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Abstract
Feature interaction presents a challenge to feature
selection for classification. A feature by itself may
have little correlation with the target concept, but
when it is combined with some other features, they
can be strongly correlated with the target concept.
Unintentional removal of these features can result
in poor classification performance. Handling fea-
ture interaction can be computationally intractable.
Recognizing the presence of feature interaction, we
propose to efficiently handle feature interaction to
achieve efficient feature selection and present ex-
tensive experimental results of evaluation.

1 Introduction
The high dimensionality of data poses a challenge to learning
tasks such as classification. In the presence of many irrele-
vant features, classification algorithms tend to overfit train-
ing data [Guyon and Elisseeff, 2003; Dash and Liu, 1997].
Many features can be removed without performance dete-
rioration [Gilad-Bachrach et al., 2004]. Feature selection
is one effective means to remove irrelevant features [Blum
and Langley, 1997]. Optimal feature selection requires an
exponentially large search space (O(2N ), where N is the
number of features) [Almuallim and Dietterich, 1994]. Re-
searchers often resort to various approximations to determine
relevant features (e.g., relevance is determined by correla-
tion between individual features and the class) [Hall, 2000;
Yu and Liu, 2003]. However, a single feature can be con-
sidered irrelevant based on its correlation with the class; but
when combined with other features, it becomes very rele-
vant. Unintentional removal of these features can result in
the loss of useful information and thus may cause poor clas-
sification performance. This is studied in [Jakulin and Bratko,
2003] as attribute interaction. For example, MONK1 is a data
set involving feature interaction. There are six features in
MONK1 and the target concept of MONK1 is: (A1 = A2)
or (A5 = 1). Here A1 and A2 are two interacting features.
Considered individually, the correlation between A1 and the
class C (similarly for A2 and C) is zero, measured by mu-
tual information. Hence, A1 or A2 is irrelevant when each
is individually evaluated. However, if we combine A1 with
A2, they are strongly relevant in defining the target concept.

An intrinsic character of feature interaction is its irreducibil-
ity [Jakulin and Bratko, 2004], i.e., a feature could lose its
relevance due to the absence of its interacting feature(s).

Existing efficient feature selection algorithms usually as-
sume feature independence [Dash and Liu, 1997; Hall, 2000].
Because of the irreducible nature of feature interactions, these
algorithms cannot select interacting features such as A1 and
A2 in MONK1. Others attempt to explicitly address feature
interactions by finding some low-order interactions (2- or 3-
way). In [Jakulin and Bratko, 2003], the authors suggest to
use interaction gain as a practical heuristic for detecting at-
tribute interaction. Using interaction gain, their algorithms
can detect if datasets have 2-way (one feature and the class)
and 3-way (two features and the class) interactions. They fur-
ther provide in [Jakulin and Bratko, 2004] a justification of
the interaction information, and replace the notion of ‘high’
and ‘low’ in [Jakulin and Bratko, 2003] with statistical sig-
nificance and illustrate the significant interactions in the form
of interaction graph. Below we apply four feature selection
algorithms to synthetic data with known interaction and ob-
serve how they fare: FCBF [Yu and Liu, 2003], CFS [Hall,
2000], ReliefF [Kononenko, 1994], and FOCUS [Almuallim
and Dietterich, 1994], all available in WEKA [Witten and
Frank, 2005].

Motivating examples: Synthetic data with known fea-
ture interaction. Four synthetic data sets are used to exam-
ine how various algorithms deal with known feature interac-
tions in feature selection. The first data set is Corral [John et
al., 1994], having six boolean features A0, A1, B0, B1, I, R.
The class Y is defined by Y = (A0 ∧ A1) ∨ (B0 ∧ B1) and
features A0, A1, B0, B1 are independent of each other. Fea-
ture I is irrelevant to Y and its values have a uniform ran-
dom distribution; and feature R is correlated with Y 75% of
the time and is redundant. The other three training data sets
are MONKs data. Their target Concepts are: (1) MONK1:
(A1 = A2) or (A5 = 1); (2) MONK2: Exactly two of
A1 = 1, A2 = 1, A3 = 1, A4 = 1, A5 = 1, A6 = 1; and
(3) MONK3: (A5 = 3 and A4 = 1) or (A5 6= 4 and A2 6= 3)
(5% class noise added to the training data).

Results are presented in Table 1. For Corral, all four algo-
rithms remove the irrelevant feature I , but only FOCUS re-
moves the redundant feature R. Features A0, A1 and B0, B1

interact with each other to determine the class label of an in-
stance. CFS, FCBF and ReliefF cannot remove R because R



Table 1: Features selected by each algorithm on artificial data, and the ′ ′ indicates a missing relevant feature.
Relevant Features FCBF CFS ReliefF FOCUS

Corral A0, A1, B0, B1 A0, A1, B0, B1, R A0, , , , R A0, A1, B0, B1, R A0, A1, B0, B1
Monk1 A1, A2, A5 A1, , A3, A4, A5 , , A5 A1, A2, A5 A1, A2, A5
Monk2 A1, A2, A3, A4, , , , A4, , , , A4, A1, A2, A3, A4, A1, A2, A3, A4,

A5, A6 A5, A6 A5, A6 A5, A6 A5, A6
Monk3 A2, A4, A5 A2, , A5, A6 A2, , A5 A2, A4, A5 A1, A2, A4, A5

is strongly correlated (75%) with Y . For all the three MONKs
data sets, ReliefF can find true relevant features1 as seen in
Table 1. Both FCBF and CFS perform similarly, and FCBF
finds more features. FOCUS can handle feature interaction
when selecting features. However, as an exhaustive search
algorithm, FOCUS finds irrelevant feature A1 for MONK3
due to 5% noise in the data. In a sense, it overfits the training
data. FOCUS is also impractical because finding moderately
high-order interactions can be too expensive, as

∑m
i=1

(
N
i

)
can be too large, when dimensionality N is large.

In this work, we design and implement an efficient ap-
proach to deal with feature interactions. Feature interactions
can be implicitly handled by a carefully designed feature eval-
uation metric and a search strategy with a specially designed
data structure, which together take into account interactions
among features when performing feature selection.

2 Interaction and Data Consistency
One goal of feature selection is to remove all irrelevant fea-
tures. First, we define feature relevance as in [John et al.,
1994]. Let F be the full set of features, Fi be a feature,
Si = F − {Fi} and P denote the conditional probability of
class C given a feature set.

Definition 1 (Feature Relevance) A feature Fi is relevant iff

∃S′i ⊆ Si, such that P (C|Fi, S
′
i) 6= P (C|S′i).

Otherwise, feature Fi is said to be irrelevant.

Definition 1 suggests that a feature can be relevant only
when its removal from a feature set will reduce the prediction
power. From Definition 1, it can be shown that a feature is
relevant due to two reasons: (1) it is strongly correlated with
the target concept; or (2) it forms a feature subset with other
features and the subset is strongly correlated with the target
concept. If a feature is relevant because of the second reason,
there exists feature interaction. Feature interaction is charac-
terized by its irreducibility [Jakulin and Bratko, 2004]. A kth
feature interaction can be formalized as:

Definition 2 (kth order Feature Interaction) F is a feature
subset with k features F1, F2, . . . , Fk. Let C denote a metric
that measures the relevance of the class label with a feature or
a feature subset. Features F1, F2, . . ., Fk are said to interact
with each other iff: for an arbitrary partition F = {F1, F2,
F3, . . ., Fl} of F, where l ≥ 2 and Fi 6= φ, we have

∀i ∈ [1, l], C (F) > C (Fi)

Identifying either relevant features or a kth order feature
interaction requires exponential time. Definitions 1 and 2

1Interestingly, using the full data sets ReliefF missed A1, A5 for
MONK2, A1 for MONK3.

cannot be directly applied to identify relevant or interact-
ing features when the dimensionality of a data set is high.
Many efficient feature selection algorithms identify relevant
features based on the evaluation of the correlation between
the class and a feature (or a selected feature subset). Rep-
resentative measures used for evaluating relevance include:
distance measures [Kononenko, 1994; Robnik-Sikonja and
Kononenko, 2003], information measures [Fleuret, 2004],
and consistency measures [Almuallim and Dietterich, 1994],
to name a few. Using these measures, feature selection algo-
rithms usually start with an empty set and successively add
“good” features to the selected feature subset, the so-called
sequential forward selection (SFS) framework. Under this
framework, features are deemed relevant mainly based on
their individually high correlations with the class, and rele-
vant interacting features of high order may be removed [Hall,
2000; Bell and Wang, 2000], because the irreducible nature
of feature interaction cannot be attained by SFS.

Recall that finding high-order feature interaction using rel-
evance (Definitions 1 and 2) entails exhaustive search of all
feature subsets. In order to avoid exponential time complex-
ity, we derive a feature scoring metric based on the con-
sistency hypothesis proposed in [Almuallim and Dietterich,
1994] to approximate the relevance measure as in Defini-
tion 1. With this metric, we will design a fast filter algorithm
that can deal with feature interaction in subset selection.

Let D be a data set of m instances, D = {d1, d2, . . . , dm},
and F be the feature space of D with n features, F = {F1, F2,
. . . , Fn}, we have the following:

Definition 3 (Inconsistent Instances) If two instances di

and dj in D have the same values except for their class la-
bels, di and dj are inconsistent instances or the two matching
instances are inconsistent.

Definition 4 (Inconsistent-Instances Set) D ⊆ D, D is an
inconsistent-instances set iff ∀ di, dj ∈ D , i 6= j, either di

and dj are inconsistent or they are duplicate. D is a maximal
inconsistent-instances set, iff ∀d ∈ D and d /∈ D , D ∪ {d}
is not an inconsistent-instances set.

Definition 5 (Inconsistency Count) Let D be an
inconsistent-instances set with k elements d1, d2,. . . , dk,
and c1, c2, . . . , ct are the class labels of D , we partition
D into t subsets S1, S2, . . . , St by the class labels, where
Si = {dj | dj has label ci}. The inconsistency count of D is:

inconsistencyCount(D) = k − max
1≤i≤t

‖Si‖

Definition 6 (Inconsistency Rate) Let D1, D2, . . ., Dp de-
note all maximal inconsistent-instances sets of D, the incon-
sistency rate (ICR) of D is:

ICR(D) =

∑
1≤i≤p inconsistencyCount(Di)

m



Definition 7 (Consistency Contribution) or c-contribution
Let π denote the projection operator which retrieves a sub-
set of columns from D according to the feature subset, the
c-contribution (CC) of feature Fi for F is defined as:

CC(Fi, F) = ICR(πF−{Fi}(D))− ICR(πF (D))

It is easy to verify that the inconsistency rate is monotonic
in terms of the number of features, i.e., ∀Si, Sj , Si ⊆ Sj

⇒ ICR(πSi
(D)) ≥ ICR(πSj

(D)). Hence, c-contribution
of a feature is always a non-negative number with the zero
meaning no contribution. C-contribution of a feature Fi is a
function of F − {Fi}, where F is the set of features for D.
C-contribution of a feature is an indicator about how signifi-
cantly the elimination of that feature will affect consistency.
C-contribution of an irrelevant feature is zero. C-contribution
can be considered as an approximation of the metric in Def-
inition 1 by using inconsistency rate as an approximation of
P , the conditional probability of class C given a feature set.

The monotonic property of inconsistency rate suggests that
the backward elimination search strategy fits c-contribution
best in feature selection. That is, one can start with the full
feature set and successively eliminating features one at a time
based on their c-contributions. Backward elimination allows
every feature to be evaluated with the features it may inter-
act with. Hence, backward elimination with c-contribution
should find interacting features. However, backward elimina-
tion using inconsistency rate or c-contribution has two prob-
lems. The first problem is that it is very costly as it needs
to calculate inconsistency rate for each potentially remov-
able feature. As in the work of FOCUS [Almuallim and
Dietterich, 1994], FOCUS relies on exhaustive search. It is
impractical to do so when the dimensionality is reasonably
large, which separates this work from FOCUS. We will de-
sign a specific data structure next to achieve efficient calcu-
lation of c-contribution for our algorithm INTERACT. The
second problem is that c-contribution measure is sensitive to
which feature is selected to compute first, the so-called the
feature order problem. This is because features evaluated first
for their consistency are more likely to be eliminated first.

Solutions to the two problems will enable c-contribution to
be used in building an efficient algorithm of backward elimi-
nation. We present our solutions and the algorithm next.

3 Eliminating Irrelevant Features
We first present our solutions that form two pillar components
for the algorithm INTERACT and then discuss its details.

3.1 Efficient update of c-contribution
C-contribution relies on the calculation of inconsistency rate.
With the monotonicity of inconsistency rate, the following
two properties are true after a feature fi is eliminated from
a set {f1, .., fi, ..., fn} where i = 1, 2, ..., n: (I) all inconsis-
tent instances sets are still inconsistent; and (II) each maximal
inconsistent instances set will be either of equal size or big-
ger. Based on these two properties, we implement a hashing
mechanism to efficiently calculate c-contribution: Each in-
stance is inserted into the hash table using its values of those
features in Slist as the hash key, where Slist contains the

ranked features that are not yet eliminated (Slist initialized
with the full set of features). Instances with the same hash
key will be insert into the same entry in the hash table. And
the information about the labels is recorded. Thus each en-
try in the hash table corresponds to a maximal inconsistency
set of πSlist

(D). Hence, the inconsistency rate of πSlist
(D)

can be obtained by scanning the hash table. Property (I) says
that in order to generate an entry in the hash table for a new
Slist (after eliminating a feature), it is not necessary to scan
the data again, but only the current hash table. Property (II)
suggests that after each iteration of elimination, the number of
entries of the hash table for new Slist should decrease. There-
fore, the hashing data structure allows for efficient update of
c-contribution iterative feature elimination.

3.2 Dealing with the feature order problem
We now consider the feature order problem in applying c-
contribution. If we can keep removing the current, most irrel-
evant feature, we will likely retain the most relevant ones in
the remaining subset of selected features. Assuming that a set
of features can be divided into subset S1 including relevant
features, and subset S2 containing irrelevant ones. By consid-
ering to remove features in S2 first, features in S1 are more
likely to remain in the final set of selected features. Therefore,
we apply a heuristic to rank individual features using symmet-
rical uncertainty (SU) in an descending order such that the
(heuristically) most relevant feature is positioned at the begin-
ning of the list. SU is often used as a fast correlation measure
to evaluate the relevance of individual features [Hall, 2000;
Yu and Liu, 2003]. This heuristic attempts to increase the
chance for a strongly relevant feature to remain in the se-
lected subset. Let H(X) and H(X, C) denote entropy and
joint entropy respectively, and M(X, C) = H(C)+H(X)−
H(X, C) the mutual information measuring the common in-
formation shared between the two variables. SU between the
class label C and a feature Fi is:

SU(Fi, C) = 2
[

M(Fi, C)
H(Fi) + H(C)

]
This ranking heuristic cannot guarantee that the interact-

ing features are ranked high. For MONK1, for example,
SU(A1, C) = SU(A6, C) = 0. Either one can be evaluated
first for its c-contribution. Since CC(A1, F) > CC(A6, F),
A6 is eliminated. We will experimentally examine the rank-
ing effect in Section 4.2.

3.3 INTERACT - An algorithm
The above solutions pave the way for c-contribution to be
used in feature selection. We present an algorithm, INTER-
ACT, that searches for interacting features. It is a filter al-
gorithm that employs backward elimination to remove those
features with no or low c-contribution. The details are shown
in Figure 1: Given a full set with N features and a class at-
tribute C, it finds a feature subset Sbest for the class concept.
The algorithm consists of two major parts. In the first part
(lines 1-6), the features are ranked in descending order based
on their SU values. In the second part (lines 7-16), features
are evaluated one by one starting from the end of the ranked
feature list. Function getLastElement() returns the feature



input:
F: the full feature set with features F1,

F2, . . . , FN

C: the class label
δ: a predefined threshold

output:
Sbest: the best subset

1 Slist = NULL
2 for i=1 to N do
3 calculate SUFi,c for Fi

4 append Fi to Slist

5 end
6 order Slist in descending values of SUi,c

7 F = getLastElement(Slist)
8 repeat
9 if F <>NULL then
10 p = CC(F, Slist) // c-contribution
11 if p ≤ δ then
12 remove F from Slist

13 end
14 end
15 F = getNextElement(Slist, F )
16 until F == NULL
17 Sbest = Slist

18 return Sbest

Figure 1: Algorithm INTERACT
in the end of the list, Slist. If c-contribution of a feature is less
than δ, the feature is removed, otherwise it is selected. Func-
tion getNextElement(Slist, F ) returns the next unchecked
feature just preceding F in the ranked feature list (line 15).
The algorithm repeats until all features in the list are checked.
δ is a predefined threshold (0 < δ < 1). Features with their
c-contribution < δ are considered immaterial and removed.
A large δ is associated with a high probability of removing
relevant features. Relevance is defined by c-contribution: the
higher value of CC(F, Slist) indicates that F is more rele-
vant. δ = 0.0001 if not otherwise mentioned. The parameter
can also be tuned using the standard cross validation.
Time complexity of INTERACT: The first part of the algo-
rithm has a linear time complexity of O(NM), where N is
the number of features and M is the number of instances of
a given data set. For the second part of the algorithm, the
calculation of a feature’s c-contribution using a hash table
takes also O(NM). For N features, the time complexity
of INTERACT is O(N2M). This is the worst case analy-
sis. Its average time complexity is less because (1) we only
use the hash table of current Slist in the calculation of c-
contribution, and (2) the number of the entries in the hash
table decreases after each iteration. If we assume it decreases
to a percentage of the initial size, where 0 < a < 1, then
in N iterations, the overall time complexity of INTERACT
is O(NM(1 − aN+1)/(1 − a)) (the proof is omitted). In
other words, INTERACT is expected to be comparable with
heuristic algorithms such as FCBF [Yu and Liu, 2003].

4 Empirical Study
We empirically evaluate the performance of INTERACT in
search of interacting features. For the four synthetic data sets
with known feature interaction (Table 1), INTERACT finds

Table 2: Summary of the benchmark data sets. F: number of
features; I: number of instances and C: number of classes.

Data Set F I C Data Set F I C
lung-cancer 56 32 3 vehicle 18 846 4
zoo 16 101 7 kr-vs-kp 36 3196 2
wine 13 178 3
soy-large 35 306 19 internet-ads 1558 3278 2
cmc 9 1473 3 45×4026+2C 4026 45 2

only the relevant features (δ = 0.05). Now we evaluate
INTERACT using benchmark data sets in comparison with
some representative feature selection algorithms with the fol-
lowing aspects: (1) number of selected features, (2) predictive
accuracy with feature selection, and (3) run time. We also ex-
amine how effective the two solutions (given in Sections 3.1
and 3.2) are through a lesion study by removing one of them
at a time from INTERACT.

4.1 Experiment setup
In our experiments, we choose four representative feature se-
lection algorithms for comparison. They are FCBF [Yu and
Liu, 2003], CFS [Hall, 2000], ReliefF [Kononenko, 1994],
and FOCUS [Almuallim and Dietterich, 1994]. All are avail-
able in the WEKA environment [Witten and Frank, 2005].
INTERACT is implemented in the WEKA’s framework. It
will be made available upon request. All the experiments
were conducted in the WEKA environment.

From 28 data sets, [Jakulin, 2005] identified 10 data sets
having feature interactions without selecting interacting fea-
tures. Here we focus on our discussion on the 10 data sets2.
The datasets are from the UCI ML Repository [Blake and
Merz, 1998]. We also include another two datasets in the
experiment: the ‘internet-ads’ data from the UCI ML Repos-
itory, and the ‘45×4026+2C’ data from [Alizadeh and et al.,
2000]. The information about the 9 data sets (without 3
MONKS data sets) is summarized in Table 2. For each data
set, we run all 5 feature selection algorithms and obtain se-
lected feature subsets of each algorithm. For data sets con-
taining features with continuous values, if needed, we apply
the MDL discretization method (available in WEKA). We re-
move all index features if any. In order to evaluate whether
the selected features are indeed good, we apply two effec-
tive classification algorithms C4.5 and a linear Support Vector
Machine (SVM)3 (both available from Weka) before and af-
ter feature selection and obtain prediction accuracy by 10-fold
cross-validation (CV). Although C4.5 itself evaluates features
(one at a time), its performance is sensitive to the given sets of
features (e.g., its accuracy rates on MONK1 are 88.88% and
75.69% for (A1, A2, and A5) and for all 6 features, respec-
tively). Because of FOCUS’s exponential time complexity,
we only provide those results of FOCUS obtained in 3 hours
of dedicated use of the PC. INTERACT, FCBF, CFS and Re-

2In which 3 data sets are MONKs data. We consider them syn-
thetic data and discussed them earlier separately.

3Since Naive Bayes Classifier (NBC) assumes conditional inde-
pendence between features [Irina Rish, 2001], selecting interacting
features or not has limited impact on it. Our experimental results of
NBC conform to the analysis and will be presented elsewhere due to
the space limit.



Table 3: Number of selected features for each algorithm (IN:
INTERACT, FC: FCBF, RE: ReliefF, FO: FOCUS, FS: Full Set).
NA denotes not available.

Data Set IN FC CFS RE FO FS
lung-cancer 6 6 11 22 4 56
zoo 5 8 9 14 5 16
wine 5 10 8 11 5 13
soy-large 13 13 21 32 NA 35
cmc 9 2 3 5 9 9
vehicle 18 4 11 7 18 18
kr-vs-kp 29 7 3 8 NA 36
internet-ads 49 38 11 2 NA 1558
45×4026+2C 3 64 42 15 NA 4026
average 15.22 16.89 13.22 12.89 8.20 640.78

liefF all complete their runs in seconds. This is consistent
with our understanding and expectation of these algorithms.

4.2 Results and discussion
Number of selected features. Table 3 presents the numbers
of features selected by the five algorithms. All algorithms sig-
nificantly reduced the number of features in many cases (e.g.,
from 56 to as few as 6). The average numbers of selected
features for the 9 data sets are 15.22 (INTERACT), 16.89
(FCBF), 13.22 (CFS), 12.89 (ReliefF), and 640.78 (Full Set).
For four data sets (indicated by NA in the table), FOCUS did
not finish after 3 hours. For the 4 synthetic data sets with
known relevant features (Table 1), INTERACT selected only
the relevant ones. Next we examine the effect of this reduc-
tion on accuracy.

Predictive accuracy before and after feature selection.
For the 9 data sets with known interactions, we obtained pre-
dictive accuracy rates by 10-fold cross validation using C4.5
and SVM. The results are shown in the two sub-tables of Ta-
ble 5. For both classifiers, the reduction of features by IN-
TERACT obtains results comparable with using all features:
average accuracy 83.58% (INTERACT) vs. 79.74% (Full
Set) for C4.5, and 82.88% (INTERACT) vs. 81.04% (Full
Set) for SVM. Comparing INTERACT with other feature se-
lection algorithms, INTERACT performs consistently better
for C4.5 with better average accuracy. For SVM, INTER-
ACT is comparable with other feature selection algorithms.
One exception is the ‘soy-large’ data for the result of SVM.
We notice that the data set has 35 features, 306 instances, and
19 classes (Table 2); INTERACT identifies 13 features (Ta-
ble 3) - the smallest number of selected features (FCBF also
selected 13 features). We surmise that it may be too easy for
the inconsistency measure to be satisfied with a small feature
subset when each class has a small number of instances. In
sum, for both classifiers, INTERACT can help achieve bet-
ter or similar accuracy, and hence, INTERACT is effective in
search of interacting features.

The effect of feature ranking. INTERACT ranks features
before backward elimination of features begins. As a part
of the lesion study, we remove the ranking component from
INTERACT to form a version INTERACT\R. We summa-
rize the results here due to the space limit: INTERACT is
always better than or equivalent to INTERACT\R; the aver-
age 10-fold CV accuracy for C4.5 and SVM for (INTERACT,
INTERACT\R) are (83.58,78.69) and (82.88 78.54), respec-
tively. Noticing that INTERACT ranks features using SU and

0

2

4

6

8

10

12

14

16

zoo

lung-cancer

w
ine

soy-large

cm
c

vehicle

kr-vs-kp

45x4026+2C

internet-ad

Figure 2: TINTERACT\D
/TINTERACT

Table 4: Run time (in second) for each algorithm.

Data Set IN FC CFS Re FO
lung-cancer 0.09 0.02 0.05 0.02 2.31
zoo 0.08 0.01 0.01 0.02 0.81
wine 0.09 0.02 0.02 0.02 0.33
soy-large 0.14 0.06 0.05 0.09 NA
cmc 0.14 0.02 0.03 0.11 2.81
vehicle 0.20 0.05 0.06 0.11 976.58
kr-vs-kp 1.31 0.27 0.31 0.61 NA
internet-ads 150.86 60.484 54.344 31.359 NA
45×4026+2C 20.30 1.02 323.25 1.50 NA
average 19.25 6.88 42.01 3.76 196.57

FCBF employs SU, we observe in Table 5 that FCBF does
not perform as well as INTERACT in selecting interacting
features. The results suggest that the combination of SU and
c-contribution helps INTERACT to achieve its design goal.
Clearly, using SU is a heuristic. There could be other alter-
natives to rank the features. Studying the effects of different
ranking algorithms is one line of our on-going research.

The effect of the data structure. We devised a hashing
data structure to speed up the time consuming calculation
of c-contribution during feature selection. Here we examine
how effective the data structure is by comparing the run time
of INTERACT with that of INTERACT\D which does not
employ the hashing data structure. Since data size is a deter-
mining factor for run time, we first reorganize the 9 data sets
according to their sizes (approximated by N ∗ M - number
of features multiplied by number of instances without con-
sidering feature types such as nominal or continuous). Fig-
ure 2 shows the ratios using time of INTERACT as the base:
TINTERACT\D

divided by TINTERACT . It shows that the
run time difference between INTERACT and INTERACT\D
is more pronounced for larger data sets.

Run time comparison. Table 4 records the run time for
each feature selection algorithm. Except for FOCUS, all al-
gorithms finished their runs within the given time. The algo-
rithms are ordered as ReliefF, FCBF, INTERACT, CFS and
FOCUS: ReliefF is the fastest, and FOCUS is the slowest if it
finishes the run within 3 hours.



Table 5: Accuracy of C4.5 and SVM on selected features: ‘Acc’ denotes 10-fold CV accuracy(%) and p-Val obtained from a
two-tailed t-Test. The symbols “+” and “-” respectively identify statistically significant (at 0.05 level) if INTERACT wins over
or loses to the compared algorithm. NA denotes the result is not available.

Data Set INTERACT FCBF CFS ReliefF FOCUS WholeDS
Acc Acc p-val Acc p-val Acc p-val Acc p-val Acc p-val

C4.5
lung-cancer 75.00 50 0.01+ 43.75 0.00+ 65.63 0.06 37.5 0.01+ 46.88 0.02+
zoo 91.09 92.08 0.72 91.09 1.00 91.09 1.00 91.09 1.00 92.08 0.78
wine 96.63 93.82 0.05+ 93.82 0.05+ 83.15 0.00+ 93.26 0.05+ 93.82 0.05+
soy-large 82.03 84.31 0.25 84.31 0.17 84.31 0.31 NA NA 85.95 0.11
cmc 52.14 51.93 0.89 54.11 0.08 50.17 0.10 52.27 0.17 52.27 0.17
vehicle 73.05 57.68 0.00+ 69.62 0.00+ 67.73 0.00+ 73.05 1.00 73.05 1.00
kr-vs-kp 99.19 94.02 0.00+ 90.43 0.00+ 90.43 0.00+ NA NA 99.44 0.31
internet-ads 96.46 95.85 0.08 95.76 0.03+ 91.52 0.00+ NA NA 96.4 0.79
45×4026+2C 86.67 80.00 0.23 77.78 0.14 86.67 1.00 NA NA 77.78 0.19
Average 83.58 77.74 77.85 78.97 69.43 79.74
Win/Loss 4/0 5/0 4/0 2/0 2/0

SVM
lung-cancer 62.50 53.13 0.32 62.50 1.00 62.50 1.00 31.25 0.01+ 37.50 0.03+
zoo 93.07 92.08 0.72 96.04 0.19 96.04 0.19 93.07 1.00 96.04 0.19
wine 96.63 98.31 0.08 96.63 1.00 84.83 0.01+ 89.89 0.04+ 97.75 0.17
soy-large 83.33 87.91 0.01- 92.16 0.00- 92.16 0.00- NA NA 91.18 0.00-
cmc 48.74 44.87 0.05+ 49.97 0.37 44.33 0.02+ 48.68 0.34 48.68 0.34
vehicle 73.88 42.08 0.00+ 57.21 0.00+ 50.35 0.00+ 73.88 1.00 73.88 1.00
kr-vs-kp 95.90 94.06 0.00+ 90.43 0.00+ 90.43 0.00+ NA NA 95.93 0.94
internet-ads 96.34 95.97 0.08 95.94 0.02+ 90.57 0.00+ NA NA 97.28 0.01-
45×4026+2C 95.56 100.00 0.12 100.00 0.12 95.56 1.00 NA NA 91.11 0.39
Average 82.88 78.71 82.32 78.53 67.35 81.04
Win/Loss 3/1 3/1 5/1 2/0 1/2

5 Conclusions
We recognize the need to study feature interaction in sub-
set selection using some synthetic data sets, and propose to
search for interacting features employing c-contribution to
measure feature relevance. We investigated the key issues
hindering the use of consistency measures and developed IN-
TERACT that handles feature interaction and efficiently se-
lects relevant features. It ranks features to overcome the
feature order problem. INTERACT implements a special
hashing data structure to avoid repeated scanning of a data
set by taking advantage of the intrinsic properties of the c-
contribution measure, which results in a significant speed-up
of the algorithm. The efficiency and effectiveness of INTER-
ACT are demonstrated through theoretical analysis as well as
extensive experiments comparing with representative feature
selection algorithms using the synthetic and real-world data
sets with known feature interactions. Experimental results
show that INTERACT can effectively reduce the number of
features, and maintain or improve predictive accuracy in deal-
ing with interacting features. This work presents promising
initial efforts on searching efficiently for interacting features.
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