

Abstract— To determine when to present information from

various devices or services to the driver of an automobile, it is
necessary to determine whether a driver is engaged in a
difficult driving situation that requires extensive attention. We
present simulator experiments in determining what sensors
make classification of driving states into such maneuvers
possible, using various machine learning techniques. Our
findings indicate that a small number of derived sensor signals
can accomplish the task.

I. INTRODUCTION

A. Maneuver Classification Problem
With increasing proliferation of portable, and in some

cases, fixed devices in cars, there are also increasing
demands to manage the distractions they present to the
driver. One particular subtask is the management of timing
of information presented to the driver from these devices. A
simple example is having the system handle incoming cell
phone calls which could be redirected to voicemail, slightly
delayed, or passed to the driver to answer. An ongoing call
could be interrupted. A critical component of such a system
is for the vehicle to determine when the driver is in a state
that she or he could take the call or could continue an
existing call without being an increased risk to the traffic.
Other situations are called "difficult driving maneuvers" or
"critical driving events". We will use the word maneuver
for these events throughout the rest of the paper. During
these maneuvers non-critical information will not be
presented to the driver.

Such a maneuver classifier would be one component of a
more general system that monitors the driver and his
environment and provides feedback—a driver assistance
system. This feedback can be in the form of warning alerts,
verbal suggestions, visual cues on a heads-up display, etc. A
first generation system, Motorola Driver's Advocate, has
been documented in [1,2].

Manuscript received April 30, 2004.
Kari Torkkola is with Motorola Labs, 2900 South Diablo Way, MD

DW286, Tempe, AZ 85282, USA (phone: 602-659-6620; e-mail:
Kari.Torkkola@ motorola.com).

Srihari Venkatesan and Huan Liu are with Arizona State University,
Department of Computer Science, Tempe, AZ 85284. (e-mail:
huanliu@asu.edu). This work was supported in part by IMES/Ford and
CEINT 2004 at Arizona State University.

Since the goal is to determine whether the driver is
capable of receiving new information from a device or a
service, this implies estimation of the cognitive load of the
driver [3,4,5,6]. Most often this is done by observing the
driver directly or indirectly. In our case the aim is slightly
different – detecting a driving maneuver from the sensor
inputs rather than attempting to directly assess the state of
the driver. This implies a higher cognitive load directly
related to the actual driving situation. Most of the previous
work concentrates on driver behavior recognition and
prediction [7,8], rather than on driving state recognition.
Recognition of typical driving events and their long-term
prediction using acceleration and location sensors with
neural networks is studied in [9].

In this paper we study which sensors are needed for
driving state classification. Our approach is purely data-
driven. Sensor data is collected in a driving simulator; it is
manually labeled with maneuvers, after which the problem
reduces to that of feature selection [11]: "What sensors
contribute most to the correct classification of the driving
state into maneuvers/non-maneuver?" Since we are working
with a simulator, we have sensors available that would be
hard or expensive to arrange to a real vehicle. The
simulator-based approach makes it possible to study the
problem without implementing the actual hardware in a real
car.

We proceed by giving background to the general feature
selection problem. We then describe our environment for
driving simulation and data collection, including the sensor
set we are studying. Feature selection experiments for the
maneuver classification problem are described next,
followed by actual classification experiments, results, and
conclusions.

II. FEATURE SELECTION

A. Background
Feature selection is a data preprocessing technique that is

extensively used in the machine learning community and
has been an active area of research since 1970’s. It is a
process of finding a minimal subset of features that are
necessary and sufficient to learn the target concept [11].
Feature selection has been shown very effective in
removing redundant and irrelevant features, increasing the
efficiency of the learning task, improving learning

Sensor Selection for Maneuver Classification

Kari Torkkola, Srihari Venkatesan, and Huan Liu

performance like predictive accuracy, and enhancing the
comprehensibility of the learned results. Numerous
algorithms have been proposed in literature for feature
selection [12,13,14].

As mentioned in [14,16], feature selection algorithms can
be broadly classified in to two models: the filter model and
the wrapper model. Filter model based algorithms propose
an evaluation criterion based on the characteristics of the
data that evaluates the effectiveness of the selected features.
In the wrapper model a predetermined learning algorithm is
used to evaluate and determine which features are selected.
For each new feature subset generated, the wrapper model
learns the classifier and measures its goodness (by using
accuracy, recall, precision values). The features selected are
those that have higher goodness measure. Although wrapper
approaches give better results they are more
computationally intensive than filter approaches. Hybrid
models have been proposed [16,17,18] that used both filter
model and wrapper model in their algorithms. In these
methods, a set of features for a given cardinality is chosen
based on a goodness measure that is dependent on the
inherent characteristics of the data. Then cross-validation is
employed to decide the final best subset across different
cardinalities.

B. Random Forests for Feature Selection
Random forest is a special kind of ensemble learning

technique [15]. A Random Forest grows an ensemble of
classification (or regression) trees, each trained on a subset
of the training data using only a subset of available features.
To classify a new data sample, the data is classified through
each of the trees of the forest. The final prediction is done
based on majority voting among the trees.

Let us assume that the dataset has N instances and M
features. Each tree in the random forest is grown on a
bootstrap sample of N data points. ‘m’ features (m < M) are
randomly chosen from all M features and the best split
attribute among these is chosen to split the node. Random
forests constructed in this manner have several nice
properties. The construction process is extremely fast
compared to other contemporary ensemble classification
methods. It is scalable to huge datasets and to high
dimensional datasets. It is also possible to inherently
determine the importance of each input feature as a by-
product of the forest construction process.

The importance of a feature follows from the frequency
of appearance of the feature in the nodes of the trees in the
forest [15]. Each decision node in the trees is chosen as the
best value of the best feature that splits the current training
data in that node into two parts. The goodness of the split is
evaluated using information gain, which reflects how "pure"
the two parts are in terms of the classes of the classification
task. The measure of importance of a feature is the sum of
the information gains of those nodes in the forest that split
using this feature. Thus all features can be ranked based on
this importance measure. The whole point in this measure is

that each feature is not ranked alone but in the classification
task, together with all other features.

This method of ranking the features was used in our
experiments for selecting the most useful sensors for
maneuver classification.

C. CFS Feature Selection Algorithm
Correlation-based Feature Selection (CFS) [24] is a filter

based feature selection algorithm that uses correlation
among features to select the best features for the given
dataset. It evaluates the effectiveness of a feature subset by
considering the individual predictive ability of each feature
along with the degree of redundancy between them. It
selects subset of features that have high correlation with the
class but low intercorrelation between themselves.

CFS handles classification and regression problem
separately. In case of a classification problem, it discretizes
the continuous valued features and uses Symmetric
Uncertainty to estimate the degree of association between
discrete features. In the case of a regression problem the
correlation between different type of features is calculated
as below: Pearson’s Correlation Coefficient is used to
determine the correlation between two numeric features.
For computing the correlation between a discrete feature
and numeric feature it computes the Pearson’s coefficient
between the numeric feature and the individual indicator
vectors for each value the discrete feature takes, and
computes a weighed correlation measure using these
individual correlations. When both the features are discrete,
CFS computes the Pearson’s coefficient for all
combinations of the indicator vectors for each feature and
computes a weighted average of these coefficients.

We use CFS as a benchmark against Random Forests.

III. EXPERIMENTS

A. Driving Simulator
The experiments were conducted in the Motorola driving

simulator lab, which is an instrumented car in a surround
video virtual world with full visual and audio simulation
(although no motion or G-force simulation) of various
roads, traffic and pedestrian activity. The Motorola driving
simulator consists of a fixed based car surrounded by three
front video (approx 150 degree forward) and 1 rear screen
(approx. 50 degree rear view for center mirror and drivers
side mirror). All driver controls such as steering wheel,
brake, accelerator are monitored and affect the motion
through the virtual world in real-time. Various hydraulics
and motors provide realistic force feed back to driver
controls to mimic actual driving.

The basic driving simulator software is a commercial
product called DriveSafety from GlobalSim. Motorola has
extended this standard product with a set of simulated
sensors that, at the behavioral level, simulate a rich set of
current and future onboard sensors in the near future. This

Fig 1. The driving simulator

set consists of a radar for locating other traffic, a GPS
system for position information, a camera system for lane
positioning and lane marking, a mapping data base for road
names, directions, locations of points of interest etc. There
is also a complete car status system for determining the
state of engine parameters (coolant temp, oil pressure etc),
driving controls (transmission gear selection, steering angle,
window and seat belt status etc.). The simulator setup also
has several video cameras, microphones and eye tracking
infrared sensors to record all driver actions during the drive
that is synchronized with all the sensor output and simulator
tracking variables.

The DriveSafety simulation package also has an
authoring tool component called HyperDrive that can be
used to easily create a virtual world consisting of any mix of
road types, intersections, freeways, and traffic signals.
There is also a scripting mechanism that can create other
vehicles and under experimenter control have them exhibit
any pre-programmed or standard behavior. It is possible to
have well behaved ambient traffic on the road or we can
make a car pull out in front of the subject on command. In
this experiment we created a rich set of freeway and
suburban roads, populated with a mix of normal and erratic
vehicles, and monitored the subject driver’s use of the
driving controls during free form ‘driving’ through the
world to determine when a driver was in a maneuver and
when they were in normal ‘cruising’ mode.

The data collection system consists of 4 separate
machines capturing 4 separate time stamped databases; the
simulator ‘host’ machine, the Driver Advocate machine, the
cab monitor machine and the video capture machine. After
a drive is completed, the software providing the operator’s
console also retrieves the databases from the individual
machines and places them into a collection on another
dedicated database repository machine. Three of these
databases represent in excess of 425 separate fields. An
additional screen of video is digitally captured in MPEG2
format, consisting of a quad combiner providing 4 different
views of the driver and environment. The combined
databases and video produce somewhere around 400Mb of
data for each 10 minutes of drive time.

The primary database is captured by our Driver Advocate
machine. This database currently contains 181 categorical
fields, of which 84 also have associated numerical entries.
There are additional 30 special fields associated with
surrounding traffic and a potentially unlimited number of
events that can be generated by various other portions of the
simulator system, either programmatically or manually.
The data collected by this machine contains an extensive
scope of driving data – information about the auto, the
driver, the environment, and associated conditions. This
database also contains the most important information
passed forward and condensed from the simulator host and

cab monitor machines.

B. Experimental Setup
The GlobalSim HyperDrive authoring tool was used to

create the driving world scenario. The virtual drive
simulated a six kilometer square multi-lane beltway with on
and off-ramps, overpasses, and two and three-lane traffic in
each direction (separated by a grass median). Interior to the
squared beltway, connecting to each mid-side overpass,
were four varied two-lane roads - urban, suburban,
industrial, and rural environments. These crossed in the
middle at a light controlled intersection. All drivers used
daytime dry-pavement driving conditions with good
visibility.

For a high-density driving environment, 59 “distracter”
vehicles were added to the highway scenario along with
high-density random “ambient” traffic. These distracter
vehicles were randomly programmed to drive between ±10
percent faster/slower than the posted speed limit, providing
the impression of a steady flow of normal traffic around the
subject car. All distracter vehicles simulated alert, “good”
driver behavior and reacted reasonably to any particular
maneuver from the subject driver. This arrangement
allowed a variety of traffic conditions and road types within
a confined, but continuous driving space. Opportunities for
passing and being passed, traffic congestion, and different
levels of driving difficulty were thereby encountered during
the drive.

Data was collected from four drivers each driving about
15 minutes in the simulated world. Drivers were instructed
to engage in all possible maneuvers they could think of.
The data is labeled for maneuvers by manually hand
annotating the data using a special purpose tool that
combines video playback with graphical visualization of the
selected variables from the data.

The data was labeled with the following 12 maneuvers:
ChangingLeft, ChangingRight, CrossingShoulder, Not-
OnRoad, Passing, Reverse, SlowMoving, Starting,
Stopping, Tailgating, TurningLeft, TurningRight, and U-

Turn. The labels could be overlapping, say every Passing
Maneuver is a sequence of ChangingLeft followed by
ChangingRight.

C. Chosen and Derived Sensors
From many of the available features, a subset of 15

features was selected as base features that could be
foreseeable to be built into a car. They are described in
Table I. An economically very viable alternative to adding
more sensors is to calculate new derived variables from
existing sensors. Of course, one cannot add new
information to the sensor signal just by processing it, but it
is possible to make important information more explicit. In
order to enhance the feature set, the following features were
added to the base feature set:
1) Quadratic terms, i.e., all the cross products and

squares, of the numeric variables
2) First order time derivatives of the numeric features.
3) Second order time derivatives of the numeric features.
4) Short-time running entropies for steering, brake, and

accelerator prediction errors. Entropy is calculated as
described by Boer in [25], but within a sliding window.

5) Multivariable stationarity as described in [21] with
delta=2 and delta=3 samples.

6) The output of a quadratic classifier trained using
standard least-squares approach [22,23] with the 13
continuous valued features.

Adding theses features makes the total size of the feature set
to 138. Feature selection is applied to this dataset for
selecting the most relevant sensors for maneuver
classification. In addition to selecting the best base sensors,
we also evaluate what derived features are relevant to this
problem.

D. Results
We ran four sets of classification experiments to compare

the results of two different feature selection methods using
two different classifiers. In the first experiment we
attempted to discover those sensors that discriminate
maneuvers from non-maneuvers. The second experiment
attempted to find sensors that discriminate all 12 different
maneuver types from each other and from non-maneuvers.
The sequence data was treated as instantaneous labeled
data. Since the maneuvers can be overlapping, there could
be more than one class assigned to the same instance. In
order to overcome this multi-class problem, we developed a
single pass algorithm that duplicates all the overlapping
instances and creates one instance for each class label. The
algorithm also tries to preserve the sequential nature of the
input by not interleaving the class labels of overlapping
instances. Third and fourth experiment concentrated in
discriminating lane changes from the rest of the maneuvers
and from non-maneuvers. Classification results are
presented in Table II both as the accuracy and as the recall
of the maneuvers. In this table, each of the four experiments

was run with a Random Forest or a Naïve Bayes [26] as the
classifier. Also each of the four experiments was run with
six different feature sets. These feature sets are

1) All 138 original and derived features.
2) 8 top features selected by a Random Forest
3) 16 top features selected by a Random Forest
4) 32 top features selected by a Random Forest
5) As many top features selected by a Random Forest

as the CFS-method selected
6) Features selected by CFS.

For the Random Forest algorithm 500 trees were
constructed. As the results indicate, as a classifier, Random
Forests are vastly better than Naïve Bayes. As a feature
selection algorithm, RF also produces features that either
perform similarly, or better than features produced by CFS.
8-16 top RF-features already perform acceptably in the
general maneuver/non-maneuver classification problem. We
list the top features in Table III. In the case of Random
Forests, either 8, 16, or 32 top features of these were used
in classification experiments. As expected, turn signal and
speed are high almost on every list. It is also interesting to
see some derived variables, such as stationarity of the
sensors, and entropy of steering and braking ranked quite
high. This indicates that to some extent new sensor
hardware can be exchanged to software by computing new
variables based on existing ones.

TABLE I
BASE FEATURE SET

Feature Type* Description

Accelerator Cont Normalized accelerator input value
Brake Cont Normalized brake input value

Speed Cont Speed of the subject (m/s)
Steer Cont Normalized steering angle
TurnSignal Disc Status of Indicator lights
AheadLaneBe
aring

Cont Bearing of the current lane 100 meters
ahead

CrossLaneAcc
eleration

Cont Acceleration in the direction
perpendicular to the lane (m/s2)

CrossLaneVel
ocity

Cont Velocity in the direction perpendicular
to the lane (m/s)

distToRightLa
neEdge

Cont Distance to the right lane edge (m)

DistToLeftLan
eEdge

Cont Distance to the left lane edge (m)

laneOffset Cont Offset relative to the center of the lane
LateralAcceler
ation

Cont Acceleration in the direction
perpendicular to the motion of the
vehicle (m/s2)

HeadwayDist Cont Distance from the subject’s front
bumper to the rear bumper of any other
vehicle ahead. (m)

HeadwayTime Cont Time in seconds to vehicle ahead.
VehAhead Disc Name of the closest vehicle in the front

of the subject in the same lane as the
subject.

*Type denotes the feature type indicating whether the feature is
Discrete or Continuous.

TABLE II
CLASSIFICATION RESULTS

 Feature Selection Method
Classific

-ation
Method

Experiment All 138
Features

Random
Forest

8 features

Random
Forest

16 features

Random
Forest

32 features

Random
Forest *

CfsSubsetEval
BestFirst

 Acc Recall Acc Recall Acc Recall Acc Recall Acc Recall Acc Recall

Man/NonMan 93.4 90.2 91.2 90.0 92.9 91.9 93.4 90.6 93.5 91.1 93.0 90.5
All Man/ Non

Man 72.5 64.2 70.5 62.9 72.6 64.9 72.5 64.3 72.5 64.4 72.6 64.1

ChangingLeft 97.6 89.1 96.8 76.8 97.4 84.9 97.6 88.5 97.1 81.4 97.2 82.8

Random
Forest

ChangingRight 96.8 86.6 94.5 68.8 95.9 81.5 96.6 84.0 96.0 81.8 95.9 81.1

Man/NonMan 79.6 55.0 79.8 70.3 79.3 52.3 80.3 54.6 80.5 55.4 80.6 56.1
All Man/ Non

Man 15.7 39.8 36.5 41.1 24.2 34.1 23.3 40.6 22.9 40.2 30.7 39.8
ChangingLeft 23.4 95.1 91.3 43.6 89.9 43.6 86.4 67.2 90.7 45.1 88.7 53.4

Naïve
Bayes

ChangingRight 20.9 97.4 90.0 41.4 89.0 43.4 89.1 44.4 88.8 43.4 88.6 45.9

* The number of features selected here is the same as the number of features given by CfsSubsetEval-BestFirst algorithm
RandomN – Top ‘N’ features are selected from Random Forest experiment

IV. DISCUSSION AND CONCLUSION
Previous work on sensor selection for driver assistance

systems is practically nonexistent. Either real cars have been
used in experiments with a very limited number of available
base sensors, or simulator experimentation has concentrated
on other aspects but sensor selection. Derived features have
not been usually considered at all.

Driving simulator is a perfect tool for this kind of
experimentation. It allows controlled collection of data,
using a desired number of sensors of a desired kind.

REFERENCES
[1] D. Remboski, J. Gardner, D. Wheatley, J. Hurwitz, T. MacTavish,

and R. M. Gardner, Driver performance improvement through the
driver advocate: A research initiative toward automotive safety,
Proc. of the 2000 International Congress on Transportation
Electronics, SAE P-360, 2000, pp. 509–518.

[2] C. Wood, B.Leivian, N.Massey, J.Bieker, and J.Summers, Driver
advocate tool, Proc. Driver Assessment, 2001, pp. 295–299.

[3] F. Wada, M.Iwata, S.Tano, Information presentation based on
estimation of human multimodal cognitive load, Joint 9th IFSA
World Congress and 20th NAFIPS Int. Conference, Vancouver, BC,
Canada, vol.5, pp: 2924-2929, 25-28 July, 2001.

[4] Dario D. Salvucci, Predicting the effects of in-car interface use on
driver performance: An integrated model approach, Int. Journal of
Human-Computer Studies, vol. 55,pp. 85–107, 2002.

[5] Erwin R. Boer, Behavioral entropy as a measure of driving
performance, Proc. Driver Assessment, 2001, pp. 225–229.

[6] J. Tanaka, S. Ishida, H. Kawagoe, and S. Kondo, Workload of using
a driver assistance system, Proc. of the IEEE Conf. on Intelligent
Transportation Systems, 2000, pp. 382–386.

[7] A. Liu and A.Pentland, "Towards real-time recognition of driver
intentions," Proc. of the IEEE Conf. on Intelligent Transportation
Systems, 1997, pp. 236-241.

[8] N. Oliver and A. Pentland, "Graphical models for driver behavior
recognition in a smartcar,'' Proc. of the IEEE Intelligent Vehicles
Symposium, 2000, pp. 7--12.

[9] D. Mitrovic, Learning driving patterns to support navigation
decision making - Preliminary results, Road Safety Conference
1998, Wellington, New Zealand.

[10] D. Mitrovic, Driving event recognition by Hidden Markov Models,
4th International Conference on Telecommunications in Modern
Satellite, Cable and Broad-casting Services, 1999, IEEE.

[11] K. Kira, and L. Rendell, “The feature selection problem: Traditional
methods and a new algorithm”, in Proceedings of Ninth
International Conference on Artificial Intelligence, 129-134, 1992.

[12] A. L. Blum, and P. Langley, “Selection of relevant features and
examples in machine learning”, Artificial Intelligence, 1997.

[13] M. Dash, and H.Liu, “Feature Selection for Classification”,
Intelligent Data Analysis: An International Journal, 1997.

[14] R. Kohavi, and G. John, “Wrapper for Feature Subset Selection”,
Artificial Intelligence, 1997, pp. 273 – 324.

[15] L. Breiman, “Random Forests”, Technical Report, University of
California, Berkeley, 2001.

[16] S. Das, “Filters, wrappers and a boosting-based hybrid for feature
selection”, Proceedings of the 18th ICML, 2001.

[17] A. Y. Ng, “On feature selection: learning with exponentially many
irrelevant features as training examples”, Proceedings of the
Fifteenth International Conference on Machine Learning, 1998.

[18] E. Xing, M. Jordan, and R. Carp, “Feature selection for high-
dimensional genomic microarray data”, Proc. of the 18th ICML,
2001.

[19] H. Liu, H. Motoda, and L. Yu, “Feature Selection with Selective
Sampling”, Proceedings of the Nineteenth International Conference
on Machine Learning, 2002, pp. 395 – 402.

[20] L. Yu, and H. Liu, “Feature Selection for High Dimensional Data: A
Fast Correlation-Based Filter Solution”, Proceedings of the
Twentieth International Conference on Machine Learning, 2003.

[21] K. Torkkola, "Automatic Alignment of Speech with Phonetic
Transcriptions in Real Time”, ICASSP, 1988.

[22] C. M. Bishop, Neural Networks for Pattern Recognition, Oxford
University Press, Oxford, New York, 1995.

[23] K. Torkkola, N. Massey, B. Leivian, C. Wood, J. Summers, S.
Kundalkar, "Classification of Critical Driving Events", Proc. of the
ICMLA, Los Angeles, June 23-24, 2003. pp 81-85.

[24] M. A. Hall, “Correlation-based Feature Selection for Discrete and
Numeric Class Machine Learning”, Proceedings of the Seventeenth
International Conference on Machine Learning, 2000.

[25] E. R. Boer, Behavioral Entropy as an Index of Workload,
Proceedings of the IEA 2000 / HFES 2000 Congress. 2000.

[26] T. M. Mitchell, Machine Learning, WCB/McGraw Hill , ISBN: 0-
07-04287-7, 1997.

TABLE II
FEATURES SELECTED

Random Forests CfsSubsetEval-BestFirst
Maneuver All Maneuvers (cont) ChangingLeft (cont) ChangingRight (cont) Maneuver All Maneuvers (cont)

quadClassValue stat2 distToRightLane_ra3_rd3
_ra3_rd3

aheadLaneBearing*aheadLa
neBearing

crossLaneVelocity*crossLane
Velocity

steer_ent15

speed turnSignal accelerator*speed stat3 crossLaneVelocity*Headway
Time

stat3

speed*speed aheadLaneBearing*laneOf
fset

speed*aheadLaneBearing accelerator*aheadLaneBeari
ng

distToLeftLane*distToRightL
ane ChangingLeft

stat3 speed*distToLeftLane aheadLaneBearing speed*distToLeftLane distToRightLane*laneOffset turnSignal
stat2 brake_ent15 crossLaneVelocity_ra3_rd

3_ra3_rd3
speed quadClassValue distToRightLane_ra3_rd3

steer*aheadLaneBearing accelerator*speed crossLaneVelocity*distTo
LeftLane

distToRightLane_ra3_rd3_r
a3_rd3

brake_ent15 distToLeftLane_ra3_rd3_ra3_r
d3

turnSignal crossLaneVelocity*crossL
aneVelocity

aheadLaneBearing*aheadL
aneBearing

aheadLaneBearing_ra3_rd3
_ra3_rd3

steer_ent15 HeadwayDist_ra3_rd3_ra3_rd3

steer_ent15 steer*steer speed*speed speed*speed stat3 accelerator*crossLaneVelocity
speed*distToLeftLane aheadLaneBearing*aheadL

aneBearing
stat3 turnSignal All Maneuvers accelerator*HeadwayDist

brake_ent15 aheadLaneBearing*lateral
Acceleration

laneOffset_ra3_rd3_ra3_r
d3

distToLeftLane speed speed*aheadLaneBearing

aheadLaneBearing*latera
lAcceleration

aheadLaneBearing crossLaneVelocity*Headw
ayTime

lateralAcceleration_ra3_rd3 turnSignal speed*crossLaneVelocity

aheadLaneBearing*laneO
ffset

steer*aheadLaneBearing aheadLaneBearing*Headw
ayDist

aheadLaneBearing*distToRi
ghtLane

aheadLaneBearing speed*distToRightLane

steer*steer speed_ra3_rd3 accelerator crossLaneVelocity*crossLan
eVelocity

steer_ra3_rd3 crossLaneVelocity*HeadwayDi
st

laneOffset*laneOffset steer accelerator*aheadLaneBea
ring

steer_ra3_rd3 distToLeftLane_ra3_rd3 crossLaneVelocity*HeadwayTi
me

crossLaneVelocity*cross
LaneVelocity

aheadLaneBearing*distTo
RightLane

accelerator*HeadwayDist aheadLaneBearing*crossLan
eVelocity

HeadwayDist_ra3_rd3 stat3

distToRightLane*distTo
RightLane

laneOffset*laneOffset aheadLaneBearing*Headw
ayTime

stat2 brake_ra3_rd3_ra3_rd3 ChangingRight

distToRightLane distToRightLane speed*distToRightLane accelerator*laneOffset speed_ra3_rd3_ra3_rd3 turnSignal
accelerator*speed speed*distToRightLane steer*aheadLaneBearing CfsSubsetEval-BestFirst steer_ra3_rd3_ra3_rd3 aheadLaneBearing
distToRightLane_ra3_rd
3_ra3_rd3

crossLaneVelocity accelerator*HeadwayTime Maneuver aheadLaneBearing_ra3_rd3_r
a3_rd3

crossLaneVelocity

speed*distToRightLane distToRightLane*laneOffs
et

distToLeftLane_ra3_rd3_r
a3_rd3

speed distToRightLane_ra3_rd3_ra3
_rd3

distToRightLane_ra3_rd3

speed_ra3_rd3 speed*crossLaneVelocity accelerator*accelerator steer HeadwayDist_ra3_rd3_ra3_rd
3

distToRightLane_ra3_rd3_ra3_
rd3

distToLeftLane*distToRi
ghtLane

distToRightLane*distToRi
ghtLane

aheadLaneBearing*lateral
Acceleration

turnSignal accelerator*speed laneOffset_ra3_rd3_ra3_rd3

laneOffset_ra3_rd3_ra3_
rd3

distToRightLane_ra3_rd3 ChangingRight steer_ra3_rd3 accelerator*steer accelerator*crossLaneAccelerati
on

aheadLaneBearing*ahead
LaneBearing

distToLeftLane speed*crossLaneVelocity laneOffset_ra3_rd3 accelerator*crossLaneVelocity brake*crossLaneVelocity

distToRightLane_ra3_rd
3

distToLeftLane*distToRig
htLane

crossLaneVelocity brake_ra3_rd3_ra3_rd3 brake*lateralAcceleration speed*aheadLaneBearing

distToLeftLane_ra3_rd3 distToLeftLane_ra3_rd3_r
a3_rd3

crossLaneVelocity*distTo
RightLane

speed_ra3_rd3_ra3_rd3 speed*speed Speed*crossLaneAcceleration

distToLeftLane_ra3_rd3
_ra3_rd3

speed*aheadLaneBearing distToRightLane_ra3_rd3 steer_ra3_rd3_ra3_rd3 speed*crossLaneVelocity speed*crossLaneVelocity

brake*speed ChangingLeft crossLaneVelocity*distTo
LeftLane

aheadLaneBearing_ra3_rd3
_ra3_rd3

speed*distToLeftLane speed*distToLeftLane

aheadLaneBearing*cross
LaneVelocity

speed*crossLaneVelocity accelerator*crossLaneVelo
city

distToRightLane_ra3_rd3_r
a3_rd3

speed*distToRightLane speed*distToRightLane

aheadLaneBearing*distT
oRightLane

crossLaneVelocity speed*aheadLaneBearing HeadwayDist_ra3_rd3_ra3_
rd3

steer*aheadLaneBearing speed*laneOffset

distToLeftLane turnSignal distToLeftLane_ra3_rd3 HeadwayTime_ra3_rd3_ra3
_rd3

steer*distToLeftLane crossLaneAcceleration*laneOff
set

distToRightLane*laneOf
fset

accelerator*crossLaneVelo
city

laneOffset_ra3_rd3 brake*lateralAcceleration steer*laneOffset CrossLaneVelocity*HeadwayD
ist

All Maneuvers crossLaneVelocity*distTo
RightLane

speed*laneOffset speed*speed aheadLaneBearing*laneOffset distToLeftLane*distToRightLa
ne

speed distToLeftLane_ra3_rd3 aheadLaneBearing speed*distToLeftLane crossLaneAcceleration*crossL
aneAcceleration

stat3

speed*speed distToRightLane_ra3_rd3 distToLeftLane_ra3_rd3_r
a3_rd3

steer*aheadLaneBearing crossLaneVelocity*Headway
Dist

stat2

quadClassValue speed laneOffset_ra3_rd3_ra3_r
d3

steer*laneOffset distToLeftLane*distToRightL
ane

stat3 crossLaneVelocity*Headw
ayDist

crossLaneVelocity_ra3_rd
3_ra3_rd3

aheadLaneBearing*lateralAc
celeration

quadClassValue

steer_ent15 laneOffset_ra3_rd3 speed*distToRightLane crossLaneAcceleration*cross
LaneVelocity

brake_ent15

ra3 / rd3 – Running Average / Difference with window size of 3 samples; a*b – Feature a multiplied with Feature b (Cross product); a_ent15 –
Running entropy of the prediction error of feature a; statN – stationarity with delta = N; quadClassValue – The output of the quadratic classifier

