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Programming Procedure for Minimization Problems 
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Abstract. In Ref. 1, Bazaraa and Goode provided an algorithm for 
solving a nonlinear programming probtem with linear constraints. In 
this paper, we show that this algorithm possesses good convergence 
properties. 
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1. Introduction 

Consider the following linearly constrained nonlinear programming 
problem: 

(P) minimize f ( x ) ,  (1) 

subject to A x  = a, (2a) 

Bx <_ b, (2b) 
where f, A, B, a, b are the same as in Ref. 1. We use R and R* to denote 
the sets o f  feasible points and optimal points, respectively. 

In Ref. 1, Bazaraa and Goode  provide an algorithm to solve Problem 
(P). In this paper  we make an extension of  the convergence theorem of  
Ref. 1 (i.e., Theorem 6.1 of  Ref. 1), and obtain many good convergence 
properties of  the algorithm. 
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Remark 1.1. The hypothesis 1 <-- x <- u in Ref. 1, as will be seen, is not 
essential (see Ref. 1 for notation and the algorithm). 

2. Convergence Properties of the Algorithm 

In this section, we assume that {xk}, {dk}, {dk}, {Ak}, {ek}, {mk} are all 
generated by the algorithm. Moreover, we assume that 

R k = { X l A x = a ,  Bix<-bi, i ~ I ( x k ) } ,  k = 1 , 2 , . . . ,  

where B~ is the ith row of  B, b~ is the ith component of  b. 

Theorem 2.1. If  the sequence {xk} is finite, then its last term is a 
Kuhn-Tucker  point of  Problem (P). If  {Xk} is infinite, then any one of  its 
accumulation points is a Kuhn-Tucker  point of  Problem (P). 

Proof. The proof  of  Theorem 5.1 in Ref. 1 is valid for this theorem 
in the absence of  the hypothesis 1 - x -< u. [] 

From the definition of  the algorithm and the theory of convex analysis 
(see Ref. 2, p. 41), we can prove easily the following two lemmas. 

Lemma 2.1. For any k, dk + xk is the optimal solution of the following 
problem: 

R(xk)  minimize Ilx-xk +Vf(xk)Jl, 
subject to x ~ Rk. 

And, for any x ~ Rk, we have 

d~( dk + Xk -- X) <- --V f(Xk)'r( dk + Xk -- X ). 

Lemma 2.2. For any x ~ Rk, we have 

II xk+l - x l l  2 <- llxk - x l lZ+ 6[f(xk) - f ( x k + , ) ]  - 2(½)mkekAkVf(xk)r(X~ -- X). 

The following theorem is an extension of  Theorem 6.1 of  Ref. 1. 

Theorem 2.2. Suppose that {xk} is an infinite sequence. Then: 

(i) {f(xk)} is a monotone decreasing sequence; 
(ii) if x* is an accumulation point of  {xk} and there exists an integer 

K~ such that 

Vf(xk)V(Xk -- X*) >-- O, for any k -> K1, 

then {xk} converges to x*; 
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(iii) 
that 

Vf(Xk)T(Xk -- )7) >-- O, 

then 

if limk_,~o Ilx~ll = +oo and there exist )7 ~ R and an integer Kz such 

for any k -> K2, 

lim f ( x k )  = - o o .  
k-~co 

Proof. (i) is true by the definition of the algorithm. We now begin to 
prove (ii). From (i), it follows that {f(xk)},~f(x*).  Hence, 

( f ( x k )  -- f (xk+l))  < +00. (3) 
k = l  

Since 

Vf (xk ) r (xk  -- x*)  >-- O, for K ---- K1, 

we have that 

II x~+~ - x* I12 <- II xk - x* II = + 6[ f (xk)  --f(Xk+l)] (4) 

holds for k_> K~ by Lemma 2.2. From (3), (4), and the fact that x* is an 
accumulation point of {Xk}, we conclude that {Xk} converges to x*. 

We finally prove (iii). From 

lira llx~ll =+oo, 
k-~oo 

we obtain 

lim I Ix~+,-xl l  2=  +oo. 
k~oo 

Because 

Vf (xk ) r (xk  -- Y~) >- O, for any k _-_ K2, 

by Lemma 2.2, we have 

Ilxk+,-)711 =-< Ilx,~2-)7112+a[f(xK2)-f(xk+,)], for every k __- K> (5) 

Hence, 

lim f ( x k )  = --00, 
k~eo  

and the proof  is complete. [] 
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Section 6 of  Ref. 1 gives a proof  to the assertion that, if {xk} has an 
accumulation point 2 which satisfies the second-order sufficiency optimality 
conditions, then the whole sequence of iterates converges to 2. But that 
proof  cannot be shifted to the present case, because it makes use of the 
hypothesis 1 -< x --- u. We now prove the above assertion without using the 
hypothesis 1 -< x --- u. 

Definition 2.1. 2 is said to satisfy the second-order optimality condi- 
tions for Problem (P) if 2 is a Kuhn-Tucker  point of  Problem (P), f ( x )  is 
twice differentiabte at ~, and there is a positive number 7 such that, whenever 

Vf(2) rd  -< 0, ad=O,  B,d<O, iEJ(2) ,  Ildll = 1, 

we have 

drH(Y~)d > y, 

where 

J(2) = {i IBm2 = b,}, 

and H(:~) is the Hessian o f f ( x )  at ~. 

Theorem 2.3. Suppose that 2 satisfies the second-order optimality 
conditions for Problem (P). Then, there exists a number e > 0 such that 

o<tlx-2ll<_e~Vf(x)r(x-,~)>o, x~R. (6) 

Proof. By Lemma 6.1 of  Ref. 1, there exists a number 0 > 0 such that 

Vf(2)Vd ----- 0, Ad = O, 

B,d -< o, i ~ J (~) ,  11 a Ii = 1 ~  a+H(2)a _> r / 2 .  (7) 
Because the set 

{dill d II --- 1, Ad = O, Bid <- O, i ~ J(X), Vf(X)rd --- 0} 

is compact and f ( x )  is continuously differentiable, there exists a positive 
number el such that 

xcP. .  IIx-~ll < - . .  lldll-- 1, A d = O , B , d  <-0 , 

i c J (2) ,  Vf(~)Td > O~Vf (x )Vd  >- 0/2. (8) 

Since f ( x )  is twice differentiable at ~, there exists a positive number ¢ > e~ 
such that 

o <  IIx-211-< 

~ll[Vf(x)-Vf(2)]/llx-211-H(~)(x-~)/llx-xll [I -< T/n, x~  R. 

(9) 
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Suppose that x ~ R and that 0 < []x - )7[[ -< e. Then, one and only one of the 
following two cases holds: 

(i) Vf()7)r(x-~)/l[x-)Tl[> O; 
(ii) o<- v f ( )7 )T(x - )7) / l l x - )TI I  <- o. 

We have Vf(x)r(x-)7)>O from (8) in case (i) and the same from (9) 
and (7) in case (ii). This completes the proof. [] 

Corollary 2.1. Suppose that )7 is an accumulation point of {Xk} and 
that )7 satisfies the second-order optimality conditions for Problem (P). 
Then, there exists an integer K1 such that 

Vf(Xk)r(Xk--)7)>--O, for any k>- Kv 

Hence, {Xk} converges to )7. 

Proof. This is a consequence of Theorem 2.3, a result of Ref. 1 (see 
Lemma 6.2 in Ref. 1), and Theorem 2.2. [] 

The following two theorems show that the algorithm has many good 
convergence properties when f (x)  is either quasiconvex or pseudoconvex. 

Theorem 2.4. Suppose that f (x)  is quasiconvex on R. Then: 

(i) {f(Xk)} is a monotone decreasing sequence; 
(ii) if dK = 0 for some K, then xK is a Kuhn-Tucker  point of Problem 

(P); otherwise, {Xk} is infinite and we have the property below; 
(iii) if )7 is an accumulation point of  {Xk}, then )7 is a Kuhn-Tucker  

point of Problem (P), and the whole sequence {Xk} converges to )7; 
(iv) if {xk} has no accumulation point, then R* = Q and 

{f(xk)}J, inf{f(x)lx c R}. 

Proof. (i) is obvious. (ii) is obtained from Theorem 2.1. We now begin 
to prove (iii). Since )7 is an accumulation point of {Xk}, we know that )7 is 
a Kuhn-Tucker  point of  Problem (P) and that {f(Xk)}$f()7). Therefore, by 
the quasiconvexity o f f ( x ) ,  Vf(Xk)r(Xk- )7)>--0 holds for each integer k. By 
Theorem 2.2, {Xk} converges to )7. 

Finally, we prove (iv). Suppose that {xk} has no accumulation point. 
We need to show that R* = O and that {f(Xk)}$inf{f(x)lx ~ R}. 

If any one of the two is false, then there exists some x* ~ R such that 
f (Xk)>f(x*)  holds for each integer k. By the quasiconvexity of f (x) ,  
Vf(Xk)V(Xk -- X*) >--" 0 must hold for each integer k. By Lemma 2.2, we obtain 

11Xk+ 1 - -  X*  112 ~ II Xl --  X :g II 2 + 6[f(xl )  - f ( x * ) ] .  (1 O) 

Thus, {xk} is bounded. The contradiction completes the proof. [] 
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Theorem 2.5. Suppose that f (x )  is pseudoconvex on R. Then: 

(i) if dK = 0 for some K, then XK is a Kuhn-Tucker  point of Problem 
(P); otherwise, {Xk} is infinite and we have the property below; 

(ii) {f(xk)}$inf{f(x)lxeR}; 
(iii) the necessary and sut~cient condition that R* # O is that {Xk} is 

bounded; 
(iv) if R* # 0 ,  then {Xk} converges to some x* ~ R*. 

Proof. Since f (x )  is quasiconvex, the assertions of Theorem 2.4 hold. 
Since f ( x )  is pseudoconvex, R* is the set of Kuhn-Tucker  points of Problem 
(P). This completes the proof. [] 
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