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Abstract— One of the important challenges in robotics is
the automatic synthesis of provably correct controllers from
high level specifications. One class of such algorithms operates
in two steps: (i) high level discrete controller synthesis and
(ii) low level continuous controller synthesis. In this class of
algorithms, when phase (i) fails, then it is desirable to provide
feedback to the designer in the form of revised specifications
that can be achieved by the system. In this paper, we address
the minimal revision problem for specification automata. That
is, we construct automata specifications that are as “close”as
possible to the initial user intent, by removing the minimum
number of constraints from the specification that cannot be
satisfied. We prove that the problem is computationally hard
and we encode it as a satisfiability problem. Then, the minimal
revision problem can be solved by utilizing efficient SAT solvers.

I. I NTRODUCTION

One of the fundamental challenges in robotics is how
to achieve fully automatic correct-by-design synthesis of
control software. Scalable methods and techniques for syn-
thesizing correct by construction controllers can potentially
revolutionize the design process, yielding huge benefits in
terms of improved safety, reliability and time to market.
Moreover, governmental agencies will have the tools to
certify in short time medical robotic devices, autonomous
automobiles and airplanes etc.

Currently, the automatic synthesis problem for complex
dynamical systems is broken into two levels. First, high level
synthesis of the discrete controller and, subsequently, low
level composition of simple control laws. A variety of such
theories and methodologies exist which are usually classi-
fied based on the high level specification framework. For
example, a very general and well developed framework for
high-level programming is the extended Motion Description
Language (MDLe) [1] which has interesting composition
properties [2]. A more recent attempt to use Context Free
Languages (CFL) for robotic control appears in [3]. Finite
automata are used as a specification language in [4]. Another
very popular formal specification language is temporal logics
with multiple applications in robotics [5]–[12].

Nevertheless, one issue that has not been adequately
addressed so far in such combined high-low level controller
synthesis frameworks is what happens when the high-level
synthesis phase fails. That is, when the specification can-
not be realized in the current environment under the cur-
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rent system dynamics, then the current high-level synthesis
frameworks simply report a failure. Thus, the user is usually
left in the dark as of why the specification failed and, most
importantly, on what the system can actually achieve that is
close to the initial intentions of the user.

In this paper, we study the theoretical foundations of the
specification revision problem when both the system and
the specification can be represented byω-automata [13].
In particular, we focus on the Minimal Revision Problem
(MRP), i.e., finding theclosestsatisfiable specification to the
initial specification, and we prove that the problem is NP-
complete. In view of this negative result, we study whether
encoding MRP as a satisfiability problem and utilizing state-
of-the-art satisfiability solvers provides an efficient solution
to the problem.

The specification revision problem for automata based
planning techniques is a relatively new problem. In our
previous work [14], we introduced the specification revi-
sion problem for Linear Temporal Logic (LTL). There, we
identified conditions such that the minimal revision can be
efficiently solved and we provided a randomized algorithm
to return some specification revision (but not necessarily the
minimal). Finding out why a specification is not satisfiable
on a model is a problem that is very related to the problems
of vacuity and coveragein model checking [15]. Another
related problem is the detection of the causes of unrealiz-
ability in LTL games. In this case, a number of heuristics
have been developed in order to localize the error and
provide meaningful information to the user for debugging
[16], [17]. Along these lines, LTLMop [18] was developed
to debug unrealizable LTL specifications in reactive planning
for robotic applications.

II. PROBLEM FORMULATION

In this paper, we work with discrete abstractions (Finite
State Machines) of the continuous robotic control system [5].
This is a common practice in approaches that hierarchically
decompose the control synthesis problem into high level dis-
crete planning synthesis and low level continuous feedback
controller composition [5], [6], [11]. Each state of the Finite
State Machine (FSM)T is labeled by a number of symbols
from a setΠ = {π0, π1, . . . , πn} that represent regions in the
workspace of the robot or, more generally, in its configuration
space (see [19] for precise definitions of workspace and
configuration spaces). The control requirements for such a
system can be posed using specification automataB with
Büchi acceptance conditions [13] also known asω-automata.

The following example, which is the running example
of this paper, presents such a typical scenario for motion
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Fig. 1. The simple environment of Example 1 along with a low speed
mobile robot trajectory that satisfies the specification.
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Fig. 2. The specification automaton of Example 1.

planning of a mobile robot.
Example 1 (Robot Motion Planning):We consider a mo-

bile robot which operates in a planar environment. The
continuous state variablex(t) models the internal dynamics
of the robot whereas only its positiony(t) is observed. In
this paper, we will consider a 2nd order model of the motion
a planar robot (dynamic model):

ẋ1(t) = x2(t), x1(t) ∈ R
2, x1(0) ∈ X1,0

ẋ2(t) = u(t), x2(t) ∈ R
2, x2(0) = 0, u(t) ∈ U

y(t) = x1(t).

The robot is moving in a convex polygonal environmentπ0

with four areas of interest denoted byπ1, π2, π3, π4 (see
Fig. 1). The robot is placed somewhere in the region labeled
by π1. The robot must accomplish the task: “Stay always in
π0 and visit areaπ2, then areaπ3, then areaπ4 and, finally,
return to and stay in regionπ1 while avoiding areaπ2,” which
is captured by the specification automaton in Fig. 2.

In [5], we developed a hierarchical framework for mo-
tion planning for dynamic models of robots. The hierarchy
consists of a high level logic planner that solves the motion
planning problem for a kinematic model of the robot, e.g.,

ż(t) = u(t), y′(t) = z(t), z(t) ∈ R
2, z(0) ∈ Z0.

Then, the resulting hybrid controller is utilized for the
design of an approximate tracking controller for the dynamic
model. Since the tracking is approximate, the sets that the
atomic propositions map to need to be modified (see Fig. 3)
depending on the maximum speed of the robot so the that
the controller has a guaranteed tracking performance. For
example, in Fig. 3, the regions that now must be visited are
the contracted light gray regions, while the regions to be
avoided are the expanded dark gray regions. However, the
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Fig. 3. The modified environment of Fig. 1 under large bounds on the
permissible accelerationU . The dark gray regions indicate areas that should
be avoided in order to satisfy¬πi while the light gray regions indicate areas
that should be visited in order to satisfyπi.

set modification might make the specification unrealizable.
E.g., in Fig. 3, the robot cannot move fromπ4 to π1 while
avoiding π2, even though the specification can be realized
on the workspace of the robot that the user perceives. In
this case, the user is entirely left in the dark as of why the
specification failed and, more importantly, on what actually
the system can achieve under these new constraints.△

When a specificationB is not satisfiable on a particular
systemT , then the current motion planning and control
synthesis methods [5], [6] based on automata theoretic
concepts simply return that the specification is not satisfiable
without any other user feedback. The goal of this paper is to
study specification feedback mechanisms when the automata
theoretic planning phase fails to return a plan.

Problem 1 (Minimal Revision Problem (MRP)):Given a
systemT and a specification automatonB, if the specifi-
cation B cannot be satisfied onT , then find the “closest”
specificationB′ to B which can be satisfied onT .

Problem 1 was first introduced in [14] for Linear Temporal
Logic (LTL) specifications. In [14], we provided solutions
to the debugging and (not minimal) revision problems and
we demonstrated that we can easily get a minimal revision
of the specification when the discrete controller synthesis
phase fails due to unreachable states in the system. Thus, in
this paper, we concentrate on the harder problem of minimal
revision when all the states onT are reachable.

Assumption 1:All the states onT are reachable.
In this paper, we prove that if the specification is provided

as an arbitraryω-automaton, then a restricted version of the
minimal revision problem is NP-complete. This theoretical
result has profound implications on two fronts.

• First, the LTL MRP is most likely NP-complete as well.
Theω-automata that correspond to LTL formulas are a
restricted subset of all possibleω-automata. However,
the structural properties that cause the NP-completeness
of the problem exist in this restricted class of automata
as well.

• Second, we now know that in order to find polynomial
time solutions to Problem 1, we will either have to
develop randomized algorithms (as we did in [14]) or
develop approximation algorithms.



III. C ONSTRUCTINGDISCRETECONTROLLERS

In this section, we provide a brief review of the automata
based motion planning. This is required in order to under-
stand the new contributions of this paper. In order to useω-
automata to specify requirements for continuous systems, we
need to construct a finite partition of the robot’s workspace
[19]. For that purpose, we can use many efficient cell
decomposition methods for polygonal environments [19].
This results in a topological graphG = (Q,E) which
describes which cells are topologically adjacent, i.e., each
node q ∈ Q in the graph represents a cell and each edge
e = (q, q′) ∈ E in the graph implies topological adjacency
of the cells. Each such cell will be a state in the FSM which
will be labeled by one or more atomic propositions fromΠ.
Next, we formally define the FSM that can be constructed
from the graphG.

Definition 1 (FSM): A Finite State Machine is a tuple
T = (Q,Q0,→T , hT ,Π) where: Q is a set of states;
Q0 ⊆ Q is the set of possible initial states;→T = E ⊆ Q×Q

is the transition relation; and,hT : Q → P(Π) maps each
stateq to the set of atomic propositions that are true onq.

We define apath on the FSM to be a sequence of states
and a trace to be the corresponding sequence of sets of
propositions. Formally, a path is a functionp : N → Q

such that for eachi ∈ N we have p(i) →T p(i + 1)
and the corresponding trace is the function composition
p̄ = hT ◦ p : N → P(Π). The languageL(T ) of T consists
of all possible traces.

In this work, we are interested in theω-automata that will
impose certain requirements on the traces ofT . ω-automata
differ from the classic finite automata in that they accept
infinite strings (traces ofT in our case).

Definition 2: A automaton is a tuple B =
(SB, s

B
0 ,Ω, δB, FB) where: SB is a finite set of states;sB0 is

the initial state;Ω is an input alphabet;δB : SB×Ω → P(SB)
is a transition function; andFB ⊆ SB is a set of final states.

When s′ ∈ δB(s, l), we also write s
l
→B s′ or

(s, l, s′) ∈→B. A run r of B is a sequence of statesr :
N → SB that occurs under an input tracēp taking values in
Ω. That is, fori = 0 we haver(0) = sB0 and for alli ≥ 0 we

haver(i)
p̄(i)
→B r(i+1). Let lim(·) be the function that returns

the set of states that are encountered infinitely often in the
run r of B. Then, a runr of an automatonB over an infinite
tracep̄ is acceptingif and only if lim(r) ∩ FB 6= ∅. This is
called a Büchi acceptance condition. Finally, we define the
languageL(B) of B to be the set of all traces̄p that have a
run that is accepted byB.

A specificationautomaton is an automaton with Büchi ac-
ceptance condition where the input alphabet is the powerset
of the labels of the systemT , i.e., Ω = P(Π). In order to
simplify the discussion in Section IV, we will be using the
following assumptions and notation

• we define the setEB ⊆ S2
B, such that(s, s′) ∈ EB iff

∃l ∈ Ω , s
l
→B s′; and,

• we define the functionλB : S2
B → Ω which maps a pair

of states to the label of the corresponding transition,

i.e., if s
l
→B s′, thenλB(s, s

′) = l; and if (s, s′) 6∈ EB,
thenλB(s, s

′) = ∅.

In brief, our goal is to generate paths onT that satisfy
the specificationBs. In automata theoretic terms, we want to
find the subset of the languageL(T ) which also belongs to
the languageL(Bs). This subset is simply the intersection of
the two languagesL(T ) ∩ L(Bs) and it can be constructed
by taking the productT × Bs of the FSM T and the
specification automatonBs. Informally, the automatonBs

restricts the behavior of the systemT by permitting only
certain acceptable transitions. Then, given an initial state
in the FSM T , we can choose a particular trace from
L(T ) ∩ L(Bs) according to a preferred criterion.

Definition 3: The product automatonA = T × Bs is the
automatonA = (SA, s

A
0 ,P(Π), δA, FA) where:

• SA = Q× SBs
,

• sA0 = {(q0, s
Bs

0 ) | q0 ∈ Q0},
• δA : SA×P(Π) → P(SA) s.t. (qj , sj) ∈ δA((qi, si), l)

iff qi →T qj andsj ∈ δBs
(si, l) with l ⊆ hT (qj),

• FA = Q× F is the set of accepting states.
Note thatL(A) = L(T ) ∩ L(Bs). We say thatBs is

satisfiableon T if L(A) 6= ∅. Moreover, finding a satisfying
path onT ×Bs is an easy algorithmic problem [20]. First, we
convert automatonT ×Bs to a directed graph and, then, we
find the strongly connected components (SCC) in that graph.
If at least one SCC that contains a final state is reachable
from an initial state, then there exist accepting (infinite)runs
on T × Bs that have a finite representation. Each such run
consists of two parts: a part that is executed only once (from
an initial state to a final state) and a part that is repeated
infinitely (from a final state back to itself). Note that if no
final state is reachable from the initial or if no final state is
within an SCC, then the languageL(A) is empty and, hence,
the high level synthesis problem does not have a solution.
Namely, the synthesis phase has failed and we cannot find a
system behavior that satisfies the specificationBs.

IV. T HE SPECIFICATION REVISION PROBLEM

Intuitively, a revised specification is one that can be
satisfied on the discrete abstraction of the workspace or the
configuration space of the robot. In order to search for a
minimal revision, we need first to define an ordering relation
on automata as well as a distance function between automata.
Similar to the case of LTL formulas in [14], we do not want
to consider the “space” of all possible automata, but rather
the “space” of specification automata which are semantically
close to the initial specification automatonBs. The later
will imply that we remain close to the initial intention of
the designer. We propose that this space consists of all the
automata that can be derived fromBs by removing atomic
propositions from the transition input. Our definition of the
ordering relation between automata relies upon the previous
assumption.

Definition 4 (Relaxation):Let B1 = (SB1
, sB1

0 , P(Π),
→B1

, FB1
) and B2 = (SB2

, sB2

0 ,P(Π),→B2
, FB2

) be two
specification automata. Then, we say thatB2 is a relaxation



of B1 and we writeB1 � B2 if and only if SB1
= SB2

= S,
sB1

0 = sB2

0 , FB1
= FB2

and
1) ∀(s, l, s′) ∈→B1

− →B2
. ∃l′ .

(s, l′, s′) ∈→B2
− →B1

and l′ ⊆ l.
2) ∀(s, l, s′) ∈→B2

− →B1
. ∃l′ .

(s, l′, s′) ∈→B1
− →B2

and l′ ⊇ l.
We remark that� is a partial order over specification

automata. Also, ifB1 � B2, then L(B1) ⊆ L(B2) since
the relaxed automaton allows more behaviors to occur. It is
possible that two automataB1 andB2 cannot be compared
under relation�. We can now define the set of automata
over which we will search for a minimal solution that has
nonempty intersection with the system.

Definition 5: Given a systemT and a specification au-
tomatonBs, the set ofvalid relaxationsof Bs is defined as
R(Bs, T ) = {B | Bs � B andL(T × B) 6= ∅}.

We can now search for a minimal solution in the set
R(Bs, T ). That is, we can search for someB ∈ R(Bs, T )
such that if for any otherB′ ∈ R(Bs, T ), we haveB′ � B,
then L(B) = L(B′). However, this does not imply that
a minimal solution semantically is minimal structurally as
well. In other words, it could be the case thatB1 andB2 are
minimal relaxations of someBs, and moreover,B1 requires
the modification of only one transition whileB2 requires the
modification of two transitions. Therefore, we must define a
distance on the setR(Bs, T ), which accounts for the number
of changes from the initial specification automatonBs.

Definition 6: Given a systemT and a specification au-
tomatonBs, we define the distance of anyB ∈ R(Bs, T )
from Bs to be distBs

(B) =
∑

(s,s′)∈EBs

|λBs
(s, s′) −

λB(s, s
′)| where| · | is the cardinality of the set.

Therefore, Problem 1 can be restated as:
Problem 2: Given a systemT and a specification au-

tomaton Bs such that L(T × Bs) = ∅, find B ∈
argmin{distBs

(B′) | B′ ∈ R(Bs, T )}.

A. Minimal Revision as a Graph Problem

We will solve Problem 2 by introducing Boolean variables
that represent various possible revisions of the specification
automatonBs. Consequently, we extend the existing product
automatonT ×Bs by adding edges labeled by a conjunction
of Boolean revision variables that can enable the edges.
The overall problem then becomes one of finding the least
number of Boolean revision variables that need to be set to
true so that the product graph has an accepting run.

Revision Variables:We first add Boolean revision vari-
ablesy(ei, πj) for each edgeei ∈ EBs

and each atomic
propositionπj ∈ λBs

(ei) that labels theei transition on
Bs. The revision variable proposes to relax the edgeei
by removingπj from its set of atomic propositions. Let
REVVARS represent the set of all revision variables.

Graphs labeled with Revision Variables:We provide the
formal definition of GA which corresponds to a product
automatonA while considering the effect of revisions.

Definition 7: Given a systemT and a specification au-
tomatonBs, we define the graphGA = (V,E, vs, Vf , L),
which corresponds to the productA = T × Bs as follows

• V = S is the set of nodes
• E = EA ∪ ED ⊆ S × S, where EA is the set

of edges that correspond to transitions onA, i.e.,
((q, s), (q′, s′)) ∈ EA iff ∃l ∈ P(Π) . (q, s)

l
→A

(q′, s′); and ED is the set of edges that correspond
to disabled transitions, i.e.,((q, s), (q′, s′)) ∈ ED iff

q →T q′ ands
l
→Bs

s′ with l ∩ (Π− hT (q
′)) 6= ∅.

• vs = sA0 is the source node,
• Vf = FA is the set of sinks,
• L : E → P(REVVARS) maps each edge of the graph

with a set of revision variables that need to be set to true
in order to enable it. The construction of the labeling
function will be described subsequently.

We describe the construction of the labeling function
L : E → P(REVVARS) for the product graphA. Let
e = ((q, s), (q′, s′)) be an edge inA corresponding to edge
ei = (s, s′) in Bs and edge(q, q′) in T . Consider the set of
atomic propositions given byΛ(e) = λBs

(s, s′) − hT (q
′) .

If Λ(e) 6= ∅, then it specifies those atomic propositions
in λBs

(s, s′) that need to be removed in order to enable
the edge in the product state. The label for the edgee =
((q, s), (q′, s′)) is defined as:L(e) = {y((s, s′), πj) | πj ∈
Λ(e)}

B. Paths on Graphs labeled with Boolean Variables

We now present the problem of finding accepting paths on
Boolean labeled graphs. LetY = {y1, . . . , ym} be a set of
Boolean variables andG : (V,E) be a graph with a labeling
functionL : E → P(Y ), wherein each edgee ∈ E is labeled
with a set of Boolean variablesL(e) ⊆ Y . The label on an
edge indicates that the edge isenablediff all the Boolean
variables on the edge are set to true. Letv0 ∈ V be a marked
initial state andF ⊆ V be a set of marked final vertices.

Problem 3 (Minimal Accepting Path (MAP)):INPUTS: A
set of Boolean variablesY , graph G with edge labeling
functionL, initial vertexv0 and final verticesF ⊆ V .

OUTPUT: A set Z ⊆ Y of minimal cardinality such that
setting all variables inZ to true andY −Z to false enables
a path fromv0 to some final vertexvf ∈ F along with a
cycle fromvf back to itself.

Theorem 1:Given an instance of the minimal accepting
path problem(Y,G, L, v0, F ) and a boundW , the decision
of problem of whether there exists a truth assignmentZ ⊆ Y

such that|Z| ≤ W is NP-Complete.

C. MAP Encoding Into SAT

We discuss a SAT-based encoding of the minimal accept-
ing path. Our encoding converts the search for a minimal
truth assignment to apseudo-Booleanoptimization problem.

Let (Y,G, L, v0, F ) be a given instance of the minimal
accepting path problem, wherein the graphG has vertices
V and edgesE ⊆ V × V . Our goal is to first produce a
Boolean formulaΨ[Y,R] over the Boolean variables inY
and auxiliary variables inR (described below), such that
for any truth assignment to the variables inY , there is an
accepting path iff(∃R)Ψ[Y,R].



The variables inR are of the formREACH(v0, v) and
REACH(vf , v) for every vertexv ∈ V and vf ∈ F . The
propositionREACH(v0, v) denotes that vertexv is reachable
from v0. Similarly for vf ∈ F , the propositionREACH(vf , v)
denotes that vertexv is reachable fromvf . We will discuss
the encoding of reachability in terms of a Boolean formula.
The encoding consists of many parts that are conjoined
together (using the AND operator) to create the final formula
involving variables inY along with variables inR.

a) Reachability fromv0 and from vf ∈ F : A node
is reachable iff one of its predecessors is reachable and the
Boolean condition on the edge holds. We assert the following
clauses (assuming thatv0 6= vf , otherwise only either the
clauses(v0, v) or the clauses(vf , v) need to be considered):

1) If (v0, v) ∈ E, thenREACH(v0, v) ⇔
∧

y∈L(v0,v)
y.

2) If (v0, v) 6∈ E, then

REACH(v0, v) ⇔
∨

(u,v)∈E



REACH(v0, u) ∧
∧

y∈L(u,v)

y



 .

3) If (vf , v) ∈ E, thenREACH(vf , v) ⇔
∧

y∈L(vf ,v)
y.

4) If (vf , v) 6∈ E, then

REACH(vf , v) ⇔
∨

(u,v)∈E



REACH(vf , u) ∧
∧

y∈L(u,v)

y



 .

b) “Lasso” condition: Finally, we assert the existence
of a final state which is reachable from itself:

∨

vf∈F

(REACH(v0, vf ) ∧ REACH(vf , vf ))

SMT solvers such as Yices (http://yices.csl.sri.com) and
Z3 (http://research.microsoft.com/projects/z3) allow us to
search for a minimum weight satisfiable by specifying
weights for setting a variabley to true.

V. NUMERICAL EXPERIMENTS

In this section, we demonstrate the application of our
framework on our motivating example and, then, we assess
the feasibility of posing MRP as a satisfiability problem. For
the experiments, we utilized the ASU supercomputing center
which consists of clusters of Dual 4-core processors, 16GB
Intel(R) Xeon(R) CPU X5355 @2.66 GHz. Our implemen-
tations do not utilize the parallel architecture. The clusters
were used to run the many different test cases in parallel on
a single core. The operating system is CentOS release 5.5.

Example 2:First, we revisit our motivating Example 1.
For this example, we used MiniSat [21] for solving the
SAT encoding of MAP. The environment of Fig. 1 was
abstracted into a state machine with 17 states. Thus, the
graphGA had 85 states and 140 atomic propositions: 10 on
the specification automaton (5 positive + 5 negative) times 14
transitions on the specification automaton. The real running
time was11.7 sec and our implementation returned the 13
revisions. The minimal 3 revisions were: (1)y((s3, s3),¬π2),
(2) y((s2, s3), π4), (3) y((s2, s4), π4).
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Fig. 4. The simple environment of Example 1 along with two trajectories
generated using the revised specifications.

Revision (1) is the one that conforms the most with the
human intuition of what a revision to the requirement “Stay
always inπ0 and visit areaπ2, then areaπ3, then areaπ4

and, finally, return to and stay in regionπ1 while avoiding
areaπ2,” should be. Namely, if there cannot be a solution
that avoidsπ2, then go throughπ2. The motion generated
under Revision (1) appears in Fig. 4 in light gray.

Revisions (2) and (3) actually generate the same behavior
(see dark gray trajectory in Fig. 4). Namely, the resulting
trajectory does not visitπ4 and does not avoidπ2. To see why
this occurs, let us first consider revision (3). After visiting
π3 the specification automaton is in states2. Thus, now, we
have the option to take transition(s2, s4) to get to region
π1 without having to avoid regionπ2. On the other hand,
Revision (2) permits the specification automaton to stay in
states3 until the robot passes over regionπ2 at which point
the transition(s2, s3) can be taken.

We see that there are several minimal revisions some of
which generate different behaviors. Thus, a feedback system
to the user must supply many such different revisions and
let the user select one of them.

We remark that our alternative implementation of the SAT
encoding of MAP using Answer Set Programming (ASP) and
ClaspD 1.1 [22] returned Revision (2) (along with 3 more
non-minimal revisions) in less than 1 sec. △

To evaluate if the solution to the SAT encoding of the
minimal revision problem can be solved efficiently we run a
number of experiments. The SAT encoding implementation
was performed using Answer Set Programming (ASP) [22]
under ClaspD 1.1. We repeated each experiment many times
and we report the minimum, maximum and average real
running time. Since in some cases the computation time
exceeded the 2hr hard bound that we had set, we also report
the number of tests that succeeded out of the total number
of trials. Note that the average value is reported for the test
cases that succeeded in computing a minimal revision.

Table I compares the total number of nodes vs the total
number of edges in a graph. For each pair of values we
generated a random graph where about 20% of nodes are
final and the number of atomic propositions is fixed. Each
experiment was executed for a number of nodes and for
a sparse graph, a medium connected graph and a dense
graph. Each graph is generated randomly by providing the
number of nodes, the number of edges, the number of atomic



Edges→ Sparse:2n− 2 Medium: 3n Dense:n2

Nodesn ↓ min avg max succ min avg max succ min avg max succ
10 0.0 0.1 0.2 100/100 0.0 0.0 0.1 100/100 0.0 0.1 0.9 100/100
100 0.3 0.6 1.5 100/100 0.9 41.5 1934.2 100/100 1425.1 2541.5 5970.4 67/100
200 1.8 4.7 24.1 100/100 9.5 273.4 6400.8 77/100 0/100
300 5.9 15.4 76.3 100/100 34.8 536.5 5624.3 71/100 0/100
400 14.7 58.2 244.9 100/100 87.1 1218.8 4175.3 50/100 0/100
500 33.2 125.7 473.0 100/100 176.8 1800.8 6939.2 48/100 0/100

TABLE I

NUMERICAL EXPERIMENTS: NUMBER OF NODES VERSUS NUMBER OF EDGES. THE REPORTED NUMBERS ARE MINIMUM, AVERAGE AND MAXIMUM

RUNNING TIME IN SECONDS AND THE NUMBER OF TRIALS THAT SUCCESSFULLY COMPLETED WITHIN 2HR. FOR EACH RANDOMLY GENERATED

GRAPH, THERE WEREn ATOMIC PROPOSITIONS.

propositions and the number of final states.
The experimental results indicate that a specification feed-

back and revision framework based on satisfiability solvers
will be efficient only for small sized problems. The class of
mission and motion planning problems that would generate
graph sizes that can be solved efficiently within our frame-
work is task planning for a single mobile robot within small
- but complicated - environments such as an office building.

VI. CONCLUSIONS

In this paper, we introduced the problem of minimal revi-
sion of specification automata. Namely, if the specification
for a task of a robot is provided as anω-automaton and
the specification cannot be satisfied on the model of the
system, then propose a new specification automaton which
defines requirements that can be satisfied on the system.
The challenge in proposing a new specification automaton
is that the new automaton should be as close as possible
to the initial intent of the user. We proved that actually the
minimal revision problem for specification automata is NP-
complete. We also provided an encoding of the problem
as a satisfiability problem which can be solved by the
state-of-art satisfiability solvers. Even though our current
solution is efficient for single robot scenarios, we expect that
polynomial-time approximation or randomized algorithms
will provide efficient solutions for multi-robot scenarios. This
is the topic of our on-going research.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their detailed comments and suggestions.

REFERENCES

[1] D. Hristu-Varsakelis, M. Egerstedt, and P. S. Krishnaprasad, “On the
complexity of the motion description language MDLe,” inProceedings
of the 42nd IEEE CDC, December 2003, pp. 3360–3365.

[2] W. Zhang and H. G. Tanner, “Composition of motion description
languages,” inHybrid Systems: Computation and Control, ser. LNCS,
vol. 4981. Springer, 2008, pp. 570–583.

[3] N. Dantam and M. Stilman, “The motion grammar: Linguistic percep-
tion, planning, and control.” inRobotics: Science and Systems, 2011.

[4] M. Karimadini and H. Lin, “Decomposability of global tasks for multi-
agent systems,” inin Proc. of the 49th IEEE CDC, 2010.

[5] G. E. Fainekos, A. Girard, H. Kress-Gazit, and G. J. Pappas, “Temporal
logic motion planning for dynamic robots,”Automatica, vol. 45, no. 2,
pp. 343–352, Feb. 2009.

[6] M. Kloetzer and C. Belta, “Automatic deployment of distributed teams
of robots from temporal logic specifications,”IEEE Transactions on
Robotics, vol. 26, no. 1, pp. 48–61, 2010.

[7] S. G. Loizou and K. J. Kyriakopoulos, “Automatic synthesis of multi-
agent motion tasks based on LTL specifications,” inProceedings of
the 43rd IEEE Conference on Decision and Control, Dec. 2004.

[8] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based mo-
tion planning with temporal goals,” inInternational Conference on
Robotics and Automation. IEEE, 2010, pp. 2689–2696.

[9] S. Karaman, R. Sanfelice, and E. Frazzoli, “Optimal control of mixed
logical dynamical systems with linear temporal logic specifications,”
in IEEE CDC, 2008.

[10] P. Roy, P. Tabuada, and R. Majumdar, “Pessoa 2.0: a controller
synthesis tool for cyber-physical systems,” inProceedings of the 14th
international conference on Hybrid systems: computation and control,
ser. HSCC ’11. New York, NY, USA: ACM, 2011, pp. 315–316.

[11] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal logic
based reactive mission and motion planning,”IEEE Transactions on
Robotics, vol. 25, no. 6, pp. 1370 – 1381, 2009.

[12] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Recedinghorizon
control for temporal logic specifications,” inProceedings of the 13th
ACM international conference on Hybrid systems: computation and
control. New York, NY, USA: ACM, 2010, pp. 101–110.

[13] J. R. Buchi, “Weak second order arithmetic and finite automata,”
Zeitschrift für Math. Logik und Grundlagen Math., vol. 6, 1960.

[14] G. E. Fainekos, “Revising temporal logic specifications for motion
planning,” in Proceedings of the IEEE Conference on Robotics and
Automation, May 2011.

[15] O. Kupferman, W. Li, and S. A. Seshia, “A theory of mutations with
applications to vacuity, coverage, and fault tolerance,” in Proceedings
of the International Conference on Formal Methods in Computer-
Aided Design. IEEE Press, 2008, pp. 25:1–25:9.

[16] A. Cimatti, M. Roveri, V. Schuppan, and A. Tchaltsev, “Diagnostic
information for realizability,” in Verification, Model Checking, and
Abstract Interpretation, ser. LNCS, F. Logozzo, D. Peled, and L. Zuck,
Eds. Springer, 2008, vol. 4905, pp. 52–67.

[17] R. Konighofer, G. Hofferek, and R. Bloem, “Debugging formal
specifications using simple counterstrategies,” inFormal Methods in
Computer-Aided Design. IEEE, Nov. 2009, pp. 152 –159.

[18] V. Raman and H. Kress-Gazit, “Analyzing unsynthesizable specifica-
tions for high-level robot behavior using LTLMoP,” in23rd Interna-
tional Conference on Computer Aided Verification, ser. LNCS, vol.
6806. Springer, 2011, pp. 663–668.

[19] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006. [Online]. Available: http://msl.cs.uiuc.edu/planning/

[20] E. M. Clarke, O. Grumberg, and D. A. Peled,Model Checking.
Cambridge, Massachusetts: MIT Press, 1999.

[21] N. Sorensson and N. Een, “Minisat v1.13: A sat solver with conflict-
clause minimization,” inIn Proc. of SAT Competition: Solver Descrip-
tion, 2005.

[22] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König, M. Os-
trowski, and T. Schaub, “Conflict-driven disjunctive answer set solv-
ing,” in Proceedings of the 11th International Conference on PKRR,
G. Brewka and J. Lang, Eds. AAAI Press, 2008, pp. 422–432.


