
 
 

  
Abstract— To determine when to present information from 

various devices or services to the driver of an automobile, it is 
necessary to determine whether a driver is engaged in a 
difficult driving situation that requires extensive attention. We 
present simulator experiments in determining what sensors 
make classification of driving states into such maneuvers 
possible, using various machine learning techniques.  Our 
findings indicate that a small number of derived sensor signals 
can accomplish the task. 

I. INTRODUCTION 

A. Maneuver Classification Problem 
With increasing proliferation of portable, and in some 

cases, fixed devices in cars, there are also increasing 
demands to manage the distractions they present to the 
driver. One particular subtask is the management of timing 
of information presented to the driver from these devices. A 
simple example is having the system handle incoming cell 
phone calls which could be redirected to voicemail, slightly 
delayed, or passed to the driver to answer.  An ongoing call 
could be interrupted. A critical component of such a system 
is for the vehicle to determine when the driver is in a state 
that she or he could take the call or could continue an 
existing call without being an increased risk to the traffic. 
Other situations are called "difficult driving maneuvers" or 
"critical driving events". We will use the word maneuver 
for these events throughout the rest of the paper. During 
these maneuvers non-critical information will not be 
presented to the driver. 

Such a maneuver classifier would be one component of a 
more general system that monitors the driver and his 
environment and provides feedback—a driver assistance 
system. This feedback can be in the form of warning alerts, 
verbal suggestions, visual cues on a heads-up display, etc. A 
first generation system, Motorola Driver's Advocate, has 
been documented in [1,2]. 
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Since the goal is to determine whether the driver is 
capable of receiving new information from a device or a 
service, this implies estimation of the cognitive load of the 
driver [3,4,5,6]. Most often this is done by observing the 
driver directly or indirectly. In our case the aim is slightly 
different – detecting a driving maneuver from the sensor 
inputs rather than attempting to directly assess the state of 
the driver. This implies a higher cognitive load directly 
related to the actual driving situation. Most of the previous 
work concentrates on driver behavior recognition and 
prediction [7,8], rather than on driving state recognition. 
Recognition of typical driving events and their long-term 
prediction using acceleration and location sensors with 
neural networks is studied in [9]. 

In this paper we study which sensors are needed for 
driving state classification. Our approach is purely data-
driven. Sensor data is collected in a driving simulator; it is 
manually labeled with maneuvers, after which the problem 
reduces to that of feature selection [11]: "What sensors 
contribute most to the correct classification of the driving 
state into maneuvers/non-maneuver?" Since we are working 
with a simulator, we have sensors available that would be 
hard or expensive to arrange to a real vehicle. The 
simulator-based approach makes it possible to study the 
problem without implementing the actual hardware in a real 
car.  

We proceed by giving background to the general feature 
selection problem. We then describe our environment for 
driving simulation and data collection, including the sensor 
set we are studying.  Feature selection experiments for the 
maneuver classification problem are described next, 
followed by actual classification experiments, results, and 
conclusions. 

II. FEATURE SELECTION 

A. Background 
Feature selection is a data preprocessing technique that is 

extensively used in the machine learning community and 
has been an active area of research since 1970’s. It is a 
process of finding a minimal subset of features that are 
necessary and sufficient to learn the target concept [11]. 
Feature selection has been shown very effective in 
removing redundant and irrelevant features, increasing the 
efficiency of the learning task, improving learning 
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performance like predictive accuracy, and enhancing the 
comprehensibility of the learned results. Numerous 
algorithms have been proposed in literature for feature 
selection [12,13,14]. 

As mentioned in [14,16], feature selection algorithms can 
be broadly classified in to two models: the filter model and 
the wrapper model. Filter model based algorithms propose 
an evaluation criterion based on the characteristics of the 
data that evaluates the effectiveness of the selected features. 
In the wrapper model a predetermined learning algorithm is 
used to evaluate and determine which features are selected. 
For each new feature subset generated, the wrapper model 
learns the classifier and measures its goodness (by using 
accuracy, recall, precision values). The features selected are 
those that have higher goodness measure. Although wrapper 
approaches give better results they are more 
computationally intensive than filter approaches. Hybrid 
models have been proposed [16,17,18] that used both filter 
model and wrapper model in their algorithms. In these 
methods, a set of features for a given cardinality is chosen 
based on a goodness measure that is dependent on the 
inherent characteristics of the data. Then cross-validation is 
employed to decide the final best subset across different 
cardinalities. 

B. Random Forests for Feature Selection 
Random forest is a special kind of ensemble learning 

technique [15]. A Random Forest grows an ensemble of 
classification (or regression) trees, each trained on a subset 
of the training data using only a subset of available features. 
To classify a new data sample, the data is classified through 
each of the trees of the forest. The final prediction is done 
based on majority voting among the trees.  

Let us assume that the dataset has N instances and M 
features. Each tree in the random forest is grown on a 
bootstrap sample of N data points. ‘m’ features (m < M) are 
randomly chosen from all M features and the best split 
attribute among these is chosen to split the node. Random 
forests constructed in this manner have several nice 
properties. The construction process is extremely fast 
compared to other contemporary ensemble classification 
methods. It is scalable to huge datasets and to high 
dimensional datasets. It is also possible to inherently 
determine the importance of each input feature as a by-
product of the forest construction process. 

The importance of a feature follows from the frequency 
of appearance of the feature in the nodes of the trees in the 
forest [15]. Each decision node in the trees is chosen as the 
best value of the best feature that splits the current training 
data in that node into two parts. The goodness of the split is 
evaluated using information gain, which reflects how "pure" 
the two parts are in terms of the classes of the classification 
task. The measure of importance of a feature is the sum of 
the information gains of those nodes in the forest that split 
using this feature. Thus all features can be ranked based on 
this importance measure. The whole point in this measure is 

that each feature is not ranked alone but in the classification 
task, together with all other features. 

This method of ranking the features was used in our 
experiments for selecting the most useful sensors for 
maneuver classification. 

C. CFS Feature Selection Algorithm  
Correlation-based Feature Selection (CFS) [24] is a filter 

based feature selection algorithm that uses correlation 
among features to select the best features for the given 
dataset. It evaluates the effectiveness of a feature subset by 
considering the individual predictive ability of each feature 
along with the degree of redundancy between them. It 
selects subset of features that have high correlation with the 
class but low intercorrelation between themselves. 

CFS handles classification and regression problem 
separately. In case of a classification problem, it discretizes 
the continuous valued features and uses Symmetric 
Uncertainty to estimate the degree of association between 
discrete features. In the case of a regression problem the 
correlation between different type of features is calculated 
as below: Pearson’s Correlation Coefficient is used to 
determine the correlation between two numeric features. 
For computing the correlation between a discrete feature 
and numeric feature it computes the Pearson’s coefficient 
between the numeric feature and the individual indicator 
vectors for each value the discrete feature takes, and 
computes a weighed correlation measure using these 
individual correlations. When both the features are discrete, 
CFS computes the Pearson’s coefficient for all 
combinations of the indicator vectors for each feature and 
computes a weighted average of these coefficients. 

We use CFS as a benchmark against Random Forests. 

III. EXPERIMENTS 

A. Driving Simulator 
The experiments were conducted in the Motorola driving 

simulator lab, which is an instrumented car in a surround 
video virtual world with full visual and audio simulation 
(although no motion or G-force simulation) of various 
roads, traffic and pedestrian activity. The Motorola driving 
simulator consists of a fixed based car surrounded by three 
front video (approx 150 degree forward) and 1 rear screen 
(approx. 50 degree rear view for center mirror and drivers 
side mirror). All driver controls such as steering wheel, 
brake, accelerator are monitored and affect the motion 
through the virtual world in real-time. Various hydraulics 
and motors provide realistic force feed back to driver 
controls to mimic actual driving.  

The basic driving simulator software is a commercial 
product called DriveSafety from GlobalSim. Motorola has 
extended this standard product with a set of simulated 
sensors that, at the behavioral level, simulate a rich set of 
current and future onboard sensors in the near future. This 



 
 

 
Fig 1. The driving simulator 

set consists of a radar for locating other traffic, a GPS 
system for position information, a camera system for lane 
positioning and lane marking, a mapping data base for road 
names, directions, locations of points of interest etc. There 
is also a complete car status system for determining the 
state of engine parameters (coolant temp, oil pressure etc), 
driving controls (transmission gear selection, steering angle, 
window and seat belt status etc.). The simulator setup also 
has several video cameras, microphones and eye tracking 
infrared sensors to record all driver actions during the drive 
that is synchronized with all the sensor output and simulator 
tracking variables. 

The DriveSafety simulation package also has an 
authoring tool component called HyperDrive that can be 
used to easily create a virtual world consisting of any mix of 
road types, intersections, freeways, and traffic signals. 
There is also a scripting mechanism that can create other 
vehicles and under experimenter control have them exhibit 
any pre-programmed or standard behavior. It is possible to 
have well behaved ambient traffic on the road or we can 
make a car pull out in front of the subject on command. In 
this experiment we created a rich set of freeway and 
suburban roads, populated with a mix of normal and erratic 
vehicles, and monitored the subject driver’s use of the 
driving controls during free form ‘driving’ through the 
world to determine when a driver was in a maneuver and 
when they were in normal ‘cruising’ mode. 

The data collection system consists of 4 separate 
machines capturing 4 separate time stamped databases; the 
simulator ‘host’ machine, the Driver Advocate machine, the 
cab monitor machine and the video capture machine.  After 
a drive is completed, the software providing the operator’s 
console also retrieves the databases from the individual 
machines and places them into a collection on another 
dedicated database repository machine.  Three of these 
databases represent in excess of 425 separate fields.  An 
additional screen of video is digitally captured in MPEG2 
format, consisting of a quad combiner providing 4 different 
views of the driver and environment.  The combined 
databases and video produce somewhere around 400Mb of 
data for each 10 minutes of drive time. 

The primary database is captured by our Driver Advocate 
machine.  This database currently contains 181 categorical 
fields, of which 84 also have associated numerical entries.  
There are additional 30 special fields associated with 
surrounding traffic and a potentially unlimited number of 
events that can be generated by various other portions of the 
simulator system, either programmatically or manually.  
The data collected by this machine contains an extensive 
scope of driving data – information about the auto, the 
driver, the environment, and associated conditions.  This 
database also contains the most important information 
passed forward and condensed from the simulator host and 

cab monitor machines. 

B. Experimental Setup 
The GlobalSim HyperDrive authoring tool was used to 

create the driving world scenario.  The virtual drive 
simulated a six kilometer square multi-lane beltway with on 
and off-ramps, overpasses, and two and three-lane traffic in 
each direction (separated by a grass median).  Interior to the 
squared beltway, connecting to each mid-side overpass, 
were four varied two-lane roads - urban, suburban, 
industrial, and rural environments.  These crossed in the 
middle at a light controlled intersection.  All drivers used 
daytime dry-pavement driving conditions with good 
visibility. 

For a high-density driving environment, 59 “distracter” 
vehicles were added to the highway scenario along with 
high-density random “ambient” traffic.  These distracter 
vehicles were randomly programmed to drive between ±10 
percent faster/slower than the posted speed limit, providing 
the impression of a steady flow of normal traffic around the 
subject car.  All distracter vehicles simulated alert, “good” 
driver behavior and reacted reasonably to any particular 
maneuver from the subject driver. This arrangement 
allowed a variety of traffic conditions and road types within 
a confined, but continuous driving space.  Opportunities for 
passing and being passed, traffic congestion, and different 
levels of driving difficulty were thereby encountered during 
the drive. 

Data was collected from four drivers each driving about 
15 minutes in the simulated world. Drivers were instructed 
to engage in all possible maneuvers they could think of.  
The data is labeled for maneuvers by manually hand 
annotating the data using a special purpose tool that 
combines video playback with graphical visualization of the 
selected variables from the data.  

The data was labeled with the following 12 maneuvers: 
ChangingLeft, ChangingRight, CrossingShoulder, Not-
OnRoad, Passing, Reverse, SlowMoving, Starting, 
Stopping, Tailgating, TurningLeft, TurningRight, and U-



 
 

Turn. The labels could be overlapping, say every Passing 
Maneuver is a sequence of ChangingLeft followed by 
ChangingRight. 

C. Chosen and Derived Sensors 
From many of the available features, a subset of 15 

features was selected as base features that could be 
foreseeable to be built into a car. They are described in 
Table I. An economically very viable alternative to adding 
more sensors is to calculate new derived variables from 
existing sensors. Of course, one cannot add new 
information to the sensor signal just by processing it, but it 
is possible to make important information more explicit. In 
order to enhance the feature set, the following features were 
added to the base feature set:  
1)  Quadratic terms, i.e., all the cross products and 

squares, of the numeric variables 
2) First order time derivatives of the numeric features. 
3) Second order time derivatives of the numeric features. 
4) Short-time running entropies for steering, brake, and 

accelerator prediction errors. Entropy is calculated as 
described by Boer in [25], but within a sliding window. 

5) Multivariable stationarity as described in [21] with 
delta=2 and delta=3 samples. 

6) The output of a quadratic classifier trained using 
standard least-squares approach [22,23] with the 13 
continuous valued features. 

Adding theses features makes the total size of the feature set 
to 138. Feature selection is applied to this dataset for 
selecting the most relevant sensors for maneuver 
classification. In addition to selecting the best base sensors, 
we also evaluate what derived features are relevant to this 
problem. 

D. Results 
We ran four sets of classification experiments to compare 

the results of two different feature selection methods using 
two different classifiers. In the first experiment we 
attempted to discover those sensors that discriminate 
maneuvers from non-maneuvers. The second experiment 
attempted to find sensors that discriminate all 12 different 
maneuver types from each other and from non-maneuvers. 
The sequence data was treated as instantaneous labeled 
data. Since the maneuvers can be overlapping, there could 
be more than one class assigned to the same instance. In 
order to overcome this multi-class problem, we developed a 
single pass algorithm that duplicates all the overlapping 
instances and creates one instance for each class label. The 
algorithm also tries to preserve the sequential nature of the 
input by not interleaving the class labels of overlapping 
instances. Third and fourth experiment concentrated in 
discriminating lane changes from the rest of the maneuvers 
and from non-maneuvers. Classification results are 
presented in Table II both as the accuracy and as the recall 
of the maneuvers. In this table, each of the four experiments 

was run with a Random Forest or a Naïve Bayes [26] as the 
classifier. Also each of the four experiments was run with 
six different feature sets. These feature sets are   

1) All 138 original and derived features. 
2) 8 top features selected by a Random Forest 
3) 16 top features selected by a Random Forest 
4) 32 top features selected by a Random Forest 
5) As many top features selected by a Random Forest 

as the CFS-method selected 
6) Features selected by CFS. 

For the Random Forest algorithm 500 trees were 
constructed. As the results indicate, as a classifier, Random 
Forests are vastly better than Naïve Bayes. As a feature 
selection algorithm, RF also produces features that either 
perform similarly, or better than features produced by CFS.  
8-16 top RF-features already perform acceptably in the 
general maneuver/non-maneuver classification problem. We 
list the top features in Table III. In the case of Random 
Forests, either 8, 16, or 32 top features of these were used 
in classification experiments. As expected, turn signal and 
speed are high almost on every list.  It is also interesting to 
see some derived variables, such as stationarity of the 
sensors, and entropy of steering and braking ranked quite 
high. This indicates that to some extent new sensor 
hardware can be exchanged to software by computing new 
variables based on existing ones.   

TABLE I 
BASE FEATURE SET 

Feature Type* Description 

Accelerator Cont Normalized accelerator input value 
Brake  Cont Normalized brake input value 

Speed Cont Speed of the subject (m/s) 
Steer Cont Normalized steering angle 
TurnSignal Disc Status of Indicator lights 
AheadLaneBe
aring 

Cont Bearing of the current lane 100 meters 
ahead 

CrossLaneAcc
eleration 

Cont Acceleration in the direction 
perpendicular to the lane (m/s2) 

CrossLaneVel
ocity 

Cont Velocity in the direction perpendicular 
to the lane (m/s) 

distToRightLa
neEdge 

Cont Distance to the right lane edge (m) 

DistToLeftLan
eEdge 

Cont Distance to the left lane edge (m) 

laneOffset Cont Offset relative to the center of the lane 
LateralAcceler
ation 

Cont Acceleration in the direction 
perpendicular to the motion of the 
vehicle (m/s2) 

HeadwayDist Cont Distance from the subject’s front 
bumper to the rear bumper of any other 
vehicle ahead. (m) 

HeadwayTime Cont Time in seconds to vehicle ahead. 
VehAhead Disc Name of the closest vehicle in the front 

of the subject in the same lane as the 
subject. 

*Type denotes the feature type indicating whether the feature is 
Discrete or Continuous. 



 
 

TABLE II 
CLASSIFICATION RESULTS 

  Feature Selection Method 
Classific

-ation 
Method 

Experiment All 138 
Features 

Random 
Forest  

8 features 

Random 
Forest 

16 features 

Random 
Forest 

32 features 

Random 
Forest * 

CfsSubsetEval 
BestFirst 

  Acc Recall Acc Recall Acc Recall Acc Recall Acc Recall Acc Recall 

Man/NonMan 93.4 90.2 91.2 90.0 92.9 91.9 93.4 90.6 93.5 91.1 93.0 90.5 
All Man/ Non 

Man 72.5 64.2 70.5 62.9 72.6 64.9 72.5 64.3 72.5 64.4 72.6 64.1 

ChangingLeft 97.6 89.1 96.8 76.8 97.4 84.9 97.6 88.5 97.1 81.4 97.2 82.8 

Random 
Forest 

ChangingRight 96.8 86.6 94.5 68.8 95.9 81.5 96.6 84.0 96.0 81.8 95.9 81.1 

Man/NonMan 79.6 55.0 79.8 70.3 79.3 52.3 80.3 54.6 80.5 55.4 80.6 56.1 
All Man/ Non 

Man 15.7 39.8 36.5 41.1 24.2 34.1 23.3 40.6 22.9 40.2 30.7 39.8 
ChangingLeft 23.4 95.1 91.3 43.6 89.9 43.6 86.4 67.2 90.7 45.1 88.7 53.4 

Naïve 
Bayes 

ChangingRight 20.9 97.4 90.0 41.4 89.0 43.4 89.1 44.4 88.8 43.4 88.6 45.9 

* The number of features selected here is the same as the number of features given by CfsSubsetEval-BestFirst algorithm 
RandomN – Top ‘N’ features are selected from Random Forest experiment 

IV. DISCUSSION AND CONCLUSION 
Previous work on sensor selection for driver assistance 

systems is practically nonexistent. Either real cars have been 
used in experiments with a very limited number of available 
base sensors, or simulator experimentation has concentrated 
on other aspects but sensor selection. Derived features have 
not been usually considered at all. 

Driving simulator is a perfect tool for this kind of 
experimentation. It allows controlled collection of data, 
using a desired number of sensors of a desired kind.  
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TABLE II 
FEATURES SELECTED 

Random Forests CfsSubsetEval-BestFirst 
Maneuver All Maneuvers (cont) ChangingLeft (cont) ChangingRight (cont) Maneuver All Maneuvers (cont) 

quadClassValue stat2 distToRightLane_ra3_rd3
_ra3_rd3 

aheadLaneBearing*aheadLa
neBearing 

crossLaneVelocity*crossLane
Velocity 

steer_ent15 

speed turnSignal accelerator*speed stat3 crossLaneVelocity*Headway
Time 

stat3 

speed*speed aheadLaneBearing*laneOf
fset 

speed*aheadLaneBearing accelerator*aheadLaneBeari
ng 

distToLeftLane*distToRightL
ane ChangingLeft 

stat3 speed*distToLeftLane aheadLaneBearing speed*distToLeftLane distToRightLane*laneOffset turnSignal 
stat2 brake_ent15 crossLaneVelocity_ra3_rd

3_ra3_rd3 
speed quadClassValue distToRightLane_ra3_rd3 

steer*aheadLaneBearing accelerator*speed crossLaneVelocity*distTo
LeftLane 

distToRightLane_ra3_rd3_r
a3_rd3 

brake_ent15 distToLeftLane_ra3_rd3_ra3_r
d3 

turnSignal crossLaneVelocity*crossL
aneVelocity 

aheadLaneBearing*aheadL
aneBearing 

aheadLaneBearing_ra3_rd3
_ra3_rd3 

steer_ent15 HeadwayDist_ra3_rd3_ra3_rd3

steer_ent15 steer*steer speed*speed speed*speed stat3 accelerator*crossLaneVelocity 
speed*distToLeftLane aheadLaneBearing*aheadL

aneBearing 
stat3 turnSignal All Maneuvers accelerator*HeadwayDist 

brake_ent15 aheadLaneBearing*lateral
Acceleration 

laneOffset_ra3_rd3_ra3_r
d3 

distToLeftLane speed speed*aheadLaneBearing 

aheadLaneBearing*latera
lAcceleration 

aheadLaneBearing crossLaneVelocity*Headw
ayTime 

lateralAcceleration_ra3_rd3 turnSignal speed*crossLaneVelocity 

aheadLaneBearing*laneO
ffset 

steer*aheadLaneBearing aheadLaneBearing*Headw
ayDist 

aheadLaneBearing*distToRi
ghtLane 

aheadLaneBearing speed*distToRightLane 

steer*steer speed_ra3_rd3 accelerator crossLaneVelocity*crossLan
eVelocity 

steer_ra3_rd3 crossLaneVelocity*HeadwayDi
st 

laneOffset*laneOffset steer accelerator*aheadLaneBea
ring 

steer_ra3_rd3 distToLeftLane_ra3_rd3 crossLaneVelocity*HeadwayTi
me 

crossLaneVelocity*cross
LaneVelocity 

aheadLaneBearing*distTo
RightLane 

accelerator*HeadwayDist aheadLaneBearing*crossLan
eVelocity 

HeadwayDist_ra3_rd3 stat3 

distToRightLane*distTo
RightLane 

laneOffset*laneOffset aheadLaneBearing*Headw
ayTime 

stat2 brake_ra3_rd3_ra3_rd3 ChangingRight 

distToRightLane distToRightLane speed*distToRightLane accelerator*laneOffset speed_ra3_rd3_ra3_rd3 turnSignal 
accelerator*speed speed*distToRightLane steer*aheadLaneBearing CfsSubsetEval-BestFirst steer_ra3_rd3_ra3_rd3 aheadLaneBearing 
distToRightLane_ra3_rd
3_ra3_rd3 

crossLaneVelocity accelerator*HeadwayTime Maneuver aheadLaneBearing_ra3_rd3_r
a3_rd3 

crossLaneVelocity 

speed*distToRightLane distToRightLane*laneOffs
et 

distToLeftLane_ra3_rd3_r
a3_rd3 

speed distToRightLane_ra3_rd3_ra3
_rd3 

distToRightLane_ra3_rd3 

speed_ra3_rd3 speed*crossLaneVelocity accelerator*accelerator steer HeadwayDist_ra3_rd3_ra3_rd
3 

distToRightLane_ra3_rd3_ra3_
rd3 

distToLeftLane*distToRi
ghtLane 

distToRightLane*distToRi
ghtLane 

aheadLaneBearing*lateral
Acceleration 

turnSignal accelerator*speed laneOffset_ra3_rd3_ra3_rd3 

laneOffset_ra3_rd3_ra3_
rd3 

distToRightLane_ra3_rd3 ChangingRight steer_ra3_rd3 accelerator*steer accelerator*crossLaneAccelerati
on 

aheadLaneBearing*ahead
LaneBearing 

distToLeftLane speed*crossLaneVelocity laneOffset_ra3_rd3 accelerator*crossLaneVelocity brake*crossLaneVelocity 

distToRightLane_ra3_rd
3 

distToLeftLane*distToRig
htLane 

crossLaneVelocity brake_ra3_rd3_ra3_rd3 brake*lateralAcceleration speed*aheadLaneBearing 

distToLeftLane_ra3_rd3 distToLeftLane_ra3_rd3_r
a3_rd3 

crossLaneVelocity*distTo
RightLane 

speed_ra3_rd3_ra3_rd3 speed*speed Speed*crossLaneAcceleration 

distToLeftLane_ra3_rd3
_ra3_rd3 

speed*aheadLaneBearing distToRightLane_ra3_rd3 steer_ra3_rd3_ra3_rd3 speed*crossLaneVelocity speed*crossLaneVelocity 

brake*speed ChangingLeft crossLaneVelocity*distTo
LeftLane 

aheadLaneBearing_ra3_rd3
_ra3_rd3 

speed*distToLeftLane speed*distToLeftLane 

aheadLaneBearing*cross
LaneVelocity 

speed*crossLaneVelocity accelerator*crossLaneVelo
city 

distToRightLane_ra3_rd3_r
a3_rd3 

speed*distToRightLane speed*distToRightLane 

aheadLaneBearing*distT
oRightLane 

crossLaneVelocity speed*aheadLaneBearing HeadwayDist_ra3_rd3_ra3_
rd3 

steer*aheadLaneBearing speed*laneOffset 

distToLeftLane turnSignal distToLeftLane_ra3_rd3 HeadwayTime_ra3_rd3_ra3
_rd3 

steer*distToLeftLane crossLaneAcceleration*laneOff
set 

distToRightLane*laneOf
fset 

accelerator*crossLaneVelo
city 

laneOffset_ra3_rd3 brake*lateralAcceleration steer*laneOffset CrossLaneVelocity*HeadwayD
ist 

All Maneuvers crossLaneVelocity*distTo
RightLane 

speed*laneOffset speed*speed aheadLaneBearing*laneOffset distToLeftLane*distToRightLa
ne 

speed distToLeftLane_ra3_rd3 aheadLaneBearing speed*distToLeftLane crossLaneAcceleration*crossL
aneAcceleration 

stat3 

speed*speed distToRightLane_ra3_rd3 distToLeftLane_ra3_rd3_r
a3_rd3 

steer*aheadLaneBearing crossLaneVelocity*Headway
Dist 

stat2 

quadClassValue speed laneOffset_ra3_rd3_ra3_r
d3 

steer*laneOffset distToLeftLane*distToRightL
ane 

 

stat3 crossLaneVelocity*Headw
ayDist 

crossLaneVelocity_ra3_rd
3_ra3_rd3 

aheadLaneBearing*lateralAc
celeration 

quadClassValue  

steer_ent15 laneOffset_ra3_rd3 speed*distToRightLane crossLaneAcceleration*cross
LaneVelocity 

brake_ent15  

 
ra3 / rd3  – Running Average / Difference with window size of 3 samples; a*b – Feature a multiplied with Feature b (Cross product); a_ent15 – 
Running entropy of the prediction error of feature a; statN – stationarity with delta = N; quadClassValue – The output of the quadratic classifier 
 


