conflicts
within a finite horizon (which is specified by a parameter
in DisCoF). The finite horizon is key to efficiency since the
resolution for conflicts in the far future is likely to waste
computation efforts given the incomplete information (e.g.,
the positions of other robots in the environment). Note that
the window size, i.e., sensing range, in DisCoF represents a
horizon for detecting conflicts.

To ensure that robots are jointly making progress towards
their goals, DisCoF uses the notion of contribution value.
In order to resolve conflicts, plans are updated in a process
known as conflict resolution. In this process, each robot is
associated with a contribution value when using optimistic
decoupling. If this process is successful, robots continue
as fully decoupled. The contribution value is also used to
determine cases when optimistic decoupling is insufficient.
That is, when the resolution process would fail due to
potential live-locks. When there are no potential live-locks,
it is shown that optimistic decoupling is sufficient for robots
to converge to their goals. Otherwise, robots within the OC
use the following pessimistic decoupling process.

C. Pessimistic Decoupling

In DisCoF, when there are potential live-locks, robots
within an OC transition to pessimistic decoupling by remain-
ing within each other’s communication range (whether direct
or indirect). These robots are referred to as a coupling group,
and this coupling group executes a process known as push
and pull which allows it to merge with other groups and
robots. Thus, the level of coupling gradually increases. In
this way, DisCoF can naturally transition robots to be fully
coupled when necessary.

In push and pull, robots move to goals one at a time
according to the priorities of subproblems (first introduced
in [4]). However, due to the incompleteness of information
in distributed systems, the priorities will not be fully known.
As a result, DisCoF employs the following process. At time
step k, for each coupling group that has been formed, DisCoF
will:

1) Maintain robots in the group within each other’s com-
munication range.

2) Move robots to goals one at a time based on a relaxed
version of the priority ordering which is consistent to
that in [4].

3) Add other robots or merge with other groups that
introduce potential conflicts with robots in the current
group as they move to their goals.

Unless there are potential conflicts, each coupling group
progresses independently of other robots and coupling
groups.

In [23], we proved that the combination of optimistic and
pessimistic decoupling in DisCoF guarantees completeness.3

IV. DISCOF+

In this section, we discuss the extensions to DisCoF that
are made in the new approach named DisCoF+. First, we
relax the assumption that robots synchronize at every time
step (or plan step). Note that even though robots in different
OCs cannot communicate in DisCoF, it is assumed that
robots act in synchronized time steps. That is, robots are
given a fixed amount of time to finish planning and execute
a single action at every time step. The relaxation of this
synchronization is necessary for implementation in a real
distributed system because we cannot always assume the
existence of a global clock and a fixed amount of time for
each time step (e.g., the time required for planning for each
robot may be arbitrarily different).

We remark that each robot can still access the entire
map. We can assume that this information is static such
that it is initially given and does not change.4 However,
each robot cannot recognize where other robots are if they
are out of (indirect) communication and sensing range. This
information is dynamic such that it changes arbitrarily.

3 DisCoF is complete for the class of cooperative pathfinding problems
in which there are two or more unoccupied vertices in each connected
component which is an extension of results in [4].

4 Our replanning framework can be extended to partially known environ-
ments with unknown static obstacles.

Furthermore, we introduce a new decoupling strategy
such that robots are also allowed to decouple after they
form a coupling group (i.e., executing push and pull); thus,
transitioning back to optimistic decoupling from pessimistic
decoupling. This strategy makes DisCoF+ more computa-
tionally efficient while achieving higher quality plans that
require fewer steps.5

A. Asynchronous Time Steps

Unlike DisCoF, DisCoF+ allows robots in different OCs to
proceed independently and asynchronously. However, robots
within the same OC are assumed to still have synchronized
plan steps. This is a reasonable assumption because these
robots communicate to coordinate with each other. As a
result of this assumption, robots who finish their current plan
step must wait until all others in the OC also finish theirs.
Afterwards, all members of the group start the next plan
step at the same time in order to avoid unnecessary conflicts.
We remark that since we assume homogeneous robots, the
waiting time at each time step is not significant.6

We now explain Alg. 1. First, all variables including a set
of current locations S and a set of current local window
W are initialized and updated until line 6. Then, while
progressing its own plan P , it senses a conflict at line 8.
If a conflict is not detected, then it progresses the next step
at line 12. If a conflict is detected, then it resolves the conflict
and updates the current plan P with the new plan P ′ from
line 16 to line 30. If a conflict is detected such that the IC
ψ is not empty, robot i tries to resolve the conflict after
checking if it is already involved in any conflicts at line
16. If ω is not empty at line 16, it means that from the
previous iterations, ω has been already assigned. Then, at
the current iteration, another conflict is detected. That is, a
coupling group meets another coupling group while resolving
its conflict. Then, it merges the ω with an current OC φ
and begins PUSHANDPULL in order to resolve it through
pessimistic decoupling process.7 If ω is empty, then it means
that it hasn’t involved any conflict yet. That is, robot i ∈ R
was executing its plan independently. Then, it forms a local
coupling ω. It first tries to decouple optimistically through
CONVERGENCE. If it cannot find a plan P ′, then it decouples
pessimistically through PUSHANDPULL. After finding a plan
P ′, it continues to the next iteration to sense if there are new
conflicts. In this way, the above process continues until it

5 How efficient this strategy is depends on the problem instance. Robots
in a denser environment may need frequent coupling and decoupling, thus
increasing the computation overhead. This is discussed in Sec. V through
simulation experiments.

6 Heterogeneous robots may have different speed, sensing & communi-
cation range, size and etc. Considering these issues and resolving them are
beyond the scope of this paper.

7 We remark that our description of PUSHANDPULL in Alg. 1 is
simplified to show the overall process. Once PUSHANDPULL returns a new
plan P ′ in Alg. 1, it contains the individual plans for the coupling group
ω to move from their locations at the time step k to their goals.

Algorithm 1 DisCoF+ with asynchronous time steps
for a robot i ∈ R, given the environment G =
(V,E, {i}, I[i],G[i]), its initial location I[i], final destination
G[i] and initial plan P[i] from I[i] to G[i] and local window
W; γ denotes the contribution values.

1: 〈ψ, φ, ω,S[:],W, γ[:], k〉 ← 〈∅, ∅, ∅, ∅, ∅, 0, 0〉
2: S[i]← I[i] . Update the current location to I[i]
3: G[: i− 1] ∪ G[i+ 1 :]← ∅ . Initialize goals for others
4: P[: i− 1] ∪ P[i+ 1 :]← ∅ . Initizliae plans for others
5: G′ ← (V,E, ∅,S,G)
6: 〈S,W〉 ← PROCEEDONESTEP(G′,P, i, k)
7: while True do
8: 〈ψ, φ〉 ← SENSECONFLICT(P, i,S, k,W)
9: if ψ = ∅ then

10: k ← k + 1 . Increase the time step k by 1
11: G′ ← (V,E, ω,S,G)
12: 〈S,W〉 ← PROCEEDONESTEP(G′,P, i, k)
13: G′ ← (V,E, ω,S,G) . Update G′ with new S
14: 〈γ, ω,P〉 ← RECOMPUTECONT(G′,P, i, k, γ)
15: else
16: if ω 6= ∅ then . It meets another group.
17: ω ← ω ∪ φ . Merge ω with OC φ
18: G′ ← (V,E, ω,S,G)
19: P ′ ← PUSHANDPULL(G′, i, γ)
20: else
21: ω ← ψ . Set ω to IC ψ
22: G′ ← (V,E, ω,S,G)
23: P ′ ← CONVERGENCE(G′, i, k, φ,P,W, γ)
24: if |P ′| = 0 then
25: ω ← φ . Set ω to OC φ
26: G′ ← (V,E, ω,S,G)
27: P ′ ← PUSHANDPULL(G′, i, γ)

28: if P ′ = ∅ then
29: return False
30: P[ω]← P1,k[ω] + P ′[ω]
31: return True

reaches its goal.8

We need to explain some codes and procedures in details.
First, in order to simplify each procedure, at line 5, 11, 13,
18, 22 and 26, we use G′ as a tuple of V , E, ω, S and
G. Here, V and E are from the workspace G = (V,E) , ω
is a set of robots which represents a coupling group, S is
a set of current locations, and G is a set of goal locations.
Second, given a tuple G′, a set of plans P , a robot i ∈ R,
and i’s local time step k, PROCEEDONESTEP returns a set
of current locations S and a current location window W .
We remark that PROCEEDONESTEP does not increase the
time step variable k. If k is not increased before calling
PROCEEDONESTEP, like line 6, then it does not update the

8 Due to lack of global communication and coordination, our algorithm
(running on each robot) would not be able to determine whether all other
robots have reached their goals, thus we cannot compute a termination
condition. In our simulation, we stop the programs (on all robots) when
they have reached their goals.

current locations S with the set of plan P . However, it is
required to be called because the current local window W
should be updated before sensing a predictable conflict at
line 8. Third, given a set of plans P , a robot i ∈ R, a
current set of locations S, i’s local time step k and the
current local window W , SENSECONFLICT returns a tuple
of an IC ψ and an OC φ. If no conflict is detected, the
IC ψ is empty. Regardless of the existence of conflicts,
SENSECONFLICT also returns an OC φ. This may require
to communicate with other agents (we will explain in the
next subsection). Fourth, the contribution value γ is used in
RECOMPUTECONT, CONVERGENCE and CONVERGENCE.
In the next subsection, we will explain the details about how
to update the contribution value γ and how the contribution
value γ affects the set of plans P .

Correctness: For Alg. 1, we need to show two conditions.
First, if a given problem instance is valid (solvable), robot
i ∈ R eventually reaches its goal location. If there is no
conflict from the initial location I[i] to its goal location G[i],
it can progress through its plan while sensing conflicts at
line 8 and proceeding one step at line 12 until it reaches
its goal. Whenever there is a conflict, it always computes a
valid plan. At line 16, robot i checks if it is already involved
in a conflict (with ω). If ω 6= ∅ (i.e., it is already involved
in a conflict), it merges the OC (i.e., φ in Alg. 1) with ω,
and then call PUSHANDPULL for i. In line 24, if P ′ is not
empty, it means that CONVERGENCE returns a new plan P ′.
If P ′ is empty, then robot i calls PUSHANDPULL. In both
cases, the returned plan P ′ is either from CONVERGENCE
or PUSHANDPULL. We have shown that CONVERGENCE or
PUSHANDPULL always returns a valid plan in [23] if a valid
solution exists.

Second, if a given problem instance is invalid (unsolv-
able), Alg. 1 returns False. In order to resolve a conflict,
Alg. 1 first calls CONVERGENCE at line 23 which is for
optimistic decoupling in DisCoF. Then, if it cannot compute
its new plan, it calls PUSHANDPULL at line 27 which
is for pessimistic decoupling. In [23], we showed DisCoF
guarantees the completeness, and DisCoF uses these two
conflict resolution processes in order to resolve its conflict.
Hence, if a solution exists, the combination of these two
processes returns a solution. However, if a solution does not
exists, it returns False. At line 28, it can check whether it
returns a solution or not. If not, it returns false.

We remark that PROCEEDONESTEP in line 12 always
results in the robot proceeding one step forward in its plan.
If robot i has already reached its final goal (while there are
robots that still need to reach their goals), proceeding one
step in this case simply adds a step for robot i to stay.

B. Communication and Leader Selection

There are two major cases in which robots communicate
with each other in DisCoF+. The first case is to detect
predictable conflicts. For detecting conflicts, given a robot
i ∈ R, SENSECONFLICT requires the following steps:

1) Check nearby environment (i.e., W) through a sensor
for other robots (e.g., a laser sensor).

2) Compute the OC φ of robot i.
3) Communicate with robots in φ to obtain their plans,

then check if predictable conflicts exist among them.

In the above process, the first step does not require any
communication between robots; it only depends on sensors.
Since robots know the environment (i.e., G), they can easily
detect when there are moving robots nearby using range
sensors.

The second step requires the use of a message relay
protocol to compute the OC φ. This is because OC φ includes
robots which cannot directly communicate with the robot i
which originally tried to determine its OC φ. Even though
it computed an OC φ in its previous time step, the OC φ
can be changed whenever SENSECONFLICT is called. This
is because each robot in the OC has its own asynchronous
time if it is not involved in any conflicts and it can update
its OC without considering other members. In this way, if
one of the members in the OC moves out of its neighbors’
sensing range before communicating with its neighbors,
other members cannot update their own OC. In addition,
if each member in an OC is involved in a conflict, all the
members have a synchronized time step until reaching their
local goals. In this case, computing a new OC is still required
because each member of the OC can meet another group
and each member can update their own OC propagating new
information to each other. Hence, whenever each agent calls
SENSECONFLICT, it should communicate with others so that
it can update its OC.

In the third step, once robot i obtains all the plans of
the robots in φ, it can check these plans against its own
plan for predictable conflicts (from its current time step to
the next β steps [23]). In this case, after electing a leader
of the IC ψ, the leader computes the new plan for the IC
ψ and communicates the new plan back to the others in
the IC.9 In order to compute a new plan, the leader tries
CONVERGENCE. If CONVERGENCE returns a valid set of
plans P ′, then the leader can pass P ′ to others. If not, the
leader begins PUSHANDPULL. However, in PUSHANDPULL
a new leader is selected which is based on the priorities of
subproblems. Then, the new leader will send the new plan
P ′ (which is computed from PUSHANDPULL) back to others
in the OC φ.

The second case in which robots communicate is to
synchronize planning and execution among robots in an OC.
Note that robots in different OCs proceed independently and
asynchronously. Since planning and plan execution are syn-
chronized within an OC, it is guaranteed that no collision can
occur among robots in the OC. In PROCEEDONESTEP, each
robot in the OC executes a single plan step, communicates
this to the rest of the robots in the OC (through broadcasting
to the local network), and then it halts. Only after all robots in
the OC have completed a plan step are they free to execute

9 The simplest voting mechanism is to elect the robot with the smallest
ID in the group.

another, thus achieving synchronization.10 However, when
robots move out of the communication range, they do not
synchronize their plan steps anymore.

C. Flexible Decoupling

Flexible decoupling is achieved with the help of contri-
bution values. Contribution values are assigned in DisCoF
to each robot in the CONVERGENCE process (in optimistic
decoupling) in which the robots must compute an update
to the current plan to avoid potential conflicts. Contribution
values are introduced in DisCoF to ensure that robots are
jointly making progress to their goals. In DisCoF, when the
CONVERGENCE process fails, robots are in a coupling group,
running on the plan computed by PUSHANDPULL until they
reach their goals. In DisCoF+, however, robots that are
executing PUSHANDPULL can also decouple by checking
whether certain conditions involving the contribution values
hold.

Next, we discuss the new decoupling strategy in DisCoF+

which is illustrated in the following example. Suppose that
a conflict is predicted between two robots. Then, an IC ψ
(initially including only the two robots) is formed and there
is an associated OC φ for ψ. When the leader of ψ makes a
new plan in the CONVERGENCE process, if the leader cannot
find a new plan that avoids the conflict with the current set
of conflicting robots ψ, then the set of conflicting robots
gradually expends (until becoming φ). When a new plan is
found, DisCoF+ associates each robot with a contribution
value γ which captures the individual contribution of the
robot to the summation of shortest distances from all robots’
current locations to their goal locations.

For the remaining part of this section, we will use the
cost relation C : V × V → N. For example, C(v1, v2) is the
distance of the shortest path from node v1 to node v2.

At the very beginning of a problem instance, the contri-
bution value γ is initialized to be 0 for all robots. Given a
predictable conflict at time step k, a set of conflicting robots
φ, the set of current locations Sk for φ and the set of goal
locations G, the new plan Q (where |Q| < β ∈ N)11 must
avoid collisions and satisfy the following:∑

i∈φ

C(Sk[i],G[i]) + γ−k [i] >
∑
i∈φ

C(Sk[i](Q[i]),G[i]) (2)

where γ−k [i] is the contribution value that is associated with
robot i at the time step k and Sk[i](Q[i]) is a local goal for
each i ∈ φ, i.e., the position reached by each robot i after
executing plan Q[i].

We remark that while k in Eq. (2) is a constant in DisCoF,
in DisCoF+, k represents the synchronized current time step
for the group of robots within φ which may differ between
OCs.

10 We assume that in a fixed amount time, each robot can complete its
own movement and within the communication range there is no problem to
communicate with each other.

11 We assume that the length of the plan Q is bigger than β. If the
length of some agent i’s plan Q[i] has shorter than β, then the last state
Sk[i](Q[i]) should be appended at the end of Q[i] until |Q[i]| ≥ β.

An interesting point of Eq. (2) is that the new plan Q may
not satisfy Eq. (2) during the execution of Q, as long as Eq.
(2) is satisfied after Q has completed. After executing the
new local plan Q, each agent reaches its local goal. In this
way, they avoid the predicted conflict. Then, each robot i ∈ φ
can decouple, following its individual plan from the local
goal Sk[i](Q[i]) to its goal G[i]. Given a predicted conflict
at the current time step and a computed Q, the contribution
value γ while executing the actions in Q is updated for robot
i in φ as follows:

γk+δ[i] = C(Sk[i](Q[i]),G[i])− C(Sk+δ[i],G[i]) (3)

where 0 ≤ δ ≤ |Q| and Sk+δ[i] = Sk[i](Q1,1+δ[i]). We
remark that δ is a relative time step after the robots have
formed an OC. For all robots in a group, δ is the same. This
update continues until the robot become involved in other
conflicts or the value becomes 0.

In DisCoF [23], the contribution value γ is only used
for the CONVERGENCE process, and robots do not update
their contribution values when a coupling group is formed
and robots start PUSHANDPULL. This can lead to inefficient
behaviors, e.g., when the leader’s goal location is located
opposite to where the others’ goals are located.

In DisCoF, the only way to reduce the size of a coupling
group is to have the current leader reach its goal. Then, a
new leader will be selected and the remaining robots will
follow the new leader to its goal. This is clearly an inefficient
solution. In DisCoF+, we use the contribution values γ
also in PUSHANDPULL, such that robots can decouple even
before the leader reaches its goal.

Next, we discuss how the contribution values can be
used in the PUSHANDPULL process. More specifically, we
provide a decoupling condition for a coupling group to check
which determines when the robots in the group can decouple
while executing the PUSHANDPULL process. Suppose that
there is a coupling group ω. After ω computes a new plan
P ′ (in PUSHANDPULL), each robot in ω will progress using
the plan. During this execution, robots continue recomputing
their contribution values γ as in Eq. (3). At any step, if the
following condition holds, then the group can be decoupled:∑

i∈ω
C(Sk[i],G[i]) + γ−k [i] >

∑
i∈ω
C(Sk+δ[i],G[i]) (4)

where k is the time step when PUSHANDPULL starts plan-
ning and k+ δ is the current time step such that 0 < δ ∈ N.
γ−k [i] is the contribution value that robot i ∈ ω had before
the PUSHANDPULL returned its plan.

Intuitively, Eq. (4) is the condition when the summation of
the length of the shortest-path from robots’ current locations
to their goal locations is less than the summation of the
length of the shortest-path from their original coupling
locations to their goal locations plus their contribution values
just before forming the coupling group.

In Alg. 1, Eq. (4) is checked inside of RECOMPUTECONT
at line 14. Given a set of current locations S, a set of
goal locations G, and contribution values γ, if the condition
holds, then RECOMPUTECONT returns an updated plan P

(i.e., the shortest-path plan from S[i] to G[i]) with an empty
coupling group ω. Then, the coupling group ω becomes
decoupled and each robot follows their individual plan.
Otherwise, RECOMPUTECONT returns the current plan P
without changing the coupling group ω. Then, the coupling
group ω follows the current plan P which was computed
from PUSHANDPULL.

When a coupling group is decoupled and it immediately
predicts a conflict in the next iteration, it uses the conflict
resolution process through CONVERGENCE, just as when
fully decoupled robots have predicted conflicts. Even though
we discussed the correctness of DisCoF+ (Alg. 1), we also
need to show that this new decoupling strategy is not subject
to live-locks (i.e., robots are always making joint progress
to the goals).

Theorem 4.1: The decoupling condition in Eq.(4) ensures
that robots in the group gradually progress to their final goals.

Proof: For detail, see [8].

V. RESULTS

In this section, we present some experimental results.
First, we will show a simulation result on a physics based
simulator. Second, we will provide results from numerical
experiments on artificial benchmarks.

A. Simulation in Webots

The simulation shown in Fig. 2 was created using We-
bots 7.3.0 and the included iRobot Create models. A grid
environment was modeled which contained 30 iRobots and
40 obstacles placed at random locations. This instance is
solvable, i.e., each robot can reach its goal position. Each
iRobot was running with a controller which implemented
DisCoF+. However, one exception was made: rather than
being completely distributed and simulating ad hoc networks
and localization, the robots communicated with a central
supervisor which provided this information as well as syn-
chronization for robots involved in a conflict, i.e., in the
same OC. Robots in different outer closures acted completely
asynchronously, but robots in the same outer closure were
synchronized if a conflict was detected between any of the
member robots.

The target computer for the simulation was a MacBook
Pro running Mac OS X 10.10.2 with a 2.3GHz i7 and
16GB of RAM. The simulation was run two times: once
with decoupling enabled and once with decoupling disabled.
Decoupling enabled yielded a total simulation duration of
3 minutes and 23 seconds. Out of all robots, the maximum
number of steps required to reach their destination was 40.
When decoupling was disabled, it yielded a total simulation
duration of 5 minutes and 1 second. Out of all robots, the
maximum number of steps required to reach their destination
was 54.

These results are interesting in two aspects: the total
running time and the number of maximum steps. First, in
terms of the total running time, enabling decoupling performs
significantly better than without decoupling. The simulation
took only 67% of the time that the other did. Second, in

Fig. 2. A simulation environment in Webots modeling a 20 × 20 grid
world with a 10% wooden boxes as obstacles. In this environment, there
are 30 iRobot Create finding their path to their goal positions.

terms of the maximum steps, enabling decoupling took only
74% of the steps than without decoupling. The reason for this
discrepancy is that with decoupling enabled there are more
stay actions in which a robot’s action is to stay where it is.
Since robots are asynchronous except for when they are in
a conflict, this means robots will take less time to complete
a plan with stay actions compared to one that doesn’t. It
is expected that environments which remains more complex
plans will benefit from this fact even more.

We provide the demo video for this simulation
(which is also submitted as an attachment to this pa-
per). In addition, you may refer to the videos at the
following URL: https://www.assembla.com/spaces/

discof/wiki/DisCoF_Plus.

B. Simulation Experiments on benchmarks

In order to evaluate the improvement of DisCoF+ over
DisCoF, we execute a number of numerical experiments. For
these experiments, we used a 3.2GHz i7 and 8GB of RAM
in Cygwin environment which runs on Windows 8.1. Our
prototype implementation is written in Python 2.7.2.

Since we only want to get the total number of concurrent
steps and the computation time for these experiments, instead
of using the Webots simulator, we used a simple discrete
time simulator which does not simulate the physics of the
robots. In addition, we have not computed the overhead
of any communication between the robots. Hence, we are
comparing the total number of steps and the computation
times between DisCoF and DisCoF+.

As a result of this implementation, an approximate running
time is calculated for each problem instance by summing
the computation time and the movement time, where the
movement time is the amount of time required to execute
all steps assuming 5 seconds per step.

In order to perform the experimental analysis, instead of
scaling up the number of robots, we increase the density of
the environment. That is, we increase obstacle rates in the
environment. The experiment was performed on a 20 × 20
grid environment with 30 robots. Obstacles were randomly
generated according to their rate which is defined as the
percentage of the grid environment that is considered to be
an obstacle. Table I shows the results for 100 instances of
DisCoF and DisCoF+ as the obstacle rate was varied from
5% to 20%.

In all cases, DisCoF+ needed 24% to 42% less steps than
DisCoF’s result and DisCoF+ took 25% to 43% less than

https://www.assembla.com/spaces/discof/wiki/DisCoF_Plus
https://www.assembla.com/spaces/discof/wiki/DisCoF_Plus
https://www.assembla.com/spaces/discof/wiki/DisCoF_Plus
https://www.assembla.com/spaces/discof/wiki/DisCoF_Plus

DisCoF DisCoF+ (DisCoF+/DisCoF)
COMP. TIME STEPS APPROX. RUN TIME COMP. TIME STEPS APPROX. RUN TIME

OBSTACLES AVG STD AVG STD AVG STD AVG STD AVG STD AVG STD
5% 10.064 8.405 352.35 356.207 1771.815 1788.861 10.733 (1.0086) 22.068 (0.931) 63.95 (0.4266) 80.632 (0.356) 330.483 (0.43) 423.885 (0.3555)
10% 13.19 10.372 521.1 521.24 2618.69 2615.82 14.37 (1.061) 36.52 (1.538) 73.51 (0.344) 108.93 (0.346) 381.92 (0.348) 579.065 (0.348)
15% 17.6318 13.296 653.67 580.01 3285.982 2911.463 23.92 (1.217) 49.768 (1.3) 99.18 (0.294) 157.356 (0.312) 519.82 (0.3) 831.07 (0.314)
20% 26.39 14.009 954.46 620.08 4798.691 3111.208 52.391 (1.942) 75.8 (2.3989) 175.9192 (0.2427) 218.859 (0.3132) 931.987 (0.2535) 1161.61 (0.3242)

TABLE I
SIMULATION EXPERIMENTS: COMP. TIME REPRESENTS THE TOTAL COMPUTATION TIME IN SEC, STEPS REPRESENTS CONCURRENT TIME STEPS FOR

ENTIRE ROBOTS’ PLAN, AND APPROX. RUN TIME REPRESENTS APPROXIMATE RUNNING TIME IN SEC. AVG STANDS FOR AVERAGE AND STD FOR

STANDARD DEVIATION. THE RATIO INSIDE THE PARENTHESIS IS DISCOF+ /DISCOF.

DisCoF’s approximate run time.
The time ratio in Table I indicates that if the environment

is less populated, then decoupling makes better quality plans
in terms of the total number of concurrent steps and the total
computation time of plans.

Despite the fact that DisCoF+ consistently outperforms
DisCoF in the approximate run time, it is important to
comment on the computation time. When the environment
is dense, it takes more computation time. This is because in
dense environments groups that decouple may have to re-
couple with a higher frequency. That is, when it recouples,
a group should make a new plan which requires extra
computation time.

VI. CONCLUSIONS

In this paper, we introduced DisCoF+ which is an asyn-
chronous extension of our previous work. We also introduced
a strategy of decoupling in DisCoF+. Through simulations,
we showed how DisCoF+ works in a simulated grid environ-
ment to resolve predictable conflicts in a distributed fashion.
We also provided simulation experiments to compare DisCoF
with DisCoF+. In moderately populated environments, the
decoupling approach shows better results than DisCoF. In
future work, we plan to devise different approaches for
decoupling and, also, heuristics for ordering robots while
performing PUSHANDPULL so that when at any point in
time a decoupling occurs, the conflicts are minimized.

REFERENCES

[1] N. Ayanian, D. Rus, and V. Kumar. Decentralized multirobot control in
partially known environments with dynamic task reassignment. In 3rd
IFAC Workshop on Distributed Estimation and Control in Networked
Systems, 2012.

[2] Z. Bnaya and A. Felner. Conflict-oriented windowed hierarchical
cooperative A∗. In Proceedings of the 2014 IEEE International
Conference on Robotics and Automation, 2014.

[3] C. Clark, S. Rock, and J.-C. Latombe. Motion planning for multiple
mobile robots using dynamic networks. In Proceedings of the IEEE
International Conference on Robotics and Automation, volume 3,
pages 4222–4227, Sep. 2003.

[4] B. de Wilde, A. W. ter Mors, and C. Witteveen. Push and rotate: Co-
operative multi-agent path planning. In 12th International Conference
on Autonomous Agents and Multiagent Systems, 2013.

[5] V. R. Desaraju and J. P. How. Decentralized path planning for multi-
agent teams with complex constraints. Autonomous Robots, 32(4):385–
403, 2012.

[6] J. Hopcroft, J. Schwartz, and M. Sharir. On the complexity of motion
planning for multiple independent objects; pspace- hardness of the
”warehouseman’s problem”. The International Journal of Robotics
Research, 3(4):76–88, 1984.

[7] R. Jansen and N. Sturtevant. A new approach to cooperative pathfind-
ing. In Proceedings of the 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, AAMAS, pages 1401–
1404, Richland, SC, 2008. International Foundation for Autonomous
Agents and Multiagent Systems.

[8] K. Kim, J. Campbell, W. Duong, Y. Zhang, and G. Fainekos.
DisCoF+: Asynchronous DisCoF with flexible decoupling for co-
operative pathfinding in distributed systems. Technical report,
http://arxiv.org/abs/1506.03540.

[9] L. Liu and D. A. Shell. Physically routing robots in a multi-robot
network: Flexibility through a three-dimensional matching graph. The
International Journal of Robotics Research, 32(12):1475–1494, 2013.

[10] R. Luna and K. Bekris. Efficient and complete centralized multirobot
path planning. In IEEE/RSJ Int. Conf. on IROS, 2011.

[11] M. Otte, J. Bialkowski, and E. Frazzoli. Any-com collision checking:
Sharing certificates in decentralized multi-robot teams. In Proceedings
of the 2014 IEEE ICRA.

[12] L. E. Parker. Encyclopedia of Complexity and System Science, chapter
Path Planning and Motion Coordination in Multiple Mobile Robot
Teams. Springer, 2009.

[13] M. Peasgood, C. Clark, and J. McPhee. A complete and scalable
strategy for coordinating multiple robots within roadmaps. IEEE
Transactions on Robotics, 24(2):283–292, April 2008.

[14] M. Ryan. Graph decomposition for efficient multi-robot path planning.
In Proceedings of the 20th International Joint Conference on Artifi-
cal Intelligence, pages 2003–2008, San Francisco, CA, USA, 2007.
Morgan Kaufmann Publishers Inc.

[15] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant. Conflict-based
search for optimal multi-agent pathfinding. Artificial Intelligence,
219(0):40 – 66, 2015.

[16] D. Silver. Cooperative pathfinding. In Conference on Artificial
Intelligence and Interactive Digital Entertainment, 2005.

[17] T. Standley. Finding optimal solutions to cooperative pathfinding
problems. In AAAI Conference on Artificial Intelligence, 2010.

[18] T. Standley and R. Korf. Complete algorithms for cooperative
pathfinding problems. In Proceedings of the 22nd International Joint
Conference on Artifical Intelligence, 2011.

[19] N. Sturtevant and M. Buro. Improving collaborative pathfinding using
map abstraction. In Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), pages 80–85, 2006.

[20] G. Wagner, M. Kang, and H. Choset. Probabilistic path planning for
multiple robots with subdimensional expansion. In IEEE International
Conference on Robotics and Automation, ICRA, 2012.

[21] K. C. Wang and A. Botea. Fast and memory-efficient multi-agent
pathfinding. In International Conference on Automated Planning and
Scheduling, pages 380–387, 2008.

[22] J. Yu and S. M. LaValle. Multi-agent path planning and network flow.
In Algorithmic Foundations of Robotics X, volume 86, pages 157–173.
Springer, 2013.

[23] Y. Zhang, K. Kim, and G. Fainekos. Discof: Cooperative pathfinding
in distributed systems with limited sensing and communication range.
In to appear in International Symposium on Distributed Autonomous
Robotic Systems, 2014.

	INTRODUCTION
	RELATED WORK
	DisCoF
	Problem Formulation
	Optimistic Decoupling
	Pessimistic Decoupling

	DisCoF+
	Asynchronous Time Steps
	Communication and Leader Selection
	Flexible Decoupling

	RESULTS
	Simulation in Webots
	Simulation Experiments on benchmarks

	CONCLUSIONS
	References

