
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 9, SEPTEMBER 2016 1

A Generalized Hierarchical Multi-Latent Space
Model for Heterogeneous Learning

Pei Yang, Member, IEEE, Hasan Davulcu, Member, IEEE, Yada Zhu, Member, IEEE,
and Jingrui He, Member, IEEE,

Abstract—In many real world applications such as image annotation, gene function prediction, and insider threat detection, the data
collected from heterogeneous sources often exhibit multiple types of heterogeneity, such as task heterogeneity, view heterogeneity, and
label heterogeneity. To address this problem, we propose a Hierarchical Multi-Latent Space (HiMLS) learning framework to jointly model
the triple types of heterogeneity. The basic idea is to learn a hierarchical multi-latent space by which we can simultaneously leverage
the task relatedness, view consistency and the label correlations to improve the learning performance. We first propose a multi-latent
space approach to model the complex heterogeneity, which is then used as a building block to stack up a multi-layer structure in order
to learn the hierarchical multi-latent space. In such a way, we can gradually learn the more abstract concepts in the higher level. We
present two instantiated models of the generalized framework using different divergence measures. The two-phase learning algorithms
are used to train the multi-layer models. We drive the multiplicative update rules for pre-training and fine-tuning in each model, and prove
the convergence and correctness of the update methods. The effectiveness of the proposed approach is verified on various data sets.

Index Terms—Heterogeneous learning, multi-task learning, multi-view learning, multi-label learning, matrix tri-factorization.
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1 INTRODUCTION

IN the era of big data, a large amount of information
collected from heterogeneous sources are correlated with

each other. It is of great importance to mine such hidden cor-
relations in the presence of multiple types of heterogeneity
for many real world applications, such as web news clas-
sification, gene function prediction, insider threat detection,
image annotation, etc. In this paper, we focus on triple types
of heterogeneity, i.e., task heterogeneity, view heterogeneity,
and label heterogeneity. For example, for the satellite image
analysis problems, task heterogeneity refers to the images
collected from different satellites following from different
distributions; view heterogeneity refers to various types
of features such as color histogram, edge distribution his-
togram, and bag of visual words; label heterogeneity refers
to the multiple tags associated with each image.

The major challenge for learning with the triple types
of heterogeneity is how to effectively mine the hidden cor-
relations among the heterogeneous data. Such correlations
should reflect the key assumptions underlying each type of
heterogeneity, including the task relatedness assumption [7],
the view consistency assumption [16], as well as the label
correlation assumption [34]. To the best of our knowledge,
we are the first to jointly model the triple heterogeneity.

To tackle this problem, we propose a Hierarchical Multi-
Latent Space (HiMLS) framework for heterogeneous learn-
ing. The goal is to maximally leverage the rich correlations
among heterogeneous data to improve the performance. To
this end, we first present a multi-latent space model, which
characterizes task relatedness, view consistency, and label
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correlation in a principled framework. It is formulated as
a regularized non-negative matrix tri-factorization problem,
aiming to simultaneously minimize the reconstruction loss
on the instance-feature data and the classification loss on the
instance-label data, while maximizing the similarity among
the co-latent spaces. Furthermore, the proposed multi-latent
space model is used as a building block to establish a multi-
layer structure. It aims to build a hierarchical multi-latent
space to gradually learn the more abstract concepts in the
higher layer. The proposed HiMLS approach is motivated
from two streams of work in machine learning. One is
multi-way clustering (or co-clustering) [3] which improves
the quality of clustering by intertwining both row and
column information that are inter-related. Another is multi-
layer models [19] which obtains better data representations
by automatically extracting the hierarchical concepts from
data. Our multi-latent space model employs multi-way
clustering on the instances, features, and labels to capture
the correlations among the heterogeneous data, while the
hierarchical multi-latent space model takes advantage of
multi-layer structure to learn the hierarchical concepts from
data. Both of them help extract the rich correlations among
heterogeneous data, leading to better performance.

Based on this generalized framework, we present two
instantiated models using different distance metrics, i.e.,
least squares loss function and the generalized Kullback-
Leibler divergence. For each model, we develop an iterative
updating algorithm to solve the optimization problem. The
proposed algorithms consist of two phases. First, each layer
is pre-trained in a greedy layer-wise way. Then, it fine-tunes
the weights of all the layer to reduce the total reconstruction
loss and the classification loss. It is worth noting that the
proposed approach is a generalized framework to learn
from complex heterogeneity, which subsumes some popular
methods on learning from a single heterogeneity.
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The main contributions of this paper can be summarized
as:

• A novel learning problem which simultaneously
models triple types of heterogeneity;

• A generalized framework to learn the hierarchical
multi-latent space from complex heterogeneity;

• Two alternative models and the corresponding opti-
mization algorithms;

• Generalization of some previous work on learning
from single heterogeneity;

• Experimental results on various data sets showing
the effectiveness of the proposed approach.

The rest of the paper is organized as follows. After a
review of the related work in Section 2, we present the
proposed generalized framework in Section 3, and two
alternative models and their corresponding optimization al-
gorithms in Section 4 and 5, respectively. Some case studies
are discussed in Section 6. Section 7 shows the experimental
results. Finally, we conclude the paper in Section 8.

2 RELATED WORK

Since we make use of matrix factorization techniques to
model the complex heterogeneity, we review the related
work on both heterogeneous learning and non-negative
matrix factorization.

2.1 Heterogeneous Learning
Heterogeneous learning aims to leverage different types
of heterogeneity, such as task heterogeneity, view hetero-
geneity, and label heterogeneity, to improve the learning
performance. Most of the previous work were focused on
modeling a single or dual types of heterogeneity.

In multi-task learning, the goal is to leverage the small
amount of labeled data from multiple related tasks to im-
prove the learner for each task. Among others, alternating
structure optimization [1] decomposed the model into the
task-specific and task-shared feature mapping; multi-task
feature learning [2] assumed that multiple related tasks
share a low-dimensional representation; clustered multi-
task learning [47] assumed that multiple tasks follow a clus-
tered structure. Some recent multi-task learning methods
dealt with irrelevant tasks by assuming that the model can
be decomposed into a shared feature structure that captures
task relatedness, and a group-sparse structure that detects
outliers [17].

In multi-view learning, the features from multiple
sources form natural views. The goal is to leverage the com-
plementary information among different views to improve
the performance. Co-Training [4] is one of the earliest algo-
rithms for multi-view learning. More recent work includes:
SVM-2K [16] which combined KCCA with SVM in an op-
timization framework; the information-theoretic framework
for multi-view learning [30]; the CoMR method [29] based
on a data-dependent Reproducing Kernel Hilbert Space
(RKHS); the large-margin framework for multi-view data
based on a latent space Markov network [8]; the convex
multi-view subspace learning method MSL [36] which en-
forced conditional independence among the multiple views
while reducing dimensionality, etc.

In multi-label learning, each instance is associated with
a set of labels [34], [46]. The key issue is how to exploit
the correlations or dependencies among multiple labels.
To name a few, ML-kNN [45] converted the multi-label
learning into a number of independent binary classification
problems; Rank-SVM [15] solved the label ranking problem
under the large margin framework; LEAD [44] employed
Bayesian network to encode the conditional dependencies
of the labels; LS-ML [22] assumed that a common subspace
is shared among multiple labels; HG [31] constructed a
hypergraph to exploit the correlation information among
different labels; LEML [41] learned the latent label space
under a generic empirical risk minimization framework
with trace-norm regularization. In addition, MLLOC [21]
assumed that the label correlation may be shared by a
subset of instances only rather than all the instances; the
boosting based method MAHR [20] aimed to discover the
label relationship by using a hypothesis reuse mechanism;
the transductive approach TRAM [23] leveraged the infor-
mation from unlabeled data to estimate the optimal label
concept compositions.

More recently, researchers begin to study problems with
dual types of heterogeneity. For problems with both task
and view heterogeneity, a variety of techniques have been
proposed to model task relatedness in the presence of
multiple views, e.g., the transductive method IteM2 [18],
the inductive method regMVMT [43], the bayesian method
NOBLE [37], and the graph-based method M2LID [39].
For the problems with both label and view heterogeneity,
the L2F method proposed in [40] modeled both the view
consistency and the label correlations in a graph-based
framework. For the more complex setting with all three
types of heterogeneity, these techniques cannot be readily
applied without disregarding the useful information from a
certain type of heterogeneity, except for our recent work [38]
on modeling the triple heterogeneity. This paper extends
[38] substantially by providing the generalized learning
framework, the alternative optimization algorithms, and the
theoretical analysis regarding the optimal solutions, as well
as the comprehensive empirical evaluations.

2.2 Non-Negative Matrix Factorization
Non-negative matrix factorization (NMF) [24] aims to ex-
tract data-dependent non-negative basis functions, which
has been given much attention due to its part-based and
easy interpretable representation. Non-negative matrix fac-
torization [25] has been widely used in data mining,
biomedical, chemometrics, signal processing, computer vi-
sion, neuroscience, graph analysis, etc [10]. Incorporating
extra constraints such as sparseness [28], smoothness [5], or
orthogonality [14] was shown to improve the decomposition
and provide the better representation. Various extensions
and variations of NMF have been proposed, such as Semi-
NMF [12], Convex-NMF [12], multi-layer NMF [10], [33],
weighed NMF [35], Tri-NMF [14], etc.

NMF has connections to many other techniques in data
mining. For example, under some mild conditions, NMF
with the least squares loss function is equivalent to a relaxed
K-means clustering [11], while NMF with the generalized
Kullback-Leibler (KL) divergence loss function is equivalent
to probabilistic latent semantic indexing [13].
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3 THE PROPOSED GENERALIZED FRAMEWORK
FOR HETEROGENEOUS LEARNING

We first present the multi-latent space framework to model
the complex heterogeneity, which is then used as a building
block to stack up a multi-layer structure in order to learn the
hierarchical multi-latent space.

3.1 Notations and Problem Statements
Suppose we are given the multi-label data with multiple
views in different tasks. Let T be the number of tasks, V
the number of views, m the number of labels. Each instance
is described from V views, and associated with multiple
labels. For the ith task and jth view, denote the number
of instances and features by ni and dj , respectively. Let

X̃ij=
[
Xij

Xu
ij

]
∈ Rni×dj be the instance-feature matrix for

the ith task and jth view, where Xij is the training data

and Xu
ij is the test data. Let Ỹi =

[
Yi
Y ui

]
∈ Rni×m be the

instance-label matrix for the ith task, where Yi and Y ui are
for training and test data respectively. The instance-label
matrix can be either a binary or a real matrix, such as the
user-item matrix of either preference or rating scores in a
recommender system. The goal is to build a model to predict
the instance-label matrix for the test data by leveraging the
rich information among heterogeneous data.

Some math symbols used in this paper are introduced
as follows. For two matrices X and Y , let X � Y , X ⊗ Y ,
and X

Y be the Hadamard product (or entrywise product),
Kronecker product, and Hadamard division, respectively.
Let x = vec (X) be the matrix vectorization of X into a
vector x.

3.2 Multi-Latent Space Learning
We propose a multi-latent space learning framework to
jointly model the task relatedness, view consistency, and
label correlations in a principled way.

Motivated by the success of multi-way clustering [3]
in leveraging the inter-correlations among data to improve
clustering quality, we do multi-way clustering on heteroge-
neous data to learn the multi-latent space. It simultaneously
clusters instances, features and labels into the corresponding

clusters. Let R̃i =

[
Ri
Rui

]
∈ Rni×p be the instance encoding

matrix where p is the dimensionality of instance latent
space, Ri and Rui are for training and test data, respectively.
LetCj ∈ Rdj×q be the feature encoding matrix,CY ∈ Rm×q
the label encoding matrix where q is the dimensionality
of feature (or label) latent space. Each row in R̃i (or Cj ,
CY ) represents the coeffecients of the instance (or feature,
label) associated with the instance (or feature, label) clusters.
Denote Mij ∈ Rp×q,MiY ∈ Rp×q as the co-latent space
matrices. We try to reconstruct the instance-feature matrix
and instance-label matrix by letting X̃ij ≈ R̃iMijC

T
j and

Yi ≈ RiMiY C
T
Y respectively, where 1 ≤ i ≤ T and

1 ≤ j ≤ V . Note that Mij models the correlations between
instance clusters and feature clusters, while MiY models the
correlations between instance clusters and label clusters.

The multi-latent space model is formulated as a reg-
ularized non-negative matrix triple factorization problem,

which simultaneously decomposes the instance-feature and
instance-label matrices, while enforcing the task relatedness,
view consistency, and label correlations on the data. The ob-
jective is to simultaneously minimize the reconstruction loss
on the instance-feature data (1st term) and the classification
loss on the instance-label data (2nd term), while maximizing
the similarity among the co-latent spaces (3rd term):

min
{R,M,C}>0

T∑
i=1

V∑
j=1

L
(
X̃ij ; R̃iMijC

T
j

)

+ α
T∑
i=1

L
(
Yi;RiMiY C

T
Y

)
+ β

T∑
i=1

V∑
j=1

L (Mij ;MiY )

(1)

where L (X;Y ) is the distance metric between X and Y . α
and β are the non-negative parameters. The non-negative
constraints allow for the multi-way clustering interpreta-
tion.

The multi-latent space model can be interpreted from
the perspective of constrained multi-way clustering. By
constraining the multi-way clustering procedures, we model
the task relatedness by requiring the features across differ-
ent tasks to share the same feature clustering coefficients,
enhance the view consistency by requiring the instances to
share the same instance clustering coefficients across differ-
ent views, characterize the label correlations by requiring
the labels to share the same label clustering coefficients
across different tasks. Figure 1(a) shows an illustrative ex-
ample about the proposed multi-latent space model. Specif-
ically, the multi-latent space model encodes multiple types
of correlations among the heterogeneous data as follows:
Task relatedness: For the jth view, the decompositions of
the instance-feature data Xij (1 ≤ i ≤ T ) in different tasks
share the same feature encoding matrix Cj .
Label correlation: The labels share the same label encoding
matrix CY across different tasks.
View consistency: For the ith task, the decompositions of
the instance-feature data Xij (1 ≤ j ≤ V ) in different views
share the same instance encoding matrix Ri.
Correlations among feature-instance-label: For the ith

task, the decompositions of instance-feature data Xij and
instance-label data Yi share the same instance encoding
matrix Ri.
Correlations among co-latent spaces: Since the instances,
features, and labels may share the latent semantic concepts,
we hope the learned co-latent spaces, Mij and MiY , are
similar to each other.

The intuition of enhancing the correlations among co-
latent spaces is as follows. Take webpage classification as
an example. The words (1st view) on the webpage, the hy-
perlinks (2rd view) pointing to the webpage, and categories
(labels) of webpage could be linked by the latent semantic
topics (bridges) of the webpage. Therefore, we hope that the
co-latent spaces Mij(1 ≤ j ≤ V ) learned in the feature
spaces from multiple views are as similar as possible to
the co-latent space MiY learned from label spaces, which
acts as a bridge to link the labels with the features from
multiple views in the latent spaces. Note that maximizing
the correlations between co-latent spaces is equivalent to
minimizing the distance between them.
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(a) Multi-latent Space Model.
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(b) Hierarchical Multi-latent Space Model.

Fig. 1. An illustrative example about the proposed approach. In (a), without loss of generality, suppose there are two tasks and two views. The view
consistency is modeled by sharing the instance encoding matrix R1 (or R2) across different views; The task relatedness is modeled by sharing
the feature encoding matrices C1 (or C2) across different tasks; The label correlation is modeled by sharing the label encoding matrix CY across
different tasks. In (b), the input data matrix Xij(1 ≤ i ≤ T, 1 ≤ j ≤ V ) is decomposed into three matrices, R(1)

i , M(1)
ij , and C(1)

j . Then, the

co-latent space M(l−1)
ij is further decomposed to learn its own co-latent space M(l)

ij where 2 ≤ l ≤ L. In such a way, the multi-latent space model
can be used as a building block to stack up a multi-layer architecture in order to learn the hierarchical multi-latent space.

3.3 Hierarchical Multi-Latent Space Model

Motivated by the success of multi-layer models [19] in
automatically extracting the hierarchical concepts from data,
we use the multi-latent space model as a building block
to stack up a multi-layer architecture. It aims to learn the
hierarchical multi-latent space from complex heterogeneity.

The co-latent spaces Mij and MiY can be viewed as the
compact representations for the original input data X̃ij and
Yi. Let L be the number of layers. For the co-latent space
M

(l−1)
ij (or M (l−1)

iY ) where l(2 ≤ l ≤ L) represents the layer,
we hope to further learn its own co-latent space M (l)

ij (or
M

(l)
iY ) in a higher level, i.e.,

M
(l−1)
ij ≈ R(l)

i M
(l)
ij C

(l)T
j

M
(l−1)
iY ≈ R(l)

i M
(l)
iY C

(l)T
Y

In such a way, we can gradually learn the factor matrices
in each layer. Based on the learned co-latent spaces M (L)

ij

andM (L)
iY in the highest layerL, we hope to recover the orig-

inal input data, X̃ij and Yi, in the first layer as accurately as
possible. Thus, the objective for the multi-layer architecture
is as follows:

min
{R,M,C}>0

∑T

i=1

∑V

j=1
L
(
X̃ij ; R̃

(1:L)
i M

(L)
ij C

(1:L)T
j

)
+ α

∑T

i=1
L
(
Yi; R

(1:L)
i M

(L)
iY C

(1:L)T
Y

)
+ β

∑T

i=1

∑V

j=1
L
(
M

(L)
ij ; M

(L)
iY

) (2)

where A(s:t) =
∏t
l=sA

(l) if s ≤ t, and A(s:t) = I otherwise
for any matrix A. I is an identity matrix. For the simplicity

of notation, we denote R̃(1:L)
i =

[
Ri
Rui

]
R

(2:L)
i .

Figure 1(b) shows an illustrative example for the pro-
posed hierarchical multi-latent space model. Take the web-
page classification or image annotation as the examples. In
each layer, we do multi-way clustering on the instances,
features and labels. Since the instances, features and labels
may usually have hierarchical latent structures, they can
be clustered into sub-categories, and further into high-level
sub-categories, until the top categories. In such a way, we
can gradually learn the more abstract semantic concepts in
a higher layer.

3.4 Prediction

Note that the proposed hierarchical multi-latent space mod-
el works in a transductive fashion since the first term of Eq. 1
or Eq. 2 involves both training and test data in building the
model.

After the model training, we can obtain the instance
encoding matrices Rui for test data, Ri for training data,
and R

(l)
i (2 ≤ l ≤ L) shared by both training and test

data. Then, we can use the factor matrices to predict the
instances in the test data. The final prediction is the weight-
ed sum of predictions resulting from each layer. We have
M

(l−1)
iY ≈ R

(l)
i M

(l)
iY C

(l)T
Y (2 ≤ l ≤ L), and try to approx-

imate Y ui by using RuiM
(1)
iY C

(1)T
Y . Therefore, the predicted

instance-label matrix for the test data in ith(1 ≤ i ≤ T ) task
can be computed as follows:

Fi =
L∑
l=1

wlF
(l)
i =

L∑
l=1

wlR
u
i R

(2:l)
i M

(l)
iY C

(1:l)T
Y (3)

where wl controls the weight for lth layer. A naı̈ve way is
to set the weights based on the reconstruction loss in each
layer. In our experiments, we simply use the equal weight
for each layer.
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If the input instance-label matrix is a binary matrix, we
can transform the predicted matrix Fi into a binary one by
using 0.5 as the classification decision threshold.

3.5 Distance Metric
Various distance metric L(X;Y ) can be used in our pro-
posed model to measure the similarity between X and Y .
In this paper, we focus on two divergence measures widely
used in NMF models. One is the least squares loss function,

‖X − Y ‖2F =
∑

i,j
(Xij − Yij)2

Another is the generalized Kullback-Leibler divergence,

D (X|| Y ) =
∑

i,j

(
Xij log

Xij

Yij
−Xij + Yij

)
It reduces to the Kullback-Leibler divergence when∑
i,j Xij =

∑
i,j Yij = 1.

Note that both the least squares (β = 2) and generalized
KL divergence (β = 1) are the special cases of β-divergence:

dβ (x|y) =


x
y − log x

y − 1 β = 0

x log x
y − x+ y β = 1

(xβ+(β−1)yβ−βxyβ−1)
β(β−1) β ∈ R\ {0, 1}

Next, we propose the optimization algorithm HiMLS
based on least squares loss function in Section 4, and
HiMLSD based on generalized Kullback-Leibler divergence
in Section 5.

4 OPTIMIZATION ALGORITHM FOR HIMLS
In this section, we introduce the two-phase optimization
algorithm for HiMLS.

When using least squares loss function, the objective
defined in Eq. 1 for multi-latent space can be instantiated
as follows,

min
{R,M,C}>0

T∑
i=1

V∑
j=1

∥∥∥X̃ij − R̃iMijC
T
j

∥∥∥2

F
+

α
T∑
i=1

∥∥∥Yi −RiMiY C
T
Y

∥∥∥2

F
+ β

T∑
i=1

V∑
j=1

‖Mij −MiY ‖2F

(4)

The objective function defined in Eq. 2 for hierarchical
multi-latent space can be instantiated as follows,

min
{R,M,C}>0

T∑
i=1

V∑
j=1

∥∥∥X̃ij − R̃(1:L)
i M

(L)
ij C

(1:L)T
j

∥∥∥2

F

+ α
T∑
i=1

∥∥∥Yi −R(1:L)
i M

(L)
iY C

(1:L)T
Y

∥∥∥2

F

+ β
T∑
i=1

V∑
j=1

∥∥∥M (L)
ij −M

(L)
iY

∥∥∥2

F

(5)

Following the tactics successfully used in deep learn-
ing [19], we adopt a two-phase procedure to train the multi-
layer model. We first pre-train the weights of each layer
in a greedy layer-wise manner, then fine-tune the weights
of all layers to reduce the total reconstruction loss and
classification loss.

To derive the multiplicative update rules for pre-training
(in Theorem 3) and fine-tuning (in Theorem 4) in HiMLS,

we first derive Lemma 1. This lemma provides a generic
method to derive the update rules for all of R,M,C in both
pre-training and fine-tuning.

Lemma 1. For any non-negative matricesM,Xi, Ri, Ci, Pj and
Kj , the objective function,

J (M) = α
∑
i

∥∥∥Xi −RiMCTi

∥∥∥2

F
+ β

∑
j

‖MPj −Kj‖2F

(6)
is non-increasing under the update rule:

M = M �

√√√√√√ α
∑
i
RTi XiCi + β

∑
j
KjPTj

α
∑
i
RTi RiMCTi Ci + β

∑
j
MPjPTj

(7)

where α and β are the non-negative parameters.

Proof. We make use of auxiliary function approach [25] to
derive the update rules for Eq. 6 and prove its convergence.

The objective function for M is rewritten into:

J (M) = α
∑
i

∥∥∥Xi −RiMCTi

∥∥∥2

F
+ β

∑
j

‖MPj −Kj‖2F

= αtr
∑
i

[
MTRTi RiMCTi Ci − 2MTRTi XiCi

]
+ βtr

∑
j

[
MTMPjP

T
j − 2MTKjP

T
j

]
+ const

Let t be the index of iteration. Similar to [14], we can show
that

G
(
M,M(t)

)
= α

∑
i

∑
u,v



[
RT

i RiM
(t)CT

i Ci

]
uv

·M2
uv

M
(t)
uv

−

2
[
RT

i XiCi

]
uv
M

(t)
uv

(
1 + ln

Muv

M
(t)
uv

)


+ β
∑
j

∑
u,v



[
M(t)PjP

T
j

]
uv

·M2
uv

M
(t)
uv

−

2
[
KjP

T
j

]
uv
M

(t)
uv

(
1 + ln

Muv

M
(t)
uv

)


is an auxiliary function of J (M) due to the facts:

G (M,M) = J (M)

and
G
(
M,M (t)

)
≥ J (M) .

The minimum is obtained by setting the derivative to zero:

∂

∂M
G
(
M,M (t)

)
= 0

Then, we get the update rule as follows:

M = M �

√√√√√√ α
∑
i
RTi XiCi + β

∑
j
KjPTj

α
∑
i
RTi RiMCTi Ci + β

∑
j
MPjPTj

Since J
(
M (t)

)
= G

(
M (t),M (t)

)
≥ min

M
G
(
M,M (t)

)
=

G
(
M (t+1),M (t)

)
≥ J

(
M (t+1)

)
, the objective function

J (M) is non-increasing under the above update rule.
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Lemma 2 shows that the iterative update method in
Lemma 1 will converge to the stationary point.

Lemma 2. The limiting solution of the update rule in Eq. 7
satisfies the KKT condition.

Proof. For the function J(M) in Eq. 6 with non-negative
constraint, we introduce the Lagrangian function

L (M) =α
∑
i

∥∥∥Xi −RiMCTi

∥∥∥2

F
+ β

∑
j

‖MPj −Kj‖2F

− tr(ΛMT )

where Λ(Λ ≥ 0) is the Lagrangian multiplies matrix. The
zero gradient condition gives

∂L(M)

∂M
= 0⇒ Λ = B −A

where

B = α
∑

i
RTi RiMCTi Ci + β

∑
j
MPjP

T
j

A = α
∑

i
RTi XiCi + β

∑
j
KjP

T
j

According to the complementary slackness condition, we
have

Λ�M = 0⇒ (B −A)�M = 0 (8)

Next, we verify that the limiting solution of the update rule
in Eq. 7 satisfies the above equation. When it converges,
M (∞) = M (t+1) = M (t) = M where t is the number of
iteration, we have

(M�M)�B = (M�M)�A⇒ (B−A)�(M�M) = 0 (9)

The equivalence between Eq. 8 and Eq. 9 completes the
proof.

Theorem 3 shows the multiplicative update rules for the
multi-latent space model defined in Eq. 4, and demonstrates
its convergence and correctness.

Theorem 3 (Convergence of Pre-training). The objective func-
tion in Eq. 4 is non-increasing under the update rules:

Ri = Ri �

√√√√√√√√
V∑

j=1

XijCjMT
ij + αYiCYMT

iY

V∑
j=1

RiMijCT
j CjMT

ij + αRiMiY CT
Y CYMT

iY

(10)

Ru
i = Ru

i �

√√√√√√√√
V∑

j=1

Xu
ijCjMT

ij

V∑
j=1

Ru
i MijCT

j CjMT
ij

(11)

Cj = Cj �

√√√√√√√√
T∑

i=1

X̃T
ijR̃iMij

T∑
i=1

CjMT
ij R̃

T
i R̃iMij

(12)

CY = CY �

√√√√√√√√
T∑

i=1

Y T
i RiMiY

T∑
i=1

CYMT
iYR

T
i RiMiY

(13)

Mij =Mij �

√
R̃T

i X̃ijCj+βMiY

R̃T
i R̃iMijCT

j Cj+βMij

(14)

MiY =MiY �

√√√√√ αRT
i YiCY + β

V∑
j=1

Mij

αRT
i RiMiY CT

Y CY + βVMiY
(15)

Also, the limiting solutions of the update rules satisfy the KKT
condition.

Proof. The convergence of the update follows from Lem-
ma 1. According to Lemma 2, we can prove that the limiting
solutions satisfy the KKT condition.

For simplicity, denote Ωij = R
(1:L)
i M

(L)
ij C

(1:L)T
j ,

Ω̃ij = R̃
(1:L)
i M

(L)
ij C

(1:L)T
j , ΩiY = R

(1:L)
i M

(L)
iY C

(1:L)T
Y , and

Φ (A) = R
(1:l−1)T
i AR

(l+1:L)T
i for any matrix A.

Theorem 4 shows the multiplicative update rules for the
hierarchical multi-latent space model defined in Eq. 5, and
demonstrates its convergence and correctness.

Theorem 4 (Convergence of Fine-tuning). The objective func-
tion in Eq. 5 is non-increasing under the update rules:

R
(l)
i = R

(l)
i �

√√√√√√√√√
V∑
j=1

Φ
(
XijC

(1:L)
j M

(L)T
ij

)
+ αΦ

(
YiC

(1:L)
Y M

(L)T
iY

)
V∑
j=1

Φ
(

ΩijC
(1:L)
j M

(L)T
ij

)
+ αΦ

(
ΩiY C

(1:L)
Y M

(L)T
iY

)
(16)

R
u
i = R

u
i �

√√√√√√√√√
V∑
j=1

XuijC
(1:L)
j M

(L)T
ij R

(2:L)T
i

V∑
j=1

Rui R
(2:L)
i M

(L)
ij C

(1:L)T
j C

(1:L)
j M

(L)T
ij R

(2:L)T
i

(17)

C
(l)
j = C

(l)
j �

√√√√√√√√
T∑

i=1
C

(1:l−1)T
j X̃T

ijR̃
(1:L)
i M

(L)
ij C

(l+1:L)T
j

T∑
i=1

C
(1:l−1)T
j Ω̃T

ijR̃
(1:L)
i M

(L)
ij C

(l+1:L)T
j

(18)

C
(l)
Y = C

(l)
Y �

√√√√√√√√
T∑

i=1
C

(1:l−1)T
Y Y T

i R
(1:L)
i M

(L)
iY C

(l+1:L)T
Y

T∑
i=1

C
(1:l−1)T
Y ΩT

iY R
(1:L)
i M

(L)
iY C

(l+1:L)T
Y

(19)

M
(L)
ij = M

(L)
ij �

√√√√√ R̃
(1:L)T
i X̃ijC

(1:L)
j + βM

(L)
iY

R̃
(1:L)T
i Ω̃ijC

(1:L)
j + βM

(L)
ij

(20)

M
(L)
iY = M

(L)
iY �

√√√√√√αR
(1:L)T
i YiC

(1:L)
Y + β

V∑
j=1

M
(L)
ij

αR
(1:L)T
i ΩiY C

(1:L)
Y + βVM

(L)
iY

(21)

where 1 ≤ l ≤ L. Also, the limiting solutions of the update rules
satisfy the KKT condition.

Proof. According to Lemma 1, we can prove the convergence
of the updating. According to Lemma 2, we can prove that
the limiting solutions satisfy the KKT condition.

After obtaining R(l)
i and C

(l)
j , we can update M (l)

ij and
M

(l)
iY (1 ≤ l < L) by using the update rule got in the pre-

training phase.
Based on Theorem 3 and Theorem 4, we summarize the

optimization algorithm for HiMLS in Algorithm 1. There are
two training phases including pre-training and fine-tuning
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in Algorithm 1. As shown in Steps 1-9, the pre-training
phase goes forward from the first layer to the highest layer,
and each layer is trained in a greedy layer-wise manner. In
contrast, the fine-tuning phase shown in Steps 10-17 moves
in an opposite direction, and the weights of all the layers
will be updated. The convergence of the HiMLS algorithm
is guaranteed by Theorem 3 and Theorem 4.

Algorithm 1 HiMLS Algorithm

Input: Instance-feature matrices X̃ij (1 ≤ i ≤ T, 1 ≤ j ≤ V ),
instance-label matrices for train data Yi (1 ≤ i ≤ T ), α, β,
number of layers L.

Output: Predicted instance-label matrices Fi (1 ≤ i ≤ T ) for
test data.

1: for l = 1 : L do
2: Initialize R̃

(l)
i (1 ≤ i ≤ T ), C(l)

Y and C
(l)
j (1 ≤ j ≤ V ) by

clustering instances, labels, and features using probabilis-
tic latent semantic analysis, respectively;

3: Initialize M
(l)
ij = R

(l)†
i M

(l−1)
ij C

(l)†
j , M

(l)
iY =

R
(l)†
i M

(l−1)
iY C

(l)†
Y where R† =

(
RTR

)−1
RT and

C† = C
(
CTC

)−1. Note that M (0)
ij = X̃ij , and M (0)

iY = Yi;
4: repeat
5: Update R(l)

i (1 ≤ i ≤ T ) and Ru
i by Eq. 10 and Eq. 11;

6: Update C(l)
j (1 ≤ j ≤ V ) and C(l)

Y by Eq. 12 and Eq. 13;
7: Update M (l)

ij and M
(l)
iY where 1 ≤ i ≤ T, 1 ≤ j ≤ V by

Eq. 14 and Eq. 15;
8: until converged
9: end for;

10: repeat
11: Update M (L)

ij and M
(L)
iY where 1 ≤ i ≤ T, 1 ≤ j ≤ V by

Eq. 20 and Eq. 21;
12: for l = L : 1 do
13: Update R(l)

i (1 ≤ i ≤ T ) and Ru
i by Eq. 16 and Eq. 17;

14: Update C(l)
j (1 ≤ j ≤ V ) and C(l)

Y by Eq. 18 and Eq. 19;
15: Update M (l)

ij and M (l)
iY where 1 ≤ i ≤ T, 1 ≤ j ≤ V, l 6=

L by Eq. 14 and Eq. 15;
16: end for;
17: until converged
18: return Predictions for the test data using Eq. 3.

Time complexity: Similar to other matrix factorization
methods based on multiplicative update rules [14], [25], a
nice property of the proposed HiMLS algorithm is that most
of the computations are matrix multiplications and can be
computed efficiently. Lemma 5 shows the complexity of the
algorithm. The proof is omitted for brevity.

Lemma 5 (Complexity). The time complexity for the multiplica-
tive update rules in Theorem 3 are as follows:

O(Ri) = O(Rui ) = O
(∑V

j=1
niN

(
pq + q2 + djq +mq

))
O(Cj) = O

(∑T

i=1
djN

(
nip+ pq + p2

))
O(CY ) = O

(∑T

i=1
mN

(
nip+ pq + p2

))
O(Mij) = O

(
pN

(
nidj + qdj + pq + q2

))
O(MiY ) = O

(
pN

(
nim+ qm+ pq + q2

))
where 1 ≤ i ≤ T, 1 ≤ j ≤ V and N is the number of iteration
until convergence.

Note that the dimensions of the latent spaces are usually
far smaller than the ones in the original spaces, i.e., p � ni
and q � dj . Lemma 5 shows that the multiplicative update
rules for pre-training are scalable to the problem sizes.
Likewise, we can obtain the time complexity of the update
rules for fine-tuning, which are omitted for brevity.

5 OPTIMIZATION ALGORITHM FOR HIMLSD
In this section, we introduce the optimization algorithm for
HiMLSD, which is the counterpart of HiMLS.

HiMLSD adopts the generalized Kullback-Leibler diver-
gence (see subsection 3.5) as loss metric. Therefore, the
objective function defined in Eq. 1 for multi-latent space
is instantiated as,

min
{R,M,C}>0

T∑
i=1

V∑
j=1

D
(
X̃ij ||R̃iMijC

T
j

)

+ α
T∑
i=1

D
(
Yi||RiMiY C

T
Y

)
+ β

T∑
i=1

V∑
j=1

D (Mij ||MiY )

(22)
The objective function defined in Eq. 2 for hierarchical

multi-latent space can be instantiated as,

min
{R,M,C}>0

T∑
i=1

V∑
j=1

D
(
X̃ij ||R̃(1:L)

i M
(L)
ij C

(1:L)T
j

)

+ α
T∑
i=1

D
(
Yi||R(1:L)

i M
(L)
iY C

(1:L)T
Y

)
+ β

T∑
i=1

V∑
j=1

D
(
M

(L)
ij ||M

(L)
iY

)
(23)

Next, we derive Lemma 6, which is a generic method to
derive the multiplicative update rules for R,M,C in both
pre-training and fine-tuning of HiMLDS.

Lemma 6. For any non-negative matrices H,X,R,C and P ,
the function

F (H) = αD
(
X||RHCT

)
+ βD (H||P ) (24)

is non-increasing under the update:

H ←
H �

(
αRT X

RHCT C
)

+ βP

βE + αRTEC
(25)

where α and β are non-negative parameters. E is a unit matrix
whose dimensions are set wherever appropriate.

Proof. The function F (H) can be rewritten as,

F (h) = αD
(
X||RHCT

)
+βD (H||P )

= αD
(
vec (X) ||vec

(
RHCT

))
+ βD (vec(H)||vec(P ))

= αD (vec (X) || (C ⊗R) vec (H)) +βD (vec (H) ||vec (P ))

= αD (x||Wh) +βD (h||p)

= α
∑
i

(
xi log

xi∑
jWijhj

− xi +
∑

j
Wijhj

)

+ β
∑
j

(
hj log

hj
pj
− hj + pj

)
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where W = C ⊗ R. The key issue is to design an auxiliary
function for F (h). Denote

G
(
h, ht

)
= α

∑
i

(
xi log xi − xi +

∑
j
Wijhj

)
− α

∑
i,j

xi
Wijh

t
j∑

kWikhtk

(
logWijhj − log

Wijh
t
j∑

kWikhtk

)

+ β
∑
j

(
hj log

hj
pj
− hj + pj

)
To show that G (h, ht) is an auxiliary function of F (h), we
need to prove: (1) G (h, h) = F (h); (2) G (h, ht) ≥ F (h).
The first equation is straightforward. To prove the latter
inequality, we use the convexity of log function:

− log
∑
j

Wijhj ≤ −
∑
j

cj log
Wijhj
cj

s.t. cj ≥ 0,
∑
j

cj = 1

Setting cj =
Wijh

t
j∑

k
Wikhtk

, we obtain,

− log
∑
j

Wijhj ≤ −
∑
j

Wijh
t
j∑

kWikhtk
log

Wijhj
∑
kWikh

t
k

Wijhtj

From this inequality it follows that G (h, ht) ≥ F (h).
The minimum of G (h, ht) with respect to h is deter-

mined by setting the gradient to zero:

dG (h, ht)

dhj
= −α

∑
i

(
xiWijh

t
j

hj
∑
kWikhtk

−Wij

)
+β log

hj
pj

= 0

Since log x ≈ 1 − 1/x with x → 1 [6], the above equation
can be approximated as:

−α
∑
i

(
xiWijh

t
j

hj
∑
kWikhtk

−Wij

)
+ β

(
1− pj

hj

)
= 0 (26)

According to Eq. 26, we have,

hj =

htj
∑
i

αxiWij∑
kWikhtk

+ βpj

β + α
∑
i
Wij

⇒ h =
ht �

(
αWT x

Wh

)
+ βp

αWT · 1 + β · 1

=
ht �

(
α
(
CT ⊗RT

)
vec

(
X

RHCT

))
+ βp

α · vec (RTEC) + β · 1

=
ht � vec

(
αRT X

RHCT C
)

+ βvec (P )

α · vec (RTEC) + βvec (E)

⇒ H ←
H �

(
αRT X

RHCT C
)

+ βP

αRTEC + βE

Similar to the proof in Lemma 6, we can derive the
following lemma.

Lemma 7. The function

J (H) = βD (H||P ) +
∑
k

αkD
(
Xk||RkHCTk

)
(27)

is non-increasing under the update rule:

H ←
H �

(∑
k
αkR

T
k

Xk
RkHCTk

Ck

)
+ βP

βE +
∑
k
αkRTkEkCk

(28)

where β and αk are non-negative parameters. E (or Ek) is a unit
matrix whose dimensions are set wherever appropriate.

Lemma 8 shows that the iterative update method in
Lemma 6 will converge to the stationary point.

Lemma 8. The limiting solution of the update rule in Eq. 25
satisfies the KKT condition.

Proof. For the function F (H) in Eq. 24 with non-negative
constraint, we introduce the Lagrangian function

L (h) =α
∑
i

(
xi log

xi∑
jWijhj

− xi +
∑

j
Wijhj

)

+ β
∑
j

(
hj log

hj
pj
− hj + pj

)
− tr(ΛhT )

where Λ(Λ ≥ 0) is the Lagrangian multiplies vector. The
zero gradient condition gives

∂L(h)

∂hj
= 0⇒ Λj = α

∑
i

Wij

1− xi∑
k
Wikhk

+ β log
hj
pj

According to the complementary slackness condition Λj �
hj = 0, we haveα∑

i

Wij

1− xi∑
k
Wikhk

+ β log
hj
pj

 · hj = 0 (29)

Likewise, when x→ 1, log x ≈ 1− 1/x, the above equation
can be approximated as:α∑

i

Wij

1− xi∑
k
Wikhk

+ β

(
1− pj

hj

) ·hj = 0 (30)

Next, we verify that the limiting solution of the update
rule in Eq. 25 satisfies the above equation. When it con-
verges, h(∞)

j = h
(t+1)
j = h

(t)
j = hj where t is the index of

iteration, we have

hj

(
β + α

∑
i

Wij

)
= hj

∑
i

αxiWij∑
k
Wikhk

+ βpj (31)

The equivalence between Eq. 30 and Eq. 31 completes the
proof.

Next we derive the multiplicative update rules for pre-
training and fine-tuning in HiMLDS. Theorem 9 shows the
multiplicative update rules for Eq. 22, and demonstrates its
convergence and correctness.

Theorem 9 (Convergence of Pre-training). The objective func-
tion in Eq. 22 is non-increasing under the update rules:

Mij ←
Mij �

(
R̃T

i
X̃ij

R̃iMijC
T
j

Cj

)
+ βMiY

R̃T
i EijCj + βE

(32)
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MiY ←
MiY �

(
αRT

i
Yi

RiMiY CT
Y

CY + β
V∑

j=1

Mij

MiY

)
αRT

i EiCY + βV · E
(33)

Ri ←
Ri �

(
α Yi

RiMiY CT
Y

CYM
T
iY +

V∑
j=1

Xij

RiMijC
T
j

CjM
T
ij

)

αEiCYMT
iY +

V∑
j=1

EijCjMT
ij

(34)

Ru
i ←

Ru
i �

V∑
j=1

Xuij

Rui MijC
T
j

CjM
T
ij

V∑
j=1

EijCjMT
ij

(35)

CT
j ←

CT
j �

T∑
i=1

MT
ij R̃

T
i

X̃ij

R̃iMijC
T
j

T∑
i=1

MT
ij R̃

T
i Eij

(36)

CT
Y ←

CT
Y �

T∑
i=1

MT
iYR

T
i

Yi
RiMiY CT

Y

T∑
i=1

MT
iYR

T
i Eij

(37)

Proof. According to Lemma 7, we can prove the convergence
of the updating. According to Lemma 8, we can prove that
the limiting solutions satisfy the KKT condition.

Define Ωij (l) = R
(l+1:L)
i M

(L)
ij C

(1:L)T
j , ΩiY (l) =

R
(l+1:L)
i M

(L)
iY C

(1:L)T
Y , Θij (l) = R̃

(1:L)
i M

(L)
ij C

(l+1:L)T
j , and

ΘiY (l) = R
(1:L)
i M

(L)
iY C

(l+1:L)T
Y .

Theorem 10 shows the multiplicative update rules for
Eq. 23, and demonstrates its convergence and correctness.

Theorem 10 (Convergence of Fine-tuning). The objective
function in Eq. 23 is non-increasing under the update rules:

M
(L)
ij ←

M
(L)
ij �

(
R̃

(1:L)T
i

X̃ij

R̃
(1:L)
i

M
(L)
ij

C
(1:L)T
j

C
(1:L)
j

)
+ βM

(L)
iY

R̃
(1:L)T
i EijC

(1:L)
j + βE

(38)

M
(L)
iY ←

M
(L)
iY �

(
αR

(1:L)T
i

Yi

R
(1:L)
i

M
(L)
iY

C
(1:L)T
Y

C
(1:L)
Y + β

V∑
j=1

M
(L)
ij

M
(L)
iY

)
αR

(1:L)T
i EiC

(1:L)
Y + βV · E

(39)

R
(l)
i ←

R
(l)
i �

(
αR

(1:l−1)T
i

Yi
ΩiY (0)

ΩTiY (l) +
V∑
j=1

R
(1:l−1)T
i

Xij
Ωij(0)

ΩTij (l)

)

αR
(1:l−1)T
i EiΩTiY (l) +

V∑
j=1

R
(1:l−1)T
i EijΩTij (l)

(40)

R
u
i ←

Rui �
(

V∑
j=1

Xuij
Ru
i

Ωij(1)
ΩTij (1)

)
V∑
j=1

EijΩTij (1)

(41)

C
(l)T
j ←

C
(l)T
j �

T∑
i=1

ΘTij (l)
X̃ij

R̃
(1:L)
i

M
(L)
ij

C
(1:L)T
j

C
(1:l−1)
j

T∑
i=1

ΘTij (l)EijC
(1:l−1)
j

(42)

C
(l)T
Y ←

C
(l)T
Y �

T∑
i=1

ΘTiY (l)
Yi

R
(1:L)
i

M
(L)
iY

C
(1:L)T
Y

C
(1:l−1)
Y

T∑
i=1

ΘTiY (l)EiC
(1:l−1)
Y

(43)

where 1 ≤ l ≤ L. Also, the limiting solutions of the update rules
satisfy the KKT condition.

Proof. According to Lemma 7, we can prove the convergence
of the updating. According to Lemma 8, we can prove that
the limiting solutions satisfy the KKT condition.

Likewise, we can obtain the algorithm for HiMLSD and
its time complexity, which are omitted for brevity.

6 THE SPECIAL CASES OF HIMLS
The proposed model is a generalized framework for learn-
ing complex heterogeneity. It is widely applicable to multi-
ple types of heterogeneous learning problems.

A special case of HiMLS is to learn the common co-latent
space M shared among all the tasks, view, and labels, i.e.,
Mij = MiY = M(1 ≤ i ≤ T, 1 ≤ j ≤ V ). And by using the
training data only, Eq. 4 can be specialized as:

min
R,M,C

T∑
i=1

V∑
j=1

∥∥∥Xij −RiMCT
j

∥∥∥2
F
+ α

T∑
i=1

∥∥∥Yi −RiMCT
Y

∥∥∥2
F

(44)
It is worth noting that Eq. 44 is not a trivial special

case. Theorem 11 shows that some popular methods for
learning from single heterogeneity can be viewed as the
special cases of our proposed model, such as the multi-
view learning method MSL [36] and the multi-label learning
method LS-CCA [32]. Both MSL and LS-CCA are closely
related to canonical correlation analysis (CCA), while MSL
is an unsupervised learning method aiming to learn the
subspace from multiple views, and LS-CCA is a supervised
learning method for the multi-label problem when one of
the views used in CCA is derived from the labels.

Theorem 11. The multi-view learning method MSL [36] and
the multi-label learning method LS-CCA [32] can be viewed as
the special cases of HiMLS.

Proof. Consider two special cases of HiMLS for learning
from a single heterogeneity as follows:

1) Unsupervised multi-view learning: By letting T = 1,
V = 2, and α = 0, Eq. 44 can be rewritten into:

min
R,M,C

∥∥∥X1 −RMCT1

∥∥∥2

F
+
∥∥∥X2 −RMCT2

∥∥∥2

F
(45)

where Xj(j = 1, 2) is the instance-feature matrix for the jth

view.
2) Supervised multi-label learning: By letting T = 1, V =

1, and α = 1, Eq. 44 can be rewritten into:

min
R,M,C

∥∥∥X −RMCT1

∥∥∥2

F
+
∥∥∥Y −RMCT2

∥∥∥2

F
(46)

whereX and Y are the instance-feature matrix and instance-
label matrix, respectively.

Both Eq. 45 and Eq. 46 have the same form as follows:

min
H,C

∥∥∥[X,Y ]−HCT
∥∥∥2

F
(47)

where H = RM and CT =
[
CT1 , C

T
2

]
. Con-

sider the normalized data matrix defined as Z =[
(XXT )−

1
2X, (Y Y T )−

1
2Y
]
. When imposing the orthogonal

constraint CTC = I , Eq. 47 can be rewritten into:

min
H,CTC=I

∥∥∥Z −HCT∥∥∥2

F
(48)
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Let f (H,C) denote the objective function for Eq. 48, which
can be transformed into:

f (H,C) = tr
[
ZTZ − 2CHTZ +HTH

]
When fixing C , we have:

∇Hf (H,C) = −2ZC + 2H = 0⇒ H = ZC

By substituting H = ZC into Eq. 48, we have

min
CTC=I

∥∥∥Z −HCT∥∥∥2

F

= min
CTC=I

tr
[
ZTZ − 2CCTZTZ + CTZTXC

]
= tr

[
ZTZ

]
− max
CTC=I

tr
[
CTZTZC

] (49)

The optimal solution forC is given by the top k eigenvectors
of ZTZ . According to [36], Eq. 49 has the same optimal
solution with CCA which aims to optimize:

max
U,V

tr
(
UTXY TV

)
s.t. UTXXTU = V TY Y TV = I

Therefore, the first special case of HiMLS is equivalent to ap-
plying CCA to the instance-feature matrices from multiple
views [36]. The second special case of HiMLS is equivalent
to applying CCA to both the instance-feature matrix and
instance-label matrix [32].

7 EXPERIMENTS

In this section, we demonstrate the effectiveness of the
proposed algorithms on various data sets in comparison
with different heterogeneous learning methods.

7.1 Data Sets and Setup
Four real data sets from different domains are used for
evaluation, including text, image, and manufacturing data.

The first data set is the Reuters Corpus Volume I (R-
CV1V2) 1 data set [26], which is a collection of over 800,000
newswire stories. There are three category sets of data:
Topics (i.e. major subject of a story), Industry Codes (i.e.
type of business discussed), and Regions (i. e. geographic
locations). Each of these category sets has a hierarchical
structures. It is usually common to use several subsets of
this data, each containing 6000 data instances on average
and with a total number of 101 class labels.

EUR-Lex [27] is a text data set containing European
Union official laws in practice, different kinds of treaties and
agreements, parliamentary journals. This data set contains
nearly 20,000 text documents classified according to three
different schemas: i) subject matter (e.g. agriculture), ii)
official classification hierarchy called the directory codes
(e.g. a document belonging to a class also belongs to all its
parent classes), and iii) EUROVOC, a multilingual thesaurus
maintained by the Office for Official Publications of the
European Communities. Each of these category sets forms a
hierarchical structures.

NUS-WIDE 2 [9] is the a real-world web image data
set comprising over 269,000 images with over 5,000 user-
provided tags, and ground-truth of 81 concepts with a

1. http://mulan.sourceforge.net/datasets-mlc.html
2. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

hierarchical structures. There are several types of low-level
visual features such as 64-D color histogram in LAB color
space, 144-D color correlogram in HSV color space, 73-D
edge distribution histogram, and 500-D bag of visual words.
We use the light version of NUS-WIDE.

In these data sets, the label refer to the multiple cate-
gories each instance belonging to. For the NUS-WIDE data,
the view refers to different types of low-level visual feature.
For either RCV1V2 or EUR-Lex data sets, similar to [42],
the data are described from two views: one corresponds to
the TF-IDF features; another corresponds to the latent topics
obtained by applying probabilistic latent semantic analysis3

on the term counts. The task refers to classify the instances
belonging to different sub-categories, which follow different
but related distributions [18].

The last data set AL-SMELT is related to manufacturing
process. AL-SMELT is collected from Aluminum smelting
process. This data set corresponds to an electrolytic process
with 174 process variables that forms 4 views based on the
process control practice: power and resistance, noise control,
feed control, and chemicals. It is concurrently running in 245
smelters, which can be classified into 5 groups (tasks) based
on their design and generation. The 174 process variables
are collected automatically at daily level via sensors. Two
other important control variables, temperature and Alumina
Fluoride, are collected every other day manually. Here, the
goal is to predict the change direction (increase or decrease)
of these 2 variables (labels) when they are not collected. The
prediction fills in the information gap and enables feedback
control in a finer granularity.

Table 1 shows the properties of different data sets. Label
cardinality is the average number of labels per instance.
Accordingly, label density normalizes label cardinality by
the the number of labels. Label diversity is the number of
distinct label combinations observed in the data set [46].

7.2 Evaluation Metrics
In order to comprehensively investigate the performance
of the proposed method, we use F1-score, accuracy and
Hamming loss on the test data as the evaluation metrics.

F1-score [46] is the harmonic mean of precision and
recall where precision is the proportion of predicted correct
labels to the total number of actual labels, recall is the
proportion of predicted correct labels to the total number of
predicted labels, averaged over all instances. Note that the
larger value of F1-score is indicating the better performance.

Accuracy [46] for each instance is defined as the pro-
portion of the predicted correct labels to the total number
of labels for that instance. Overall accuracy is the average
across all instances. Note that the larger value of accuracy is
indicating the better performance.

Hamming Loss [46] reports how many times on average,
the relevance of an instance to a class label is incorrectly
predicted. Therefore, hamming loss takes into account the
prediction error (an incorrect label is predicted) and the
missing error (a relevant label not predicted), normalized
over total number of classes and total number of instances.
Note that the smaller the value of Hamming loss, the better
the performance of the learning algorithm.

3. http://lear.inrialpes.fr/people/verbeek/code
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TABLE 1
Statistics of Different Data Sets.

Data set Instances Features Labels Cardinality Density Diversity
RCV1V2 1 6000 47236 101 2.880 0.029 1028
RCV1V2 2 6000 47236 101 2.634 0.026 954
RCV1V2 3 6000 47229 101 2.614 0.026 939
RCV1V2 4 6000 47236 101 2.484 0.025 816
EUR-Lex 19348 5000 412 1.292 0.003 1615
NUS-WIDE 55615 708 81 1.869 0.023 18430
AL-SMELT 6468 174 2 0.986 0.493 4

TABLE 2
Comparison among HiMLS Variants on RCV1V2 1 Data Set.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .906±.006 .885±.006 .064±.003
MLS .868±.023 .829±.028 .102±.018
MLS-T .864±.008 .822±.009 .106±.006
MLS-V .857±.009 .813±.010 .107±.005
MLS-S .847±.018 .805±.020 .116±.011

TABLE 3
Comparison among HiMLS Variants on RCV1V2 2 Data Set.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .903±.006 .872±.006 .073±.003
MLS .880±.006 .846±.008 .089±.004
MLS-T .872±.003 .828±.005 .098±.005
MLS-V .856±.026 .818±.030 .102±.017
MLS-S .842±.011 .814±.014 .100±.007

7.3 Effectiveness of HiMLS Components

First of all, we aim to verify the effectiveness of each
component in the proposed model, and demonstrate the
advantages of simultaneously modeling the multiple hetero-
geneity in one framework. Therefore, we compare HiMLS
with its four special cases: 1) multi-task multi-view variant
MLS; 2) multi-task single-view variant MLS-T; 3) multi-view
single-task variant MLS-V; 4) single-task single-view variant
MLS-S. Each of these four variants has only one layer.

HiMLS and MLS are input with multi-task and multi-
view data. For the single-view setting, the features from all
the views are concatenated into one single view. For the
single-task setting, the instances in all the tasks are pooled
into one single task. For HiMLS, we set the number of
layers L = 2, and the numbers of latent topics [p, q] for the
instances and features(or labels) to [200, 100], [40, 20] in the
first and second layer, respectively. For all the other methods
with only one layer, we set [p, q] = [40, 20].

The classification performances of HiMLS and its vari-
ants on RCV1V2 data sets are shown on Tables 2-5. Based
on these comparison results, we have the following findings:

• Both MLS-T and MLS-V perform better than MLS-S
in most cases by incorporating either task relatedness
or view consistency. It suggests that simply concate-
nating the features from different views is not the
best way to model the view heterogeneity; likewise,
simply pooling the instances of all tasks into one
single task is not the best way to model the task
heterogeneity.

TABLE 4
Comparison among HiMLS Variants on RCV1V2 3 Data Set.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .900±.006 .869±.006 .076±.003
MLS .878±.011 .844±.012 .096±.007
MLS-T .871±.019 .841±.022 .091±.012
MLS-V .860±.003 .820±.004 .103±.001
MLS-S .854±.018 .814±.024 .106±.013

TABLE 5
Comparison among HiMLS Variants on RCV1V2 4 Data Set.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .894±.002 .860±.002 .082±.002
MLS .874±.010 .835±.012 .097±.008
MLS-T .864±.019 .825±.023 .103±.014
MLS-V .859±.016 .816±.020 .106±.013
MLS-S .851±.013 .807±.016 .113±.011

• MLS perform better than either MLS-T or MLS-V in
most cases. It suggests that jointly modeling mul-
tiple types of heterogeneity can gain performance
improvement upon single-heterogeneity learning.

• HiMLS performs better than MLS. It indicates that
the learned hierarchical multi-latent space helps
build a more robust and discriminative classifier. One
possible reason to account for this is that the multi-
layer structure helps find the more accurate local op-
timum by gradually learning the abstract concepts.
In contrast, the single-layer methods may suffer from
the local optimal solution in lower quality.

7.4 Performance Comparison

The second experiment is to compare the proposed method
with various heterogeneous learning algorithms. In this
work, we focus on improving the performance of multi-label
learning by leveraging the multiple type of heterogeneity.
To the best of our knowledge, there is no previous work
for learning from the triple heterogeneity. Therefore, we
compare our proposed approach with a variety of multi-
label learning methods which learn from single or dual het-
erogeneity. The comparison approaches includes: 1) multi-
view multi-label learning methods L2F [40]; 2) graph-based
multi-label approach ML-kNN [45]; 3) multi-label method
based on subspace learning LS-ML [22]; 4) transductive
multi-label learning approach TRAM [23].

In addition, we compare the two alternative algorithms
of our proposed approach, i.e., HiMLS and HiMLSD, to
examine their performance differences. Note that HiMLS



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 13, NO. 9, SEPTEMBER 2016 12

TABLE 6
Classification Performance on RCV1V2 1.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .906±.006 .885±.006 .064±.003
HIMLSD .889±.007 .858±.007 .082±.003
L2F .847±.011 .802±.015 .110±.009
ML-KNN .803±.092 .775±.094 .102±.038
LS-ML .821±.021 .789±.019 .109±.005
TRAM .888±.003 .857±.004 .082±.003

TABLE 7
Classification Performance on RCV1V2 2.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .903±.006 .872±.006 .073±.003
HIMLSD .911±.004 .881±.004 .071±.002
L2F .884±.005 .850±.005 .083±.003
ML-KNN .772±.009 .751±.008 .103±.001
LS-ML .828±.019 .799±.016 .100±.004
TRAM .874±.004 .848±.004 .079±.002

is based on least squares loss function, while HiMLSD is
based on generalized KL divergence. In order to conduct a
fair comparison between them, the same initializations are
used for HiMLS and HiMLSD.

HiMLS (or HiMLSD) is input with multi-task and multi-
view data. For the other algorithms, the instances of all the
tasks are pooled together. L2F method is given the multi-
view features, whereas the other methods are given the
concatenated features from all the views. The parameters
are tuned for each algorithm using cross-validation on the
training data. We repeat the experiments ten times for
each data set and report the average performances and the
standard deviations.

Tables 6-9 show the classification performances of d-
ifferent methods on RCV1V2. The performances on EUR-
Lex, NUS-WIDE, and AL-SMELT are shown in Tables 10-12,
respectively.

The results show that both HiMLS and HiMLSD per-
form better than the other algorithms in most cases. LS-
ML [22] learns a common subspace shared among multiple
labels, which helps improve the learning performance for
the multi-label data. However, since its objective function
is non-convex, the performance of LS-ML may be limited
by the local optimum problem. TRAM [23] is a transduc-
tive multi-label learning method which tries to exploit the
information from unlabeled data to estimate the optimal
label concept compositions. The results show that unlabeled
data can provide helpful information to build the multi-label
classifier. For ML-kNN [45], since it ignores the correlation
among multiple labels, its performance on these data sets
is not comparable with the other methods in most cases.
Different from these methods for learning from single het-
erogeneity, both HiMLS (or HiMLSD) and L2F [40] model
the feature and label heterogeneity and gain performance
improvement by enhancing the view consistency. It suggests
that treating the features from different views in a dis-
criminative and complementary way is usually better than
just concatenating all the features into one view. Likewise,
treating the instances in different tasks discriminatively is
usually better than just pooling all the instances together.

TABLE 8
Classification Performance on RCV1V2 3.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .900±.006 .869±.006 .076±.003
HIMLSD .889±.007 .860±.007 .080±.005
L2F .837±.008 .788±.010 .120±.005
ML-KNN .764±.005 .738±.006 .115±.001
LS-ML .816±.010 .785±.006 .107±.003
TRAM .873±.006 .846±.005 .081±.003

TABLE 9
Classification Performance on RCV1V2 4.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .894±.002 .860±.002 .082±.002
HIMLSD .913±.002 .866±.004 .077±.002
L2F .858±.005 .816±.005 .106±.005
ML-KNN .754±.005 .728±.007 .118±.004
LS-ML .831±.017 .801±.015 .104±.004
TRAM .870±.004 .851±.006 .075±.004

The performance superiority of the proposed method over
the comparison methods verifies the effectiveness of the
proposed approach to model the complex heterogeneity in
a principled framework. Another important competency of
the proposed method is that its multi-layer structure helps
build a robust classifier by gradually finding the more high-
level concepts in the deep structures.

TRAM performs a little better than HiMLS (or HiMLSD)
on NUS-WIDE data set. It indicates that NUS-WIDE may
be consistent with the smoothness assumption, and TRAM
is able to effectively leverage this assumption. However,
TRAM shows relative poor performance on AL-SMELT data
suggesting that the transductive method may be misled by
the unlabeled information.

The results show that the performances of HiMLS and
HiMLSD are comparable. Each of them wins on three out of
seven data sets. It suggests that they adapt to different data
set. Both of them provide the alternative methods to model
the heterogeneous data.

TABLE 10
Classification Performance on EUR-Lex.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .749±.009 .719±.011 .033±.002
HIMLSD .740±.009 .707±.008 .034±.001
L2F .713±.020 .680±.020 .033±.003
ML-KNN .498±.029 .472±.027 .043±.002
LS-ML .664±.013 .631±.013 .088±.006
TRAM .667±.016 .635±.016 .040±.002

TABLE 11
Classification Performance on NUS-WIDE.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .675±.007 .645±.006 .187±.003
HIMLSD .649±.008 .634±.009 .192±.005
L2F .700±.001 .615±.002 .204±.002
ML-KNN .589±.004 .582±.003 .215±.002
LS-ML .628±.021 .618±.020 .190±.008
TRAM .684±.007 .676±.008 .166±.003
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Fig. 2. From left to right: a) F1-score vs. α (log10 scale); b) F1-score vs. β (log10 scale); c) F1-score vs. iteration.

TABLE 12
Classification Performance on AL-SMELT.

ALGORITHM F1-SCORE ACCURACY HAMMING LOSS
HIMLS .848±.003 .847±.003 .140±.003
HIMLSD .873±.006 .871±.006 .115±.006
L2F .773±.001 .772±.001 .214±.000
ML-KNN .845±.001 .842±.000 .139±.001
LS-ML .852±.000 .850±.001 .131±.001
TRAM .383±.001 .381±.001 .605±.000

7.5 Parameter Sensitivity
We study the parameter sensitivity on the RCV1V2 1 data
set. α and β are tuned on the grid 10[−3:1:3]. The results
are shown in Figure 2(a-b). α is used to balance the impor-
tance of classification loss. The algorithm performs worse
as α approaches 0. When α = 0, it means that no label
information is used for training. The optimal performance
is achieved at α = 1. Nevertheless, the performance is
quite robust over a wide range of values of α. β is used to
control the importance of regularization. The result shown
in Figure 2(b) indicates that setting appropriate weight to
the regularization term can lead to better performance. As a
result, we tune the parameters, α and β, for each data set by
cross-validation on the training data.

We empirically study the convergence of HiMLS on the
RCV1V2 1 data set. The result is shown in Figure 2(c). From
this figure, we can see that HiMLS converges fast and its
performance becomes stable after a few iterations. Thus, we
terminate the algorithm after a maximum of 50 iterations.

7.6 Impact of Layers

TABLE 13
Performance Varies with Number of Layers.

L F1-SCORE ACCURACY HAMMING LOSS
1 .868±.023 .829±.028 .102±.018
2 .874±.002 .842±.003 .092±.001
3 .884±.003 .855±.005 .083±.002
4 .891±.003 .864±.003 .079±.002
5 .906±.006 .885±.006 .064±.003

It is interesting to investigate how the number of layers
L affects the performance of the proposed approach (e.g.
HiMLS). We set L = 1, 2, 3, 4, 5, and the numbers of latent
topics in each layer are 40,100,400,1000,4000, respectively.
We set p = q here. Table 13 shows the results on the
RCV1V2 1 data set. We can see that the performances (F1-
score, accuracy, and Hamming loss) are consistently im-
proved when the number of layers increased from 1 to 5.

It demonstrates that the multi-layer structure improves the
performance by learning the hierarchical abstract concepts
from data. When L keeps increased from 5, we have not
observed the significant improvement of performance. Our
conjecture is that the algorithm may have approached the
local optimum. Therefore, we empirically set L = 5.

8 CONCLUSION

We propose a multi-layer framework to jointly model triple
heterogeneity. In each layer, it learns a multi-latent space
shared among the heterogeneous data. Then the multi-latent
model is used as a building block to stack up a multi-layer
structure so as to gradually learn the more abstract concepts.
Based on this generalized framework, we present two alter-
native models using different divergence measures. A deep
learning algorithm is proposed to solve the optimization
problem in each model, which first pre-trains each layer and
then fine-tunes the whole multi-layer structure by using the
multiplicative update rules. The comparison experiments
with various heterogeneous learning methods demonstrate
the effectiveness of the proposed model.
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