Goals: This course will introduce the state-of-art techniques of data mining and data warehousing. With the rapid advance of computer and internet technologies, a plethora of data accumulates. Data won't turn into knowledge no matter how long it is kept. If we can mind nuggets from data, this would add values and edges to what we are doing. Data mining is a process that finds the valuables among the mountains of data, and data warehousing is a process that organizes huge databases for data mining and OLAP. We will review and examine the present techniques and the theories behind them and explore new and improved techniques for real world data mining applications. The arrangement of the course will encourage active discussion, creative thinking, and hands-on project development among the participants. A course project on some specific aspect of this emerging field will be required for each student to explore some in-depth issue(s).
This course consists of the presentations from the instructor and the participating students.
Course Line Number: 66554 Credit Hours: Three
Class Schedule: Monday and Wednesday, 1:40 PM - 2:55 PM Classroom: SCOB 302
Instructor: Dr. Huan Liu Course Plan (Fall 2000)
Telephone: (480) 727-7349 Email: hliu@asu.edu
Office Hours: Monday and Wednesday 3:00 - 4:00pm or by appointment
Prerequisite: Introduction to Artificial Intelligence (CSE471 or CSE598) or Introduction to Database Management Systems (CSE), some system development experience related to data engineering and handling, or consent from the instructor.
Topics:
Project: Students will propose a course project (either research or development type) with approval of the instructor. The evaluation of the project consists of proposal presentation, project presentation and/or demonstration and a written report.
Textbook: There will be research papers and reference books (to
be available soon on-line).
Data Mining: Concepts and Techniques
Jiawei Han and Micheline Kamber
Morgan Kaufmman Publishers, 2000
Data Mining: Practical Machine Learning Tools
and Techniques with JAVA
Ian H. Witten and Eibe Frank
Morgan Kaufmman Publishers, 2000
Evaluation Methods: Class participation - 10%, Presentation
& discussion -20%, Project - 35% (5%[proposal] + 10%[presentation]
+ 20%[final report&demo]), Quizzes - 35%