
ROBUSTNESS OF MODEL-

BASED SIMULATIONS

RTSS 2009, Washington D.C., 2009.12.04

Georgios Fainekos, Arizona State Universityǃ

Sriram Sankaranarayanan, University of Coloradoǃ

Franjo Ivancic, NEC Labs

Aarti Gupta, NEC Labs

ǃWork performed
at NEC Labs

Round-off and truncation errors
2

Consider the function (Rumpôs example)*

f(a, b) = (333.75īa2)b6+a2(11a2b2ī121b4ī2)+5.5b8+a/2b

Using round-to-nearest IEEE-754 arithmetic, the function f for

a = 77617 and b = 33096 evaluates to

1.172604 (32-bit)

1.1726039400531786 (64-bit)

1.1726039400531786318588349045201838 (128-bit)

By increasing the precision, we seem to derive more accurate

results!

*E. Loh and G. W. Walster. Rumpôs example revisited. Reliable Computing, 8:245248, 2002.

Round-off and truncation errors

But, this is deceiving!

The correct answer is:

f(a, b) = ī0.827396059946821368141165095479816é

Not even the sign is correct!

3

The Patriot missile defense system failure*

Ã The software estimated the future position of the incoming

missile based on the velocity and the last position as returned

by the radar

Ã The software modeled time in increments of 0.1 sec.

Ã 0.1 itself can not be accurately represented in the underlying

24-bit fixed-point register.

Ã As a result, the accumulated errors caused a drift in the

computed times when the system was operational for many

hours.

Ã Ultimately, this led to a failure to track and intercept incoming

missiles.

4

* M. Blair, S. Obenski, and P. Bridickas. Patriot missile software problem. Technical Report

GAO/IMTEC -92-26, United States General Accounting Office, 1992

The Patriot missile defense system failure
5

In the analysis of Cyber-Physical Systems é

Ã floating-point rounding and truncation errors are

important

Ã but there exist more sources of errors

Äuncertain parameters

Äuncertain inputs

Änumerical integration errors

6

Contributions: What is this paper about?

Ã We investigate the robustness of model generated

simulations under

Änumerical errors

Ä floating-point rounding and truncation errors

Äparameter uncertainties

Ä input uncertainties

Ã The model based design environment we target is

Simulink

ÄValidated simulation without model conversion

7

The roadmap of this presentation

X Introduction

Ã The model of CPS that we use

Ã Our definition of robustness

Ã Formal problem definition

Ã Solution overview

Ã Validated arithmetics

Ã Details for discrete-time systems

Ã Details for continuous-time systems

Ã Details for mixed signal systems

Ã Conclusions

8

What is the model of CPS that we use?
9

L1

L2

L3

()tupxfx ,,, 11111=#

()tupxfx ,,, 22222 =#

()tupxfx ,,, 33333 =#

What is the model of CPS that we use?
10

L1

L2

L3

Simulink
11

Simulink
12

if in_signal >= 1

return 1

elseif in_signal <= - 1

return - 1

else

return in_signal

end

)(
11

10
)(txtx ù

ú

ø
é
ê

è

--
=# ù

ú

ø
é
ê

è

-
+ù

ú

ø
é
ê

è
=

1

0
)(

01

10
)(txtx#

ù
ú

ø
é
ê

è
+ù

ú

ø
é
ê

è
=

1

0
)(

01

10
)(txtx#

12 21 ²+xx

12 21 <+xx12 21 ->+xx

12 21 -¢+xx

Simulink & Hybrid Automata
13

Our approach

Ã We do not do such a translation

ÄPotential exponential blow-up in the number of

discrete locations

ÄUnknown Simulink semantics

Ã Instead we simulate and capture the current

operating point

ÄWe derive system dynamics

ÄWe derive system constraints

14

Concrete + Symbolic simulation
15

L1

L2

L3

Do symbolic analysis of the Simulink model

Derive location dynamics: dx1/dt = f1(x1,p1,u1,t)

Derive location constraints: g(x1,p1,u1,t)Ò0

What do we mean by robustness?
16

L1

L2

Blue is a robust trajectory

What do we mean by robustness?
17

L1

L2

Blue is NOT a robust trajectory

Trajectory robustness

Ã Under

ÄFloating point errors

ÄUncertain parameters

ÄUncertain inputs

ÄPossible numerical errors

Ã the trajectory of the system should follow the same

sequence of discrete transitions as the simulated

one

18

Problem definition

Ã Given a Simulink model S, a set of uncertain initial

conditions X0 and parameters P, determine points in

time when the Simulink simulation trajectory is not

robust.

19

Solution overview: RobSimǃ
20

Continuous

time

Simulink model Instrument

Trace generator
Symbolic Model

Generator

Validated
Integrator

Numerical
Simulator Validated

Simulator

Comparison

Warnings-
Graphs

ǃRobust Simulation Toolbox

Discrete

time

Design Flow Using RobSim
21

Future module

Simulink model
Traditional

Testing

RobSim

Automatic Code
Generation

Embedded Code

Satisfied
?

No

Satisfied
?

Yes

No

Yes

Conform
ance?

Yes

No

Interval Arithmetic

× IA is an arithmetic for validated computations

o introduced by Moore several decades ago

× IA computes a range in machine arithmetic that contains the

result of the operation in real arithmetic

×An IA quantity x is a range [xl, xu]

×You can bound any nonlinear function

o The approximation might be too conservative

22

Interval Arithmetic

o Addition:

x + y = [xl, xu] + [yl, yu] = [xl + yl, xu+yu]

o Multiplication:

xy = [xl, xu][yl, yu] =

= [min{xlyl, xlyu, xuyl, xuyu}, max{xlyl, xlyu, xuyl, xuyu}]

o We can capture floating-point rounding errors by rounding

down for the lower bound and rounding up for the upper

bound

o Problems:

Ásub-distributive, i.e., [x] ([y] + [z]) Ṗ[x] [y] + [x] [z]

Á it has no additive and no multiplicative inverse.

23

Affine Arithmetic

Ã AA is a tool for validated computations

Ä introduced by Combaand Stolfi in 1993

Ã AA keeps track of first-order correlations in computations

Ä AA provides tighter interval estimates than IA in many cases

Ä AA provides additional information that can be exploited

Ã AA represents a quantity x with an affine form

<x> = x0 + x1Ů1 + x2Ů2 + é + xnŮn

Ä x0ÍÁis the central value

Ä ŮiÍ[-1,+1] are independent but unknown terms

Ä xiⱦÁare coefficients assigning a weight to each term

Ä n is not fixed, new terms are created during computation

Ä If ŬÍ<x>, then ŬÍ[x0-|x1|-é-|xn|, x0+|x1|+é+|xn|]

24

Affine Arithmetic

Ã Addition

Ä <x>+<y> = (x0 + ɆixiŮi) + (y0 + ɆiyiŮi) = (x0 + y0) + Ɇ(xi+yi)Ůi

Ã Multiplication

Ä <x><y> = (x0 + ɆixiŮi)(y0 + ɆiyiŮi) = x0 y0 + Ɇ(x0yi)Ůi + Ɇ(xiy0)Ůi + zŮk+1

Ã Any nonlinear function can be approximated

Ä The approximation can be conservative

Ã The usual properties of real arithmetic hold

Ã We created our own toolbox for affine arithmetic in Matlab

Ä AffLab

Ä which is based on IntLab the interval arithmetic toolbox by Rump.

25

A discrete time example
26

Comparison of the 2 arithmetics
27

(a) Result of the simulation using interval

arithmetic. ValSim warns that at

sampling point 342 the Switch could

have chosen either signal due to

accumulated errors.

(b) The same simulation using affine

arithmetic. The result indicates that the

Simulink simulation is correct. The warning in

(a) is due to conservative approximations of

the rounding errors by interval arithmetic.

Computation time for 1400 samples º17sec Computation time for 1400 samples º122sec,

number of affine terms 11187

How to do validated computations on discrete-time

models.
28

if middle_signal >= threshold

return upper_signal

else

return lower_signal

end

How to do validated computations on discrete-time

models.
29

Red: we repeat the Simulink operation using validated arithmetics

Green: we compare numerical values and validated quantities and we

record any potential violations

Simulink: x(k)+K dt u(k)

Validated: <x>(k)+<K> [dt][u](k)

How to do validated computations on continuous-time

models.
30

Same process as with discrete-time models,

but now we do symbolic computations.

Currently, the model must be linear.

How to do validated computations on continuous-time

models.

Ã From the symbolic computation, we derive

Ä the current system dynamics

Âdx/dt= A(p)x+B(p)u+v(p)

Ä the current state constraints:

Âg(x,p,u)Ò0

Ã The state of the system at the next time step will be

Ä<xô> = e[A][dt]<x> (ignore inputs)

ÄFor the inputs see Section IV.B in the paper

Ã Similarly, we can compute an enclosure for the

system states between two time samples

ÄThe enclosure is used for checking the current state

constraints

31

Continuous-time Example
32

Ã Solution using ODE45 solver

Ã Variable step-size

Ã Total of 84 sim. points

Ã 14 warnings

Ä 2 comparison warnings

Ä 12 integration errors

Ã Example:

Ä tå2.26 or i=20

Ä Using verified integration we

detect that there might be

saturation:

1 ⱦ [0.7132, 1.0130]

Ä But in numerical simulation no

saturation occurs:

i=19: 0.8453 < 1

i=20: 0.8801 < 10 2 4 6 8 10 12 14
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Mixed-Signal Systems
33

Discrete-time

Controller

Continuous-time

Plant

zohzoh

Mixed-Signal Example
34

)(
1

0
)(

00

10
)(tutxtx ù

ú

ø
é
ê

è
+ù

ú

ø
é
ê

è
=#

Mixed-Signal Example
35

RobSim: Developed Components

Ã Simulink support for validated computations

Ä Most of the basic blocks are currently supported

Ä Implementation by overloading operators

Â Any arithmetic implemented in Matlab can be used (intval, affnum, intnum).

Â Allows seamless integration of other arithmetics in the future, for example,

probabilistic arithmetics

Ã Affine Arithmetic Toolbox (AffNum) for Matlab

Ä Built upon IntLab - a toolbox for Interval Computations by Prof. Siegfried

M. Rump (Hamburg University of Technology & Waseda University)

Ä Full support of affine operations

Ä Most commonly used non-linear functions in Matlab are supported

Ã Validated Solution of Linear Ordinary Differential Equations

Ä Takes into account floating point rounding errors, uncertain parameters

and sets of initial conditions

36

RobSim: Improvements and Additions

Ã Heuristics for interchange of computations in IA and AA

Ä Improve speed while achieving good accuracy

Ã Validated integration for nonlinear systems

ÄCurrent support only for linear systems

Ä This requires the derivation of the mathematical model of the

system through symbolic manipulations

Ã Validated computation of the exponential of a matrix

ÄCurrently is done through Taylor expansion

Ã Support for more Simulink blocks and Stateflow

ÄRequired for industrial size examples

Ä the Simulink block library is large!

37

Appendix38

Common blocks supported
39

Common blocks supported
40

