ROBUSTNESS OF MODEL-
BASED SIMULATIONS

Georgios Fainekos, Arizona State University
Sriram Sankaranarayanan, University of Colorado’
Franjo lvancic, NEC Labs

Aarti Gupta, NEC Labs

' Work performed
at NEC Labs

Roundoff and truncation errors

Consider the function (Rumpbo
f (a, b)) 9b+°QALXB YB1I &) + SalZbb

Using roundto-nearest IEEE/54 arithmetic, théunctionf for
a = /77617andb = 33096evaluates to

1.172604 (32-bit)
1.1726039400531786 (64-bit)
1.1726039400531786318588349045201838 (128bit)

By increasing the precision, we seem to derive more accurate
results!

* E. Loh and G. W Wal ster. Rumpds example revi si

Roundoff and truncation errors

But, this is deceiving!
The correct answer IS:
f (a, 0b)82%73196059946821368141

Not even the sign is correct!

The Patriot missile defense system failure

The software estimated the future position of the incoming
missile based on the velocity and the last position as returne
by the radar

The software modeled time in increments df ec.

0.1itself can not be accurately represented in the underlying
24-bit fixed-point register.

As a result, the accumulated errors caused a drift in the

computed times when the system was operational for many
hours.

Ultimately, this led to a failure to track and intercept incoming
missiles.

* M. Blair, S. Obenski, and P. Bridickas. Patriot missile software problem. Technical Report
GAO/IMTEC -92-26, United States General Accounting Office, 1992

The Patriot missile defense system failure
N

In the analysisof Cybd? hy s c a |

floating-point rounding and truncation errors are
Important
but there exist more sources of errors

uncertain parameters

uncertain inputs

numerical integration errors

Contributions: What Is this paper about?

We Investigate theobustnessof model generated
simulations under

numerical errors
floating-point rounding andtruncation errors
parameter uncertainties
Input uncertainties
The model based design environment we target IS
Simulink
Validated simulation without model conversion

The roadmap of this presentation

Introduction

Themodel of CPS that we use
Our definition of robustness
Formal problem definition
Solution overview

Validated arithmetics

Detalls for discretéime systems
Detalls for continuousime systems
Detalls for mixed signal systems
Conclusions

What is the model of CPS that we use?

What is the model of CPS that we use?

Simulink
T

[- untitled =Bl 38

R — - - =B S | Simulation Format Tools Hel
I i Lrary e i -
Fie Edit View Help 3 [=] | H= = 9 |ETJ (Al r m |1D.1] |Nurrna| ;”
: O = = Enter search term El“ -
Libraries | Library: Simulink | Search Results: (none)
=] Simulink -
-~ Commonhy Used Blocks ﬂ

- Continuous

| »

P Commonly Used Blods

- Discontinuities

-~ Discrete
Continuous

- Logic and Bit Operations
- Lockup Tables

- Math Operations Discontinuities
- Model Verification

- Model-Wide Utilities
- Ports & Subsystems
- Signal Attributes

- Signal Routing

- Sinks

- Sources

5

Discrete

=

£

iRy

Logic and Bit Operaticns

- ser-Defined Functions Lockup Tables J
[+]- Additional Math & Discrete

| [+ Wgh| Mutti-Parametric Toolbox L

|| - %] Real-Time Workshop *= |lm% | |Ddﬂ5 <

Math Operations
| - T Simulink Extras L. I

[E Stateflow —
., B 1 skl Daalin Tanlhn:

Block Description x

Commonly Used Blocks: L

l.n- e e

Simulink
O
= (=& %)

= a— i i .

r —— - =B S | Simulation Format Tools Help
ﬂ&mulkalbmwBr‘u-wser‘ a4 & . S & — —

Fie Edt View Help b B4 |2 » =00 [Nomal =l
O = = Enter search term El“
Libraries | Library: Simulink | Search Results: (none)
= g Simulink B

-~ Commonhy Used Blocks ﬂ

- Continuous
- Discontinuities

~Discrete v\ Continuous L]
L]

- Logic and Bit Operations .
Lockup bl M| Simple_2d_model basic <at g (=B & |

- lMath Operations
-~ Model Verification File Edit Wiew Simulation Format Tools Help

- ModelVWide Uilties
D|Eﬂn§|%ﬁl|¢=ﬁ‘i}|§2|i l|15 INnrrnaI ;”

P Commonly Used Blods

- Ports & Subsystems

- Signal Attributes

- Signal Routing

- Sinks

- Sources

- ser-Defined Functions
[+- Additional Math & Discrete
(- W] Mutti-Parametric Toolbox
|| (- | Reak-Time Workshop

i []--ﬂ Simulink Extras

| = stateflow

[, nl Virtnal Daalihe Tanlho
i + I

Block Description

m

=£]

1 1
—."; + .";

Integrator Integratori

[&

| [+ 5]

Commonly Used Blocks: Gain Saturation

= = REEd!I' |1U'U3'E | |U‘d'ﬂ]

Simulink & Hybrid Automata

e e e w l=[E=] % |
D & HS e i =~ if in_signal >=1
return 1
> s elseif in_signal <= -1
iniegreter return -1
else
return in_signal
end

Ready 100% I odel

Our approach

We do not do such a translation

Potential exponential blowp in the number of
discrete locations

Unknown Simulink semantics

Instead we simulate and capture the current
operating point

We derive system dynamics

We derive system constraints

Concrete + Symbolic simulation

Do symbolic analysis of the Simulink model
Derive location dynamicsix,/dt = f;(X;,p;,U;,t)
Derive location constraintg(x;,|p;,u;,t)Q0

What do we mean by robustness?

Blue is a robust trajectory

What do we mean by robustness?

Blue is NOT a robust trajectory

Trajectory robustness

Under
Floating point errors
Uncertain parameters
Uncertain inputs
Possible numerical errors
the trajectory of the system should follow the sam

seguence of discrete transitions as the simulated
one

Problem definition

Given a Simulink modeb, a set of uncertain initial

conditionsX, and parametens, determine points In
time when the Simulink simulation trajectory Is not

robust.

Solution overview: RobSim

Simulink model

Instrument

l

SLTRACE

lteration Symbolic Model
Trace generator Generator
Numerical | | piscrete - 1 =
Simulator | time Validated || Validated
Simulator | Integrator
| -
/ \ Continuous
\ Comparison / time
R Warnings-
Graphs

' Robust Simulation Toolbox

\ User OQutput

Design Flow Using RobSim

Wowl

Input

Simulink model

No

Traditional
Testing

Satisfied
?

iYes

Automatic Code
Generation

ance?

Satisfied
?

Yes

No

RobSim

Y

Embedded Code

A A A4

Lutput

Interval Arithmetic

x |A Is an arithmetic for validated computations
0 Introduced by Moore several decadg®

x |A computes a range in machine arithmetic that contains the
result of the operation in reatithmetic

x An |A quantity x Is a range [xX]

X You can bound any nonlinear function
0 The approximation might be t@mmnservative

Interval Arithmetic

o Addition:
X+y =X+ Iy yd = X +yn Xty

o0 Multiplication:

Xy = [XI ' Xu][yI’ yu] =
= [mln{X|y|, leu’ Xuyh Xuyu}’ maX{XIyI’ leu’ XuyI’ Xuyu}]

0 We can capture floatingoint rounding errors by rounding
down for the lower bound and rounding up for the upper
bound

0 Problems:
A subdistributive, i.e., [x] ([y] + [z])P [X] [y] + [X] [z]
A it has no additive and no multiplicative inverse.

Affine Arithmetic

AA is a tool for validated computations
Introduced byCombaandStolfi in 1993

AA keeps track ofirst-order correlationan computations
AA provides tighter interval estimates than IA in many cases
AA provides additional information that can be exploited

AA represents a quantity x with affineform

<x> =X+ XU+ x,U0+ € x &
X, A is the central value
Ul [-1,+1] are independent but unknown terms
x. ¥ A are coefficients assigning a weight to each term
nis not fixed,new terms are created during computation
If OF <x>, thenOT [xo-xi-6 Il %t + éxdl]

Affine Arithmetic

Addition

<xX>+<y> = (%o BxU) + (Vo BYW) = (% + Yo) + Ex+y;)U
Multiplication

<X><y> = (Xo+ ExU)Vo+ EVY) = %Yo+ EOoy)U+ Exyo)U+ 20,
Any nonlinear function can be approximated

The approximation can be conservative

The usual properties of real arithmetic hold

We created our own toolbox for affine arithmetic in Matlab
AffLab
which is based on IntLab the interval arithmetic toolbox by Rump.

A discrete time example

W templ_mod_dt G X
File Edit View Simulation Format Help
DS H&S b= o [Nomal JBeRe nEE®
et 1
Gain
-+ ET=
_ St | -l ——
Step -1 oo’
Subtract Abhs Switch Integrator Gain?
o fi? Integratorl Gain3 Integrator?
Gainl
Gain3
Gain4
Ready 100% odel

Comparison of the 2 arithmetics

Computation time for 1400 samples © 17sec ~ Computation time for 1400 samples ° 122sec,
number of affine terms 11187

Figure 1 =[E] = | Figure 2 =[E] = |
File Edit View Insert Tools Desktop Window Help N File Edit View Insert Tools Desktop Window Help k|
DEdS | | ARRODEL- S| 0EH D Ddde | | RKROTOEL- (@ 0E a0

6 T T T T T T T 6

5L

4L

| o)

= 1 1 1 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 0 200 400 600 800 1000 1200 1400

(a) Result of the simulation using interval (b) The same simulation using affine
arithmetic. ValSim warns that at arithmetic. The result indicates that the
sampling point 342 the Switch could Simulink simulation is correct. The warning in
have chosen either signal due to (a) is due to conservative approximations of

accumulated errors. the rounding errors by interval arithmetic.

How to do validated computations on discratee

models.

[W templ_mod_dt =
File Edit View Simulation Format Teols Help
hEEdS P =0 Nomal S EHe B e EE®
il
w |/
| —f o i Nias
Step = - I i -1 i’
Subtract Abhs Switch Integrator Gain?
o fi? Integratorl Gain3 Integrator?
Gainl
Gain3
if middle_signal >= threshold
return upper_signal < ‘
Gaind
else
return lower_signal
end
{Ready 100% odel

How to do validated computations on discratee

models.

W templ_mod_dt

File Edit View Simulation Format Teols Help

O =zEE

P

20

|N|:|rrna|

] |

Step

{=L1

ya
¥ 7

b

KTs
1

Switch

Simulink: Xk)+K dt u(k)
Validated: <x>(k)+<K> [dt][u](k)

TEgTato

Gain2

—

H‘Rea dy

tegrato

Gain3

Gain3 tegrato

(o)

100%

odel

Red: we repeat the Simulink operation using validated arithmetics

Green: we compare numerical values and validated quantities and we
record any potential violations

How to do validated computations on continutiuse

models.
B templ_mod |ﬂl
Fi Edit View Help
D= E& b= 0 |Nomal B RhEel hEES®
B
Gain
>+ 1
- e ul
Ste 1
P Subtract Abs Switch Integrator 5 5 »
-k Gain3 Integrator? Scope

Ready 100% odel
e e ee——_—SS—

Same process as with discrtee models,
but now we do symbolic computations.
Currently, the model must be linear.

How to do validated computations on continutiuse
models.

From the symbolic computation, we derive
the current system dynamics
dx/dt= A(p)x+B(p)u+v(p)
the current state constraints:
g(x,p,uy0
The state of the system at the next time step will b
<x6 > A<y (ignore inputs)
For the inputs see Section IV.B in the paper
Similarly, we can compute an enclosure for the
system states between two time samples

The enclosure is used for checking the current state
constraints

0.5

-0.5

-1.5

Continuoustime Example

El Simple_2d_model_basic_sat_fig

=

=

=l

odel

=

10

12

14

Solution using ODE45 solver
Variable stegsize
Total of 84 sim. points

14 warnings
2 comparison warnings
12 integration errors

Example:
ta2.26 or i=20

Using verified integration we
detect that there might be
saturation:

1y [0. 7132, 1.

But in numerical simulation no
saturation occurs:

1=19: 0.8453 < 1

i=20: 0.8801 < 1

0

Mixed-Signal Systems

Discretetime
Controller

zoh

Continuoustime
Plant

Mixed-Signal Example

p| X' =Ax+Bu > | MATLAB o >
y = Cx+Du J_L\— Function 5 J_L\—
u
State-Space Zero-Order MATLAB Fcn Unit Delay Zero-Order
Hold2 Hold 1

1o
(1) = 8) ux(t)+ng‘J“(t)

F(x) = —297.63x1 — 31.9225 + 203.5627 + 87.34x120 — 6.585 + 132.3527
+ 1429927 w0 + 12.742 25 — 9.2225 — 48.342] — 199.3527 25
+7.920705 — 3.4 05 — 1.1723.

Mixed-Signal Example

=g 001 002 003 004 005 006 007 008 009 0.1

RobSim Developed Components

Simulink support for validated computations
Most of the basic blocks are currently supported

Implementation by overloading operators
Any arithmetic implemented in Matlab can be used (intval, affnum, intnum).

Allows seamless integration of other arithmetics in the future, for example,
probabilistic arithmetics

Affine Arithmetic Toolbox (AffNum) for Matlab

Built upon IntLab- a toolbox for Interval Computations by Pr8iegfried
M. Rump Hamburg University of Technology & Waseda University)

Full support of affine operations
Most commonly used nelmear functions in Matlab are supported

Validated Solution of Linear Ordinary Differential Equations

Takes into account floating point rounding errors, uncertain parameters
and sets of initial conditions

RobSim: Improvements and Additions

Heuristics for interchange of computations in I1A and A
Improve speed while achieving good accuracy

Validated integration for nonlinear systems

Current support only for linear systems

This requires the derivation of the mathematical model of the
system through symbolic manipulations

Validated computation of the exponential of a matrix
Currently is done through Taylor expansion
Support for more Simulink blocks and Stateflow

Required for industrial size examples
the Simulink block library is large!

Appendix

Common blocks supported

Blocks

A u p

Abs: It outputs the absolute value of the input signal. There
are no parameters to set.

>>>

Gain: This 1s multiplication with a constant. The constant can
be a semi-symbolic value defined through the parameter map.

Product: This blocks multiplies the input signals. Any num-
ber of input signals under multiplication are supported. The

x b product block should be used with caution; since if it multi-
plies two continuous states of a model, then it will create a
nonlinear system.

%N Saturation: It saturates the input signal. The upper and lower

limits can only be numeric values.

Subsystem: It is used to group Simulink blocks. Only two
subsystems are currently supported: subsystems with only in-
put and output ports and subsystems with an enable port.

Sum: This block sums the values of the input signals. Any
number of input signals under addition or subtraction are sup-
ported.

g

Switch: It switches between two input signals according to
the value of a third signal. The switching threshold can only
be a numeric value.

Common blocks supported

Sources

1

>

Constant: The constant value that the block outputs can be
a semi-symbolic value defined through the parameter map.

