On the Revision Problem of Specification Automata

Kangjin Kim, Georgios E. Fainekos and Sriram Sankaranaraya

Abstract—One of the important challenges in robotics is rent system dynamics, then the current high-level synshesi
the automatic synthesis of provably correct controllers fom frameworks simply report a failure. Thus, the user is uguall
high level specifications. One class of such algorithms op®es ot in the dark as of why the specification failed and, most

in two steps: (i) high level discrete controller synthesis ad . . .
(ii) low level continuous controller synthesis. In this clas of importantly, on what the system can actually achieve that is

algorithms, when phase (i) fails, then it is desirable to pruide CloSe to the initial intentions of the user.
feedback to the designer in the form of revised specification In this paper, we study the theoretical foundations of the

that can be achieved by the system. In this paper, we address specification revision problem when both the system and
the minimal revision problem for specification automata. That the specification can be represented dnautomata [13].

is, we construct automata specifications that are as “closeas | ticul f the Minimal Revisi Probl
possible to the initial user intent, by removing the minimum n particular, we focus on the Minimal Revision Froblem

number of constraints from the specification that cannot be (MRP), i.e., finding theclosestsatisfiable specification to the
satisfied. We prove that the problem is computationally hard initial specification, and we prove that the problem is NP-

and we encode it as a satisfiability problem. Then, the minimia complete. In view of this negative result, we study whether
revision problem can be solved by utilizing efficient SAT solers. encoding MRP as a satisfiability problem and utilizing state
of-the-art satisfiability solvers provides an efficientugmn

|. INTRODUCTION to the problem. N
The specification revision problem for automata based

One of the fundamental challenges in robotics is NOW anning techniques is a relatively new problem. In our
to achieve fully automatic correct-by-design synthesis revious work [14], we introduced the specification revi-

contrql software. Scalable me.thods and techniques for_sygl—On problem for Linear Temporal Logic (LTL). There, we
thesizing correct by construction controllers can potdiyt jdentified conditions such that the minimal revision can be

revolutionize the design process, yielding huge benefits iyiciontly solved and we provided a randomized algorithm
terms of improved safelty, reliability Eflllr'dh time ;0 marlket,[o return some specification revision (but not necessaniy t
Mor_eov_er, gover.nmenta -agencies will have the tools t?ninimal). Finding out why a specification is not satisfiable
certify in short t|m_e medical robotic devices, autonomous, a model is a problem that is very related to the problems
automobiles and alrplane.s etc. , of vacuity and coveragein model checking [15]. Another
Currently, the automatic synthesis problem for complefg|ated problem is the detection of the causes of unrealiz-
dynamical systems is broken into two levels. First, higkelev ability in LTL games. In this case, a number of heuristics

synthesis of the discrete controller and, subsequent¥, 10,56 heen developed in order to localize the error and
level composition of S|mp!e conFroI Iav_vs. A variety of SUChprovide meaningful information to the user for debugging
theories and methodologies exist which are usually clas%[e]’ [17]. Along these lines, LTLMop [18] was developed

fied based on the high level specification framework. Fof, gepug unrealizable LTL specifications in reactive plagni
example, a very general and well developed framework f%r robotic applications.

high-level programming is the extended Motion Description
Language (MDLe) [1] which has interesting composition Il. PROBLEM FORMULATION

properties [2]. A more recent attempt to use Context Free |, this paper, we work with discrete abstractions (Finite

Languages (CFL) for robotic control appears in [3]. Finitegiate Machines) of the continuous robotic control systeln [5
automata are used as a specification language in [4]. Anothgfis is a common practice in approaches that hierarchically
very popular formal specification language is temporaldsgi jecompose the control synthesis problem into high level dis
with multiple applications in robotics [5]-{12]. crete planning synthesis and low level continuous feedback
Nevertheless, one issue that has not been adequatghyroller composition [5], [6], [11]. Each state of the Fn
addressed so far in such combined high-low level controllefise Machine (FSMY is labeled by a number of symbols
synthes?s framewor_ks is wha_lt happens when t_h_e h?gh-|EVﬁbm aseflll = {m, 1, ..., m,} that represent regions in the
synthesis phase fails. That is, when the specification cafjrkspace of the robot or, more generally, in its configorati
not be realized in the current environment under the CUEpace (see [19] for precise definitions of workspace and
This work has been partially supported by award NSF CNS 13461 configuration spaces). Th? ContrOI. rquirements fOI‘.SUCh a
K. Kim and G. Fainekos are with the School of Computing, Infatics ~ System can be posed using specification autonfataith

g”g 8DeCiSSi°”{§VSte’T‘.S E”%”eef]ingz A”f(ona}State U”i(‘jle’ﬁmpev AZ Biichi acceptance conditions [13] also known.aautomata.
5281, USA {Kangj i n. Ki m f ai nekos}@su. edu . N .
S. Sankaranarayanan is with the Department of Computern&zie The followmg example, which is the running example

University of Colorado, Boulder, COsr i r ans @ol or ado. edu of this paper, presents such a typical scenario for motion

0 i i i i i i i i i i

; ; ; ; ; ; ; ; ; ; 0 10 20 30 40 50 6 70 8 9 100

0 10 20 30 40 50 60 70 80 90 100 “
%

Fig. 3. The modified environment of Fig. 1 under large boundstte
Fig. 1. The simple environment of Example 1 along with a loveexp permissible acceleratiof. The dark gray regions indicate areas that should
mobile robot trajectory that satisfies the specification. be avoided in order to satisfymr; while the light gray regions indicate areas
that should be visited in order to satisfy.

o A\ T2 A T3

set modification might make the specification unrealizable.
E.g., in Fig. 3, the robot cannot move from to w; while
avoiding w2, even though the specification can be realized
on the workspace of the robot that the user perceives. In
o this case, the user is entirely left in the dark as of why the
Fig. 2. The Speciﬁcéfﬁ,r} automaton of Example 1. specification failed and, more importantly, on what actuall
the system can achieve under these new constraints/A
When a specificatioB is not satisfiable on a particular
planning of a mobile robot. system 7, then the current motion planning and control
Example 1 (Robot Motion Planning)/Ve consider a mo- synthesis methods [5], [6] based on automata theoretic
bile robot which operates in a planar environment. Theoncepts simply return that the specification is not sakikfia
continuous state variable(t) models the internal dynamics without any other user feedback. The goal of this paper is to
of the robot whereas only its positiaf(t) is observed. In study specification feedback mechanisms when the automata
this paper, we will consider a 2nd order model of the motiottheoretic planning phase fails to return a plan.
a planar robot (dynamic model): Problem 1 (Minimal Revision Problem (MRP)Biven a
system7 and a specification automatds, if the specifi-

. _ 2
:Zfl(t) = wa(t), :c12(t) €RY 1 (0) € Xio cation B cannot be satisfied off, then find the “closest”
Ea(t) =u(t), w2(t) €R% 22(0) =0, u(t) €U specification’ to B which can be satisfied off.

y(t) = z1(1). Problem 1 was first introduced in [14] for Linear Temporal

: L . Logic (LTL) specifications. In [14], we provided solutions
The robot is moving in a convex polygonal environmept . - -
. . to the debugging and (not minimal) revision problems and
with four areas of interest denoted by, 7o, 75, 74 (Se€e€ . . .
we demonstrated that we can easily get a minimal revision

Fig. 1). The robotis placed somewhere in the region Iabeleo the specification when the discrete controller synthesis

by . Th(_a robot must accomplish the task: *Stay ‘.""Ways Ir[‘)hase fails due to unreachable states in the system. Thus, in
o and visit arear,, then arears, then arear, and, finally,

N . X . . this paper, we concentrate on the harder problem of minimal
return to and stay in regior; while avoiding arear,,” which hap P

: e L revision when all the states oh are reachable.
is captured by the specification automaton in Fig. 2. A tion LAl the stat T habl
In [5], we developed a hierarchical framework for mo- ssumption: 2. € states orl/ are reachable.

tion planning for dynamic models of robots. The hierarchy !N this paper, we prove that if the specification is provided
consists of a high level logic planner that solves the motiofiS @n arbitrary,-automaton, then a restricted version of the

planning problem for a kinematic model of the robot, e.g”mmimal revision problem is NP-complete. This theoretical

result has profound implications on two fronts.

A1) = ult), y'(6) = 2(1), 2(t) € R?, 2(0) € Zo. o First, the LTL MRP is most likely NP-complete as well.
Then, the resulting hybrid controller is utilized for the = Thew-automata that correspond to LTL formulas are a
design of an approximate tracking controller for the dyrmmi restricted subset of all possible-automata. However,
model. Since the tracking is approximate, the sets that the the structural properties that cause the NP-completeness
atomic propositions map to need to be modified (see Fig. 3) Of the problem exist in this restricted class of automata
depending on the maximum speed of the robot so the that as well.
the controller has a guaranteed tracking performance. Fore Second, we now know that in order to find polynomial
example, in Fig. 3, the regions that now must be visited are time solutions to Problem 1, we will either have to
the contracted light gray regions, while the regions to be develop randomized algorithms (as we did in [14]) or
avoided are the expanded dark gray regions. However, the develop approximation algorithms.

I1l. CONSTRUCTINGDISCRETECONTROLLERS e, ifsbgs, thenAz(s,s’) =1; and if (s,s') & Eg,

In this section, we provide a brief review of the automata thenAg(s,s’) = 0.
based motion planning. This is required in order to under- In brief, our goal is to generate paths gnthat satisfy
stand the new contributions of this paper. In order towse the specificatiorBs. In automata theoretic terms, we want to
automata to specify requirements for continuous systeras, ind the subset of the languagd7) which also belongs to
need to construct a finite partition of the robot's workspacthe language (Bs). This subset is simply the intersection of
[19]. For that purpose, we can use many efficient cethe two language£(7) N £L(Bs) and it can be constructed
decomposition methods for polygonal environments [19py taking the product] x Bs of the FSM 7 and the
This results in a topological grapti = (@, E) which specification automatoi8s. Informally, the automatorBs
describes which cells are topologically adjacent, i.echea restricts the behavior of the systef by permitting only
nodeq € Q in the graph represents a cell and each edgeertain acceptable transitions. Then, given an initiatesta
e = (¢,¢') € E in the graph implies topological adjacencyin the FSM 7, we can choose a particular trace from
of the cells. Each such cell will be a state in the FSM whickC(7) N £(Bs) according to a preferred criterion.
will be labeled by one or more atomic propositions fréin Definition 3: The product automatol = 7 x Bs is the
Next, we formally define the FSM that can be constructedutomatond = (S, sg', P(I1), 5.4, F.4) where:
from the graphG. « S4=QxSa,,

Definition 1 (FSM): A Finite State Machine is a tuple sA = {(qo,s(lfs) | g0 € Qol,
T = (Q,Qo,—7,hr,II) where: Q is a set of states; 4 :SaxP(IT) = P(S4) Sit. (g, 5;) € 54((a, 1), 1)
Qo C Q is the set of possible initial statess= F C QxQ iff ¢; =7 q; ands; € 6, (si,1) with 1 C hr(q;),
is the transition relation; andy : Q@ — P(II) maps each « Fu=Q x F is the set of accepting states.
stateq to the set of atomic propositions that are trueqon Note that £(A) = L£(T) N £(Bs). We say thatBs is

We define apath on the FSM to be a sequence of stategisfiableon 7 if £(A) # 0. Moreover, finding a satisfying
and atrace to be the corresponding sequence of sets Qfaih on7 x 53, is an easy algorithmic problem [20]. First, we
propositions. Formally, a path is a functign: N — @ ¢onvert automatofi” x B to a directed graph and, then, we
such that for each € N we havep(i) =7 p(i +1) find the strongly connected components (SCC) in that graph.
and the corresponding trace is the function compositioff 4t |east one SCC that contains a final state is reachable
p=hrop:N—=P(Il). The language(T) of 7 consists from an initial state, then there exist accepting (infinite)s
of all possible traces. . _onT x By that have a finite representation. Each such run
~ In this work, we are interested in theautomata that will - onsists of two parts: a part that is executed only once (from
impose certain requirements on the trace§ ofv-automata 4 injtial state to a final state) and a part that is repeated
differ from the classic finite automata in that they accepjfinitely (from a final state back to itself). Note that if no
infinite strings (traces of " in our case). final state is reachable from the initial or if no final state is

Def|8n|t|on 2:A automaton is a tuple B s Within an SCC, then the languagi.A) is empty and, hence,
(58,505,405, Fis) where: Sj; is a finite set of statesiy IS he high level synthesis problem does not have a solution.
the initial state{2 is an input alphabets : Six €2 — P(S5p) Namely, the synthesis phase has failed and we cannot find a
is a transition function; andz C Sj is a set of final states. system behavior that satisfies the specificatian

When s € dg(s,l), we also write s —l>5 s’ or
(s,l,s") €=p. A runr of B is a sequence of states: IV. THE SPECIFICATION REVISION PROBLEM

N — Sg that occurs under an input tragetaking values in . . L .
b P pataking Intuitively, a revised specification is one that can be

Q. That s, fori = 0 we haver(0) = s§ and for alli > 0 we - i .

O . _ satisfied on the discrete abstraction of the workspace or the
haver(i) =5 r(i+1). Letlim(-) be the function that returns cqnfiguration space of the robot. In order to search for a
the set of states that are encountered infinitely often in thginima) revision, we need first to define an ordering relation
runr of 5. Then, a run- of an automatoi8 over an infinite oy 5 10mata as well as a distance function between automata.
tracep is acceptingif and only if lim(r) N Fis # 0. This is gjmilar to the case of LTL formulas in [14], we do not want
called a Buchi acceptance condition. Finally, we define thg) -qnsider the “space” of all possible automata, but rather
languageC(B) of B to be the set of all tracgs that have a ¢ “space” of specification automata which are semaryicall
run that is accepted bg. close to the initial specification automatd®y. The later

A specificatiorautomaton is an automaton with BUchi ac-yjj| imply that we remain close to the initial intention of

ceptance condition where the input alphabet is the powersgl gesigner. We propose that this space consists of all the
of the labels of the systerd, i.e,, 2 = P(II). In order 0 = 5tomata that can be derived frofly by removing atomic
simplify the discussion in Section IV, we will be using the,onssitions from the transition input. Our definition ofth

following assumptions and notation ordering relation between automata relies upon the previou
« we define the seEs C S, such that(s,s') € Ep iff assumption.
AeQ,sbgs;and, Definition 4 (Relaxation).Let B, = (Sg,, s5', P(II),

« we define the function\s : S% — Q which maps a pair —5,, Fs,) and By = (Sg,, 52, P(Il), =5,, F5,) be two
of states to the label of the corresponding transitiorspecification automata. Then, we say tBatis a relaxation

of B; and we writel3; < B, if and only if Sg, = Sz, = S, e V =S is the set of nodes

5ot = s5%, Fp, = F, and e E = E4UEp C 8 xS, where E4 is the set
1) V(s,1,s') €=p, — —p, .3 . of edges that correspond to transitions gh i.e.,
(s,I',s") €=, — —p, andl’ C L. ((q,9),(¢,8")) € E4 iff 3L € P(ID) . (q,8) a4
2) V(s,l,8") e—=p, — —p, . 3. (¢',s"); and Ep is the set of edges that correspond
(s,l',s") e—p, — —p, andl’ D 1. to disabled transitions, i.e((q, s), (¢’,s")) € Ep iff
We remark that=< is a partial order over specification g —7 ¢ ands —l>35 s" with [N (IT — hr(q")) # 0.
automata. Also, ifB; < Ba, then £L(B;) C L£(Bs) since . v, = s3' is the source node,

the relaxed automaton allows more behaviors to occur. It is« V; = F4 is the set of sinks,

possible that two automat; and 3, cannot be compared .« L : E — P(REVVARS) maps each edge of the graph

under relation<. We can now define the set of automata with a set of revision variables that need to be set to true
over which we will search for a minimal solution that has in order to enable it. The construction of the labeling

nonempty intersection with the system. function will be described subsequently.

Definition 5: Given a systenf/” and a specification au- \we describe the construction of the labeling function
tomatonBs, the set ofvalid relaxationsof B; is definedas ; . g _, P(REVVARS) for the product graphA. Let
R(Bs, T) ={B|Bs < BandL(T x B) #0}. e = ((g,5),(q,s")) be an edge in4 corresponding to edge

We can now search for a minimal solution in the sep, — (s,s') in Bs and edge(g, ¢') in 7. Consider the set of
R(Bs, T). _That is, we can search for sontec R(Bs,7) atomic propositions given byA(e) = As, (s, s') — hr(q') .
such that if for any otheB’ € R(Bs, T), we haveB’ < B, |t A(¢) £ 0, then it specifies those atomic propositions
then £(B) = L(B'). However, this does not imply that j,). (s s') that need to be removed in order to enable
a minimal solution semantically is minimal structurally asye edge in the product state. The label for the edge
well. In other words, it could be the case ti&t and B3, are ((a.9), (¢,) is defined as: L(e) = {y((s, s'),m;) | m; €
minimal relaxations of som&s, and moreover3; requires Ae)} ' '
the modification of only one transition whilg, requires the
modification of two transitions. Therefore, we must define 8. Paths on Graphs labeled with Boolean Variables
distance on the sé(Bs, T), which accounts for the number
of changes from the initial specification automatén

Definition 6: Given a systenf/ and a specification au-
tomatonBs, we define the distance of arty € R(Bs, T)
from Bs to be distg, (B) = > o)eps, [A8.(5:8") —
As(s,s’)| where| - | is the cardinality of the set.

Therefore, Problem 1 can be restated as:

Problem 2: Given a system7 and a specification au-

We now present the problem of finding accepting paths on
Boolean labeled graphs. L&t = {y1,...,y,} be a set of
Boolean variables an€ : (V, E) be a graph with a labeling
functionL : E — P(Y"), wherein each edgec FE is labeled
with a set of Boolean variableb(e) C Y. The label on an
edge indicates that the edgeasablediff all the Boolean
variables on the edge are set to true. > V be a marked
) initial state andF’ C V' be a set of marked final vertices.
tomatpn B.,S sucr) tha}tﬁ(T x By = 0, find B € Problem 3 (Minimal Accepting Path (MAP)JNPUTS. A
arg min{dists, (') | B’ € R(Bs, T)}- set of Boolean variabled”, graph G with edge labeling
A. Minimal Revision as a Graph Problem function L, initial vertexvy and final verticed” C V.

We will solve Problem 2 by introducing Boolean variables OUTPUT. A set Z C Y of minimal cardinality such that
that represent various possible revisions of the spediicat Setting all variables irZ to true andy” — Z to false enables
automatons. Consequently, we extend the existing produc® Path fromu to some final vertex; < I along with a
automator x Bs by adding edges labeled by a conjunctiorfycle fromu; back to itself.
of Boolean revision variables that can enable the edges.Theorem 1:Given an instance of the minimal accepting
The overall problem then becomes one of finding the leaB@th problem(Y, G, L, v, F) and a boundV, the decision
number of Boolean revision variables that need to be set & Problem of whether there exists a truth assignnient Y/
true so that the product graph has an accepting run. such thafZ| < W is NP-Complete.

Revision VariablesWe first add Boolean revision vari- .
ablesy(e;, ;) for each edges; € Ep, and each atomic C. MAP Encoding Into SAT
propositionT; € Ag,(e;) that labels thee; transition on We discuss a SAT-based encoding of the minimal accept-
Bs. The revision variable proposes to relax the edge ing path. Our encoding converts the search for a minimal
by removing7; from its set of atomic propositions. Let truth assignment to pseudo-Booleanptimization problem.
REVVARS represent the set of all revision variables. Let (Y,G, L,vy, F) be a given instance of the minimal

Graphs labeled with Revision Variable®e provide the accepting path problem, wherein the graphhas vertices
formal definition of G4 which corresponds to a productV and edgest C V x V. Our goal is to first produce a
automaton4 while considering the effect of revisions. Boolean formula¥[Y, R] over the Boolean variables ii

Definition 7: Given a systen] and a specification au- and auxiliary variables inR (described below), such that
tomatonBs, we define the grapli 4 = (V, E,vs,V¢, L), for any truth assignment to the variablesn there is an
which corresponds to the produdt= 7 x Bs as follows accepting path if3R)¥[Y, R].

60

The variables inR are of the formREACH(vg,v) and
REACH(vs,v) for every vertexv € V andvy € F. The 50
propositionREACH(vg, v) denotes that vertex is reachable w©
from vy. Similarly forvy € F, the propositiorREACH(vy, v)
denotes that vertex is reachable from;. We will discuss
the encoding of reachability in terms of a Boolean formula.
The encoding consists of many parts that are conjoined 10
together (using the AND operator) to create the final formula T S S ST
involving variables inY” along with variables inR. %

. a) Reachablllty frqmvo and from f. € F. A node ig. 4. The simple environment of Example 1 along with twqeittories

is reachable iff one of its predecessors is reachable and & erated using the revised specifications.

Boolean condition on the edge holds. We assert the following

clauses (assuming that # vy, otherwise only either the

clausegvg, v) or the clausegvy, v) need to be considered): Revision (1) is the one that conforms the most with the

1) If (vg,v) € E, thenREACH(v0, 0) € A\ e 1 (0.0 Y- human i_ntuition of yv_hat a revision to the requirement “Stay

2) If (vo,v) & E, then always inm and visit arear,, then arears, then arear,

and, finally, return to and stay in region while avoiding
arears,” should be. Namely, if there cannot be a solution
REACH(vo,v) < \/ |REACH(wo,u)A A y]. that avoidsr,, then go throughr,. The motion generated
(uw)eE y€L(u,v) under Revision (1) appears in Fig. 4 in light gray.

Revisions (2) and (3) actually generate the same behavior
(see dark gray trajectory in Fig. 4). Namely, the resulting
trajectory does not visit, and does not avoids. To see why
this occurs, let us first consider revision (3). After visgi

REACH(vs,v) < \/ REACH(vf, u) A /\ y |- w3 the specification automaton is in state Thus, now, we
(u,0)EE yeL(uw) have the option to take transitiofs,, s4) to get to region
. ., " , . 1 without having to avoid regiomr,. On the other hand,

b.) Lasso co_ndlt_lon: Finally, we as_sert the existence Revision (2) permits the specification automaton to stay in
of a final state which is reachable from itself: statess until the robot passes over regiag at which point

\/ (REACH(vo, v5) A REACH(v, v7)) the transition(ss, s3) can be taken. N N
We see that there are several minimal revisions some of
which generate different behaviors. Thus, a feedback syste

SMT solvers such as Yices (http:/lyices.csl.sri.com) an the user must supply many such different revisions and
Z3 (http://research.microsoft.com/projects/z3) allow 0 |et the user select one of them.
search for a minimum weight satisfiable by specifying we remark that our alternative implementation of the SAT
weights for setting a variablg to true. encoding of MAP using Answer Set Programming (ASP) and
ClaspD 1.1 [22] returned Revision (2) (along with 3 more
non-minimal revisions) in less than 1 sec. A

In this section, we demonstrate the application of our To evaluate if the solution to the SAT encoding of the
framework on our motivating example and, then, we assessinimal revision problem can be solved efficiently we run a
the feasibility of posing MRP as a satisfiability problemr Fonumber of experiments. The SAT encoding implementation
the experiments, we utilized the ASU supercomputing centevas performed using Answer Set Programming (ASP) [22]
which consists of clusters of Dual 4-core processors, 16Gender ClaspD 1.1. We repeated each experiment many times
Intel(R) Xeon(R) CPU X5355 @2.66 GHz. Our implemen-and we report the minimum, maximum and average real
tations do not utilize the parallel architecture. The @ust running time. Since in some cases the computation time
were used to run the many different test cases in parallel @xceeded the 2hr hard bound that we had set, we also report
a single core. The operating system is CentOS release 5.the number of tests that succeeded out of the total number

Example 2:First, we revisit our motivating Example 1. of trials. Note that the average value is reported for the tes
For this example, we used MiniSat [21] for solving thecases that succeeded in computing a minimal revision.

SAT encoding of MAP. The environment of Fig. 1 was Table | compares the total number of nodes vs the total
abstracted into a state machine with 17 states. Thus, thamber of edges in a graph. For each pair of values we
graphG 4 had 85 states and 140 atomic propositions: 10 ogenerated a random graph where about 20% of nodes are
the specification automaton (5 positive + 5 negative) times Ifinal and the number of atomic propositions is fixed. Each
transitions on the specification automaton. The real rupnirexperiment was executed for a number of nodes and for
time was11.7sec and our implementation returned the 13a sparse graph, a medium connected graph and a dense
revisions. The minimal 3 revisions were: @) s3, s3), 7m2), graph. Each graph is generated randomly by providing the
(2) y((s2,83),74), (3) y((s2,84),ma). number of nodes, the number of edges, the number of atomic

3) If (vy,v) € E, thenREACH(vy,v) < /\yeL(vw) Y.
4) If (vy,v) ¢ E, then

vyEF

V. NUMERICAL EXPERIMENTS

Edges— Sparse2n — 2 Medium: 3n Dense:n?

Nodesn | | min avg max succ min avg max succ min avg max succ
10 0.0 0.1 0.2 | 100/100| 0.0 0.0 0.1 100/100 0.0 0.1 0.9 100/100
100 0.3 0.6 15 | 1007100 0.9 415 | 1934.2] 100/100 | 1425.1| 2541.5| 5970.4| 67/100
200 18 47 24.1 [100/100| 95 273.4 | 6400.8| 77/100 0/100
300 59 | 154 | 76.3 | 100/100| 34.8 | 536.5 | 5624.3| 71/100 0/100
400 147 58.2 | 2449 100/100| 87.1 | 1218.8| 4175.3| 50/100 0/100
500 33.2 | 125.7 | 473.0 | 100/100| 176.8 | 1800.8 | 6939.2 | 48/100 0/100

TABLE |

NUMERICAL EXPERIMENTS. NUMBER OF NODES VERSUS NUMBER OF EDGESTHE REPORTED NUMBERS ARE MINIMUM AVERAGE AND MAXIMUM
RUNNING TIME IN SECONDS AND THE NUMBER OF TRIALS THAT SUCCESBULLY COMPLETED WITHIN 2HR. FOR EACH RANDOMLY GENERATED
GRAPH, THERE WEREn ATOMIC PROPOSITIONS

propositions and the number of final states.

(6]

The experimental results indicate that a specification-feed
back and revision framework based on satisfiability solvers
will be efficient only for small sized problems. The class of
mission and motion planning problems that would generat?s]

graph sizes that can be solved efficiently within our frame
work is task planning for a single mobile robot within small

- but complicated - environments such as an office building.[®!

VI. CONCLUSIONS

[20]

In this paper, we introduced the problem of minimal revi-
sion of specification automata. Namely, if the specification
for a task of a robot is provided as amautomaton and [11]
the specification cannot be satisfied on the model of the
system, then propose a new specification automaton whigf)
defines requirements that can be satisfied on the system.
The challenge in proposing a new specification automaton
is that the new automaton should be as close as possilig
to the initial intent of the user. We proved that actually the

minimal revision problem for specification automata is NPl

complete. We also provided an encoding of the problem
as a satisfiability problem which can be solved by théld]

state-of-art satisfiability solvers. Even though our cotre
solution is efficient for single robot scenarios, we exphat t

polynomial-time approximation or randomized algorithmg16]

will provide efficient solutions for multi-robot scenaridghis
is the topic of our on-going research.

ACKNOWLEDGEMENTS

[17]

The authors would like to thank the anonymous reviewelss]

for their detailed comments and suggestions.

REFERENCES

[1] D. Hristu-Varsakelis, M. Egerstedt, and P. S. Krishrzegaid, “On the
complexity of the motion description language MDLe, Rmoceedings
of the 42nd IEEE CDCDecember 2003, pp. 3360-3365.

[2] W. Zhang and H. G. Tanner, “Composition of motion destip

languages,” irHybrid Systems: Computation and Confrsér. LNCS,

vol. 4981. Springer, 2008, pp. 570-583.

N. Dantam and M. Stilman, “The motion grammar: Linguistiercep-

tion, planning, and control.” ifRobotics: Science and Syster2®11.

M. Karimadini and H. Lin, “Decomposability of global tks for multi-

agent systems,” itn Proc. of the 49th IEEE CDC2010.

G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Papffeemporal

logic motion planning for dynamic robots&utomatica vol. 45, no. 2,

pp. 343-352, Feh. 2009.

(31
(4]
(5]

[19]
[20]

[21]

[22]

M. Kloetzer and C. Belta, “Automatic deployment of dibtrted teams
of robots from temporal logic specificationdEEE Transactions on
Robotics vol. 26, no. 1, pp. 48-61, 2010.

S. G. Loizou and K. J. Kyriakopoulos, “Automatic syntiesf multi-
agent motion tasks based on LTL specifications, Pioceedings of
the 43rd IEEE Conference on Decision and Contibéec. 2004.

A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-bagemo-
tion planning with temporal goals,” international Conference on
Robotics and Automation IEEE, 2010, pp. 2689-2696.

S. Karaman, R. Sanfelice, and E. Frazzoli, “Optimal cohof mixed
logical dynamical systems with linear temporal logic sfieations,”
in IEEE CDGC 2008.

P. Roy, P. Tabuada, and R. Majumdar, “Pessoa 2.0: a atamtr
synthesis tool for cyber-physical systems,”Hroceedings of the 14th
international conference on Hybrid systems: computatind eontro|
ser. HSCC '11. New York, NY, USA: ACM, 2011, pp. 315-316.
H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Teahgdogic
based reactive mission and motion planninggEE Transactions on
Robotics vol. 25, no. 6, pp. 1370 — 1381, 2009.

T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Recedingrizon
control for temporal logic specifications,” iRroceedings of the 13th
ACM international conference on Hybrid systems: compaoiatnd
control. New York, NY, USA: ACM, 2010, pp. 101-110.

J. R. Buchi, “Weak second order arithmetic and finiteomusta,”
Zeitschrift fur Math. Logik und Grundlagen Mathiol. 6, 1960.

4] G. E. Fainekos, “Revising temporal logic specificatiofor motion

planning,” in Proceedings of the IEEE Conference on Robotics and
Automation May 2011.

O. Kupferman, W. Li, and S. A. Seshia, “A theory of muteis with
applications to vacuity, coverage, and fault toleranae Pioceedings
of the International Conference on Formal Methods in Coraput
Aided Design |EEE Press, 2008, pp. 25:1-25:9.

A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev, i&hnostic
information for realizability,” in Verification, Model Checking, and
Abstract Interpretationser. LNCS, F. Logozzo, D. Peled, and L. Zuck,
Eds. Springer, 2008, vol. 4905, pp. 52-67.

R. Konighofer, G. Hofferek, and R. Bloem, “Debuggingrrfwal
specifications using simple counterstrategies, Fatmal Methods in
Computer-Aided Design IEEE, Nov. 2009, pp. 152 —-159.

V. Raman and H. Kress-Gazit, “Analyzing unsynthesieatpecifica-
tions for high-level robot behavior using LTLMoP,” i83rd Interna-
tional Conference on Computer Aided Verificatier. LNCS, vol.
6806. Springer, 2011, pp. 663—668.

S. M. LaValle, Planning Algorithms Cambridge University Press,
2006. [Online]. Available: http://msl.cs.uiuc.edu/phamg/

E. M. Clarke, O. Grumberg, and D. A. PeletYodel Checking
Cambridge, Massachusetts: MIT Press, 1999.

N. Sorensson and N. Een, “Minisat v1.13: A sat solvethvagonflict-
clause minimization,” iln Proc. of SAT Competition: Solver Descrip-
tion, 2005.

C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. K¢rligg Os-
trowski, and T. Schaub, “Conflict-driven disjunctive answget solv-
ing,” in Proceedings of the 11th International Conference on PKRR
G. Brewka and J. Lang, Eds. AAAI Press, 2008, pp. 422-432.

