
Acclimatizing Taxonomic Semantics for Hierarchical
Content Classification

Lei Tang
Dept. of Comp. Sci. & Eng.

Arizona State University
Tempe, Arizona, USA

L.Tang@asu.edu

Jianping Zhang
AOL Inc.

22000 AOL way
Dulles, Virginia, USA

JZhang6805@aol.com

Huan Liu
Dept. of Comp. Sci. & Eng.

Arizona State University
Tempe, Arizona, USA

Huan.Liu@asu.edu

ABSTRACT
Hierarchical models have been shown to be effective in con-
tent classification. However, we observe through empirical
study that the performance of a hierarchical model varies
with given taxonomies; even a semantically sound taxon-
omy has potential to change its structure for better classi-
fication. By scrutinizing typical cases, we elucidate why a
given semantics-based hierarchy does not work well in con-
tent classification, and how it could be improved for accurate
hierarchical classification. With these understandings, we
propose effective localized solutions that modify the given
taxonomy for accurate classification. We conduct extensive
experiments on both toy and real-world data sets, report
improved performance and interesting findings, and provide
further analysis of algorithmic issues such as time complex-
ity, robustness, and sensitivity to the number of features.

Categories and Subject Descriptors
I.2.7 [Artificial Intelligence]: Natural Language Process-
ing—Text Analysis; I.2.6 [Artificial Intelligence]: Learn-
ing—Knowledge acquisition; H.4 [Information Systems
Applications]: Miscellaneous

General Terms
Algorithms, Management, Experimentation

Keywords
Hierarchical Classification, Taxonomy Adjustment, Text Clas-
sification, Hierarchical Modeling

1. INTRODUCTION
The unregulated and open nature of the Internet and the

explosive growth of the Web create a pressing need to pro-
vide various services for content categorization. One ex-
ample of such services is parental control, which provides an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’06, August 20–23, 2006, Philadelphia, Pennsylvania, USA.
Copyright 2006 ACM 1-59593-339-5/06/0008 ...$5.00.

mechanism for parents to prevent their children from access-
ing inappropriate online content. Automatic content cate-
gorization technologies are used by Web service providers
to develop Web filters that can block children’s access at-
tempts to certain undesirable web sites and guide them to
child-amicable sites. On one hand, parents want accurate
content categorization that effectively blocks and guides; on
the other hand, it is desirable for the service to provide
explicit blocking structure and categories to explain how a
decision is made to parents. Another useful property is that
by providing the decision path how a blocking/non-blocking
is made, it can aid experts in investigating any purported
problems or complaints. If necessary, the expert can man-
ually fine-tune the classification model. Typical flat mod-
els, which ignore the taxonomy information and treat con-
tent categorization as a multi-class problem, do not satisfy
this requirement. The hierarchical classification attempts to
achieve both accurate classification and increased compre-
hensibility. It has also been shown in literature that hierar-
chical models outperform flat models in training efficiency,
classification efficiency, and classification accuracy [10, 13,
16, 8, 3, 23, 12].

Currently, almost all hierarchical methods rely on cer-
tain predefined content taxonomies. Content taxonomies
are usually created for ease of content management or access,
so semantically similar categories are grouped into a parent
category. A subject expert or librarian is employed to orga-
nize the category labels into a hierarchy. Such a taxonomy
is often generated independent of data (documents). Hence,
there may exist some inconsistency between the given tax-
onomy and data, leading to poor classification performance.
We elaborate some potential reasons. First, semantically
similar categories may not be similar in lexical terms. Most
content categorization algorithms are statistical algorithms
based on the occurrences of lexical terms in contents. Hence,
a semantically sound hierarchy does not necessarily lead to
the intended categorization result.

Second, even for the same set of categories, there could be
different semantically sound taxonomies. Semantics cannot
guarantee a unique taxonomy. Various users might use dif-
ferent taxonomies to organize the categories. For example,
we have a number of sports teams. Some people might first
separate them according to the area (like Arizona, Califor-
nia, Oregon, etc.) and then according to the sports type
(e.g., football, basketball, etc.). Some might first separate
the sports teams according to the sports type and then areas.
Both taxonomies are reasonable in terms of semantics. From
the perspective of hierarchical classification, however, the

two taxonomies will likely result in different performance.
Hence, we need to investigate the impact of different hier-
archies (taxonomies) on classification. The above reasons
necessitate the need to study the effects of different tax-
onomies on classification.

In addition, semantics may change over time. For exam-
ple, when the semantic taxonomy was first generated, people
would not expect the category Hurricane related to Politics,
and likely put it under Geography. However, after investi-
gating the data recently collected, we notice that a good
number of documents in category Hurricane are actually
talking about the disasters Hurricane Katrina and Rita in
the United States and the responsibility and the faults of
FEMA1 during the crises. Based on the content, it is more
reasonable to put Hurricane under politics for better classifi-
cation. The example demonstrates the stagnant nature of a
taxonomy and the dynamic change of semantics reflected in
data. This motivates the data-driven adaptation of a given
taxonomy in hierarchical classification.

In this paper, we first review the related work on hierar-
chical content classification and taxonomy generation in Sec-
tion 2; empirically show the impact of different taxonomies
on classification in Section 3; formulate the problem and dis-
cuss about the challenges in addressing the problem in Sec-
tion 4; investigate representative pathologies and study why
and how a semantically sound taxonomy can be adapted us-
ing available data and introduce an effective method in Sec-
tion 5; present the experimental results and further study
in Sections 6 and 7; and conclude this work in Section 8.

2. RELATED WORK
We briefly survey the work on state-of-the-art hierarchical

classification and taxonomy generation.

2.1 Hierarchical Classification
A semantically sound taxonomy can be used as a base

for a divide-and-conquer strategy. A classifier is built inde-
pendently at each internal node of the hierarchy using all
the documents of the subcategories of this category, and a
document is labeled using these classifiers to greedily se-
lect sub-branches until we reach a leaf node, or certain con-
straints are satisfied(like the score should be larger than a
threshold [8] or the predictions of adjacent levels should be
consistent [22]). Feature selection is often performed at each
node before constructing a classifier [10, 4].

To build the hierarchical model, different base classifiers
are employed including association rules [20], näıve Bayes
classifiers [10], neural networks [21, 16], and support vector
machines [8, 17, 12]. As the greedy approach for classifica-
tion might be too optimistic, researchers propose to traverse
all the possible paths from the root to the leaves. In [8],
the authors use a sigmoid function to map the prediction of
support vector machine at each node to a probability and
then multiply these probabilities along one path. The path
with the highest probability is selected. Another way is to
set a threshold at each level and just take those branches
when the corresponding prediction’s score is larger than the
threshold. It is demonstrated that hierarchy model outper-
forms flat(non-hierarchical) model marginally. And these
two methods show little difference. In [10], a greedy ap-
proach with näıve Bayes classifiers is exploited and a signif-

1Federal Emergency Management Agency

icant accuracy improvement is observed.
One advantage of the hierarchy-based approach is its effi-

ciency in training and testing, especially for a very large tax-
onomy [23, 12]. Hierarchical models make it easy to modify
and expand a taxonomy, like add one sub-category, delete
one category, merge several into one. For each modifica-
tion, it is not necessary to update the classifiers of all the
nodes since the classifiers are built independently. We just
need to update a small portion of the classifiers. Therefore,
the hierarchical approach is preferred when facing a large
taxonomy.

Hierarchies can also be used to assign different misclassifi-
cation costs. Recently, new hierarchical classification based
on margin theory and kernel methods are introduced [6, 19,
3, 15]. A concomitant of these methods’ superior perfor-
mance is their unbearable computational cost for training.

However, we notice that all the previous works paid little
attention to the quality of the taxonomy which we need to
consider in real-world applications.

2.2 Taxonomy Generation via Clustering
Some researchers propose to generate a taxonomy from

data for document management or classification. Most of
these works exploit some hierarchical clustering algorithms
for this task. There are two directions for hierarchical clus-
tering: agglomerative and divisive.

In [2, 5, 11], all employ a hierarchical agglomerative clus-
tering (HAC) approach. In [2], the centroids of each class
are used as the initial seeds and then projected clustering
method is applied to build the hierarchy. During the process,
the cluster with too few documents is discarded. Thus, the
taxonomy generated by this method might have different
categories than predefined. The authors evaluate their gen-
erated taxonomies by some user study and find it is compa-
rable to the Yahoo directory. In [11], a linear discriminant
projection is applied to the data first and then a hierar-
chical clustering method is exploited to generate a dendro-
gram, which is a binary tree. For classification, the authors
change the dendrogram to a two-level tree according to the
cluster coherence, and hierarchial models yield classification
improvement over flat models. But it is not sufficiently justi-
fied why a two-level tree should be adopted. Meanwhile, [5]
proposes HAC+P which is similar to the previous approach.
Essentially, it adds one postprocessing step to automatically
change the binary tree obtained from HAC, to a wide tree
with multiple children. However, in this process, we have to
specify some parameters as the maximum depth of the tree,
the minimum size of a cluster, and the cluster number pref-
erence at each level. These parameters make this approach
rather ad hoc.

Comparatively, the work in [14] falls into the category of
divisive hierarchical clustering. The authors generate a tax-
onomy with each node associated with a list of categories.
Each leaf node has only one category. This algorithm basi-
cally uses two centroids of categories which are furthest as
the initial seeds and then applies Spherical K-Means [7] with
k = 2 to divide the cluster into 2 sub-clusters. Each cate-
gory is assigned to one sub-cluster if most of its documents
belong to the sub-cluster (its ratio exceeds a predefined pa-
rameter). Otherwise, this category is associated to both
sub-clusters. Another difference of this method from other
HAC methods is that it will generate a taxonomy with one
category possibly occurring in multiple leaf nodes.

B
Economics

Video Game

Politics

Word Game

Movies

Basketball

Football

Music
A

C

D

I

II

Root

Figure 1: A “bad” hierarchy

Sports
Basketball

Football

Politics

Economics

Movies

Music

Video Game

Word Game
Game

Social Study

Arts

I

II

Root

Figure 2: A “good” hierarchy

Music

Movies

Politics

Economics

Football

Basketball

Video Game

Word Game

B

A

Root

Figure 3: An adjusted hierarchy

Though the clustering approach could generate a new tax-
onomy, it has some limitations: it either generates a binary
tree, or requires to specify the maximum depth of the tax-
onomy or the number of children nodes under each parent
category, which turns out to be rather ad hoc. Our exper-
iments show that the clustering-based hierarchy does not
perform as well as the semantics-based hierarchy (Sec. 6.3).

3. TAXONOMIES IN HIERARCHICAL
CLASSIFICATION

To show that taxonomies impact on classification accu-
racy, we conducted a proof-of-concept experiment using 1800
web pages obtained from AOL.com [1] with 8 categories:
Basketball, Football, Politics, Economics, Movies, Music, Video
Game, and Word Game. We filter out the tag information
and extract the text and meta information in the pages.
Each page is represented as a vector of words. We organize
the 8 categories into three different taxonomies as shown
in Figures 1, 2 and 3, respectively. The hierarchy in Fig-
ure 1, a relatively “bad” hierarchy, is obtained by grouping
dissimilar categories, while the hierarchy in Figure 2, a rel-
atively “good” hierarchy, is obtained by grouping similar
categories. Actually, we can obtain the same “good” hi-
erarchy by always joining two nearest clusters if we define
the dissimilarity of two categories as the distance between
the centroids of the two categories. The “bad” hierarchy is
generated by always merging two clusters with the largest
distance. The “good” hierarchy is semantically sound. The
third hierarchy in Figure 3 is adjusted from the hierarchy in
Figure 1 by applying our algorithm described in Section 5.

We build hierarchical classification models on the three
hierarchies, respectively. A classifier is built for each of the
nodes in the hierarchy. A näıve Bayes classifier was used.
The greedy search algorithm was used for classifying a doc-
ument. Figure 4 shows the average result of macro-averaged
recall and F-measure with a 10-fold cross validation. The
x-axis is the number of features selected using information
gain at each internal node of the hierarchy.

Clearly, a significant classification difference exists be-
tween these three hierarchical models, especially when the
number of features selected in each internal node is rela-
tively small. The difference diminishes as more features
are selected. In Section 7.3, we discuss this phenomenon
in detail. We notice that the hierarchy in Figure 3 performs
better than the semantically sound, “good” hierarchy. This
observation suggests that we can improve the classification
performance even for a semantically sound hierarchy.

In practice, a semantics based taxonomy is always ex-
ploited for hierarchial classification. As mentioned in the
introduction, the taxonomic semantics might not be com-

500 1000 2000 5000 7500 10000
0.6

0.7

0.8

Feature Number

M
ac

ro
 R

ec
al

l

Adjusted Hierarchy
"Good" Hierarchy
"Bad" Hierarchy

500 1000 2000 5000 7500 10000
0.6

0.7

0.8

Feature Number

M
ac

ro
 F

−
m

ea
su

re

Adjusted Hierarchy
"Good" Hierarchy
"Bad" Hierarchy

Figure 4: Performance of different hierarchies

patible with specific data and applications and can be am-
biguous in certain cases, the semantic taxonomy might lead
hierarchical classifications astray. Our question is whether
or not we can find a better hierarchy than the given semanti-
cally sound hierarchy so that a reasonably good hierarchical
model can be derived for data classification.

One possible approach to address the problem is to “start
from scratch”: ignore the given taxonomic information and
generate a new taxonomy based on the data. As we see
in Section 2.2, some researchers have done some work on
this approach based on hierarchical clustering. But all the
approaches either generate a binary tree which might not be
good for hierarchical classification, or requires humans to set
the height and the number of children under each node.

The semantics based taxonomy is a form of prior knowl-
edge and provides valuable information. With this prior
knowledge, we can narrow down our hypothesis space and ef-
ficiently find reliable hierarchies with good classification per-
formance and generalizability. Therefore, instead of aban-
doning the given hierarchy information, we propose to mod-
ify the given hierarchy gradually to generate a data-driven
hierarchy, so that classification improvement can be achieved.

4. PROBLEM FORMULATION
Before we formalize our problem, we present several defi-

nitions concerning hierarchies as follows.

Definition 1 (Admissible Hierarchy). Let
L = {L1, L2, · · · , Lm} denote the categories at the leaf nodes
of a taxonomy H, and C = {C1, C2, · · · , Cn} denote the
categories of data D. H is an admissible hierarchy for D if
m = n and there’s a one-to-one mapping between L and C.

1

2 3 4

5 6

42

35 6

1

72

3 45 6

1

(H1) (H2)

(H3) (H4)

2 3 4

5

6

1

Figure 5: Elementary Operations. H1 is the original
hierarchy. H2, H3 and H4 are obtained by performing
different elementary operations. H2: Promote node
6; H3: Demote node 3 under node 2; H4: Merge
node 3 and node 4.

Definition 2 (Optimal Hierarchy).

Hopt = arg max
H

p(D|H) = arg max
H

log p(D|H)

where H is an admissible hierarchy for the given data D.

In other words, the optimal hierarchy given a data set
should be the one with maximum likelihood. The brute-
force approach to find the optimal hierarchy is to try all
the admissible hierarchies and output the optimal one. Un-
fortunately, even for a small set of categories, there could
be a huge number of admissible hierarchies. If there are n
categories, there are at least n× (n−1)×· · ·×1 = n! differ-
ent binary trees. Not to mention those trees with multiple
children. Thus, it is impractical to try all the possible hi-
erarchies and pick the optimum and a more effective way
should be explored.

The given hierarchy provides valuable information for clas-
sification and helps reduce the search space to find the in-
tended optimal hierarchy. In order to incorporate this knowl-
edge into into our problem formulation, we first give the
definition of hierarchy difference.

Definition 3 (Hierarchy Difference). Hierarchy dif-
ference between two admissible hierarchies H and H ′ is the
minimum number of elementary operations(see below) to trans-
form H into H ′. Suppose the minimum number of opera-
tions is k, we denote the difference between H and H ′ as

‖ H ′ −H ‖= k

In order to change a hierarchy to another admissible hi-
erarchy, we have three elementary operations:
• Promote: roll up one node to upper level;
• Demote: push down one node to its sibling;
• Merge: merge two sibling nodes to form a super node;

As shown in Figure 5, H1 is the original hierarchy. H2, H3

and H4 are obtained by promoting Node 6 to its upper level,
demoting Node 3 under its sibling Node 2, and merging Node
3 and 4, respectively. Node 7 is a newly generated node
after modification. Notice that the set of leaf nodes remain
unchanged. As the set of categories at the leaf nodes remains
unchanged, we do not require the operation of splitting one
node into two.

Given explicit hierarchy difference, we have the constrained
optimal hierarchy defined below.

Definition 4 (Constrained Optimal Hierarchy).
Given a hierarchy H0, if there exists a sequence of hierar-
chies Q = {H1, H2, · · · , Hn} such that

p(D|Hi) ≥ p(D|Hi−1)

‖ Hi −Hi−1 ‖ = 1 (1 ≤ i ≤ n)

and

∀H ′ s.t. ‖ H ′ −Hn ‖= 1

we have p(D|H ′) ≤ p(D|Hn)

then Hn is a constrained optimal hierarchy for H0 and D.

Actually, the constrained optimal hierarchy(COH) is the
hierarchy that is reachable from the original hierarchy fol-
lowing a list of hierarchies with likelihood increase between
consecutive ones. When we reach a COH, we cannot find a
neighbor hierarchy with higher likelihood than it. In nature,
each COH is a local optimum.

If we state our problem as that of search, then a given
hierarchy is a sensible starting point in our attempt to reach
the optimal hierarchy following a short path. Hence, we
formulate our challenge as follows.

Hierarchy Search Problem: Given data D, and a taxon-
omy H0, can we find a hierarchy Hopt such that

Hopt = arg max
H

log p(D|H)

where H is a constrained optimal hierarchy for D and H0.

5. EFFECTIVE SOLUTION
To address the hierarchy search problem, we first need to

address the following:
1) How to estimate the likelihood of data given a hierar-

chy (P (D|H) in Definition 2)?
2) While the hierarchy search problem proposes to se-

lect the best among the constrained optimal hierarchies, it
is computationally intractable to obtain all the constrained
optimal hierarchies.

3) How to find the neighbors of a hierarchy? There could
be a huge number of neighbors by performing only one el-
ementary operation for a specific hierarchy especially when
the number of nodes in the tree is large.

Hence, we propose to obtain an approximate solution by
developing some heuristics. For the first problem, instead
of directly estimating the likelihood of data given a hier-
archy, we use some statistics to estimate the quality of a
hierarchy. Since in most classification tasks, people focus
on macro-averaged recall or f-measure, we use them as the
classification performance of a hierarchical model to mea-
sure its likelihood. In particular, we use macro-averaged re-
call to estimate the conditional likelihood. Concerning the
second problem, we exploit a greedy approach to find the
best constrained hierarchy. In each search step, we always
choose the neighbor node with largest likelihood improve-
ment. As we still need to consider the number of neigh-
bors of a hierarchy, we can apply certain heuristics to find
those promising neighbors and remove those non-promising
from further consideration. In this section, we design some
heuristics by studying several pathologies with various hier-
archies and then provide an algorithm that accustoms the
given taxonomy according to data.

B

Football

Basketball

Video Game

Word Game

Movies

Music

Politics

Economics

C

Root

Figure 6: HA

B

Football

Basketball

Video Game

Word Game

Movies

Music

Politics

Economics

Root

Figure 7: HB

Economics

Video Game

Politics

Word Game

Movies

Basketball

Football

Music

Root

Figure 8: HC

B

Economics

Politics

Video Game

Word Game

Movies

Basketball

Football

Music

Root

Figure 9: HD

B

Football

Basketball

Music

Movies

Video Game

Word Game

Politics

Economics

C

Root

A

Figure 10: HE

B

Football

Basketball

Music
Movies

Video Game

Word Game

Politics

Economics

Root

A

Figure 11: HF

Table 1: Performance Improvement of Hierarchies.
(Results are obtained by 10-fold cross validation by
selecting 500 features at each node.)

HA HB HC HD HE HF

Recall 0.8177 0.8350 0.8392 0.8532 0.8452 0.8531
F 0.7980 0.8049 0.8074 0.8168 0.8062 0.8128

5.1 Some Pathologies
We examine three typical cases involving hierarchy adap-

tation as follows:
Pathology 1: A child category is not represented well

at the parent node. This situation is common especially
when the number of categories is large or the distribution of
categories is imbalanced. In order to escape from the shadow
of the parent node, we need to roll up the node to its parent
level. Figure 6 shows one toy example of a semantics-based
hierarchy. However, the categories Word Game and Video
Game, though both related to games, actually is not very
proper to put under the same parent node C, as it doesn’t
represent its two children well. So when we roll up one of
its child node to the upper level resulting in hierarchy HB

as in Figure 7, the macro-recall as in Table 1 increases from
0.8177 to 0.8350.

Pathology 2: Two nodes under the same parent node
share so many common features that they become indistin-
guishable. For this case, we can consider merging these two
nodes to form a super node. We hope that by selecting the
common features first, we can separate the two categories at
lower level by selecting more specific features. The cause of
ambiguity might be that one node resembles strongly some
of the other node’s subcategories. Then another possible so-
lution is to demote one node under the other node. We also
use a simple example to show this. Figures 8 and 9 demon-
strate this situation. As we merge Economics and Politics,
not surprisingly, the classification recall improves to 0.8452
from 0.8531.

Pathology 3: It is possible that one category is related to

Input:
H0: Predefined hierarchy
T : Training data
V : Validation set
δ: Stopping criterion

Output:
Hbest: the approximate best hierarchy

Algorithm:
1 Spre = 0; Hbest = H0;
2 Sbest=evaluateHierarch(H0,M ,V);
3 Oflag = false;
4 while (Sbest − Spre > δ)
5 Nlist={all nodes in Hbest};
6 repeat
7 Node=getNodeToCheck(Nlist);
8 Hlist=generateNeighbors(Node,Oflag);
9 [H, S]=findBest(Hlist);
10 if S > Sbest

11 Spre = Sbest; Sbest = S; Hbest = H;
12 updateNodeList(Nlist, Hbest, Node);
13 end
14 until Nlist == null ;
15 Oflag = ¬Oflag;
16 end
17 return Hbest

Figure 12: Hierarchy Adjusting Algorithm

two different parent categories. But in the hierarchy, it can
only be located in one place. So for a specific application,
this semantic-based hierarchy might not be good. HE in
Figure 10 and HF in Figure 11 demonstrate this situation.
Again, HE is a semantic-justified hierarchy. However, in
our toy data, there are some articles talking about sports
music. Thus the hierarchial model on the data yields better
result(from 0.8452 to 0.8531 for recall) when we put Music
under sports as in HF . For such kind of symptoms, we have
to lift Music first and then demote it under B, essentially
involving two elementary operations.

The three phenomena help us develop heuristics aiming
to reach a better hierarchy via certain operations to one
node. As we know, the nodes at upper level affect more in
the classification process and thus should be considered with
higher priority. This is equivalent to a preference to check
the node with shortest depth first in search of promising
nodes to expand.

5.2 Algorithm
Our algorithm consists of multiple iterations(Figure 12).

In each iteration, we traverse the hierarchy using a top-down
approach and search for better hierarchies. For each search
step, we have the following procedures:

1. Identification of the node to check.

2. Identification of promising hierarchy neighbors con-
cerning a node.

3. Identification of the best neighbor.

4. Update of current best hierarchy.

We discuss each procedure below.

5.2.1 Identification of the node to check
Clearly, the nodes at the upper level affects more in the

classification process and should be considered with higher
priority. Therefore, we maintain a list of nodes in the hi-
erarchy. At each step, we pick the node with shallowest

Procedure: getNodeToCheck()
Input: Nlist, A list of nodes in a hierarchy
Output: Node, the node to check

check all the nodes in the list;
set Node to the node with the highest level;
remove Node from the list Nlist;
return Node;

Procedure: generateNeighors();
Input: N , the node to check;

Oflag , the operation flag to denote promote
operation or merge/demote operation.

Output: Clist,a list of promising hierarchy neighbors
if Oflag == false

Hcand =hierarchy by promoting N ;
Clist = {Hcand};

else
Nsimilar =the most ambiguous sibling node for N ;
H1 =hierarchy by merging N and Nsimilar;
H2 =hierarchy by demoteing N as Nsimilar’s child;
H3 =hierarchy by demoting Nsimilar as N ’s child;
Clist = {H1, H2, H3};
remove invalid hierarchies from Clist;

end
return Clist.

Procedure: updateNodeList();
Input: Nlist, the node list needs to check;

H, the hierarchy representing the operation;
Node, the node being checked;

Output: an updated node list Nlist

switch (H.operation)
case promote: N=Node’s grandparent;

add all N ’s descendants to Nlist;
break;

case merge:
case demote: N=Node’s parent;

add all N ’s descendants to Nlist;
break;

end
return Nlist;

Figure 13: Procedure definitions

depth and remove it from the list to avoid future consider-
ation(Please refer to Figure 13 for details).

5.2.2 Identification of promising neighbors
As argued in previous sections, the number of neighbors

of one hierarchy could be huge. Therefore, rather than con-
sidering all the nodes in the tree to generate the hierarchy,
we focus on performing operations to one specific node in
the hierarchy at each step.

However, the priority of each elementary operations must
not be neglected. As we see in previous pathologies, espe-
cially for the third one, we need to perform promoting opera-
tions first to achieve better taxonomy. This operation could
break up all the bad parent-child relations and make the
hierarchy more consistent with the data in general. There-
after, merging and demoting are employed to adapt the hi-
erarchy more specifically consistent for hierarchical classifi-
cation. So we always check promoting a node first to avoid
getting stuck under a wrong parent node. Therefore, in one
iteration, we just check the promising hierarchies by per-
forming promoting operations. In another iteration, we just
check the hierarchies by performing demoting or merging.

When we perform merging or demoting to one node, it
is not necessary for us to try all the possible pairs of nodes
under the same parent. We can just focus on the category
which is most similar to the node we currently check. We

define the similarity in terms of ambiguity score below:

Definition 5 (Ambiguity Score). Given two
classes A and B, suppose the percentage of class A classified
as class B is PAB, and the percentage of class B classified
as Class A is PBA, then ambiguity score = PAB + PBA.

Therefore, for one node, we just pick the sibling node with
highest ambiguity score and generate possible good neigh-
bors by merging these two nodes and demoting one node to
the other. Notice that not all the neighbor hierarchies are
valid. If one leaf node becomes a non-leaf node, it is invalid
as categories are the leaf nodes in this work. These invalid
hierarchies must be removed from consideration. The de-
tailed procedure is in Figure 13.

5.2.3 Identification of the best neighbor
This procedure compare all the promising neighbors and

find the best hierarchy among them. Given a list of hierar-
chies, we just build a hierarchical model based on each hier-
archy, and then evaluate it on some validation data to attain
some classification statics(in particular, macro-averaged re-
call in our work). Then the best hierarchy and the corre-
sponding statistic are returned.

5.2.4 Update of current best hierarchy
After we obtained the best hierarchy in the neighbor list,

we could compare it with current best hierarchy. If the clas-
sification statistic is better than current value, then we re-
place current best hierarchy with the best hierarchy just
found and update the list of nodes to check. Otherwise, we
remain unchanged and continue to check the next node.

Each time we changed the hierarchy, we have to update
the list of nodes to check(refer to Figure 13). We actually
just push to the list all the nodes that will be affected by
the operation, and all the other nodes in the list remain
unchanged. Suppose N is the node being checked. If the
hierarchy is obtained by performing promoting, then all the
children of N ’s grandparent should be rechecked. We can
revisit the cases in Figure 5. H2 is generated by promoting
node 6 in H1. If H2 is just a subtree in a huge taxonomy,
then all the other nodes’ classifiers except the descendants of
node 1 remain unchanged. So we just push all the descen-
dants of node 1 into the list. Similarly, when we perform
merging and demoting we just need to push all the descen-
dants of N ’s parent to the list. Therefore, as we perform
demoting and merging to node 3 in H1 resulting in H3 and
H4, respectively, only the subtree of node 1 will be affected.
All the changes are local and we just update the nodes that
is affected by the modification.

More importantly, as we use top-down approach to tra-
verse the tree, we avoid unnecessarily checking the nodes at
lower levels whenever there’s a change at higher levels.

The detailed algorithm to adjust a hierarchy is presented
in Figure 12. In sum, the algorithm basically consists of
multiple iterations. In each iteration, we check each node of
the taxonomy in a top-down approach and generate promis-
ing hierarchies (neighbors) according to an operation flag.
It is believed that promoting should perform first, so as
in Figure 12, we set the flag to false at the initial itera-
tion(Line 3). Then the operation flag is switched to true at
the end of one iteration(Line 15), so that in the next iter-
ation, we merge two nodes or demote one node to deepen
the hierarchy. This pairwise iterations will keep going until

the performance improvement on the validation set is lower
than the predefined stopping criterion.

6. EXPERIMENTS AND RESULTS
Earlier we show that semantics-based hierarchy does not

necessarily lead to a good hierarchial classification model.
We conduct experiments with different data sets including
the toy data and some real-world application.

6.1 Experiment Settings
We perform 10-fold cross validation to all the data sets.

In each fold, we apply our algorithm to the training data
with a predefined hierarchy. After we obtain the adjusted
hierarchy, we build hierarchical models based on training
data by selecting various number of features at each node.
The model is then evaluated on the test data. As the class
distribution of the data is not balanced, we report the aver-
age results in terms of macro recall and macro F-measure.
When we apply our hierarchy adjusting algorithm to the
training data, the criterion to evaluate the quality of a hi-
erarchy is macro-averaged recall. 500 features are selected
using information gain to build the hierarchical model. To
gain efficiency, the classifier at each node we exploited is
multi-class multinomial näıve Bayes classifier(NBC). The
data fragmentation problem becomes serious with a large
number of categories. Keeping a portion of training data as
the validation set becomes pretty unstable and might lose
generalization capability. For simplicity, we set the valida-
tion set the same as the training data to guide the hierarchy
modification. The stopping criterion for hierarchy adapta-
tion is until no classification performance can be improved
on the training data.

6.2 Results on Toy Data
We first test our algorithm on the toy data sets described

in Section 3. Figure 14 shows the performance improve-
ment after hierarchy modification. The legend “Good” Hie
Adjust and “Bad” Hie Adjust stand for the performance
of hierarchy adjustment starting from the “good” hierarchy
(Figure 2)and the “bad” hierarchy (Figure 1), respectively.
Clearly, after hierarchy modification, the performance im-
proves for both cases, especially when the number of features
is small (say 500).

Interestingly, even if the predefined hierarchy is very bad
or even misleading, our algorithm can still recover to a rea-
sonably good hierarchy whose performance is even better
than the hierarchy given by intuition. Actually, the hierar-
chy in Figure 3 is one example of hierarchies adjusted start-
ing from the bad hierarchy. Though our algorithm starts
from a semantically unsound hierarchy, it is possible to reach
a semantically sound hierarchy finally.

6.3 Results on Real-World Data
We applied our algorithm to two real world data sets pro-

vided by an Internet company. One is about the topics of
social study (Soc); the other includes topics of children’s in-
terests (Kids). Categories of both data sets are organized
as a taxonomy. Text and meta information were extracted
from web pages and the vector space model was applied to
represent web pages. Table 2 summarizes the two data sets.

In order to examine if a predefined semantics-based hier-
archy can provide useful prior knowledge for search, we also
compared with the “start from scratch” approach: ignore

500 1000 2000 5000 7500 10000
0.65

0.7

0.75

0.8

0.85

0.9

Feature Number

M
ac

ro
 R

ec
al

l

"Good" Hie Adjust
"Bad" Hie Adjust
"Good" Hierarchy
"Bad" Hierarchy

500 1000 2000 5000 7500 10000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Feature Number

M
ac

ro
 F

−
m

ea
su

re
"Good" Hie Adjust
"Bad" Hie Adjust
"Good" Hierarchy
"Bad" Hierarchy

Figure 14: Performance on Toy data

Table 2: Real-World Data Description
Soc Kids

#classes 69 244
#nodes in the hierarchy 83 299
Height of the hierarchy 4 5
#instances 5248 15795

the predefined taxonomy and do hierarchial clustering on
training data to obtain the taxonomy. We did a prelimi-
nary study to compare a divisive clustering approach in [14]
with agglomerative clustering algorithm as in [5], and found
the latter approach(HAC+P) is not comparable to the for-
mer clustering approach for our application. The difficulty
lies at choosing proper critical parameters of HAC+P like
the dimensionality to calculate the similarity, the number
of maximum depth and the preferred number of clusters of
each node. Therefore, we just use the former clustering ap-
proach as the baseline in our experiment.

The curves of “clustering” in Figures 15 and 16 denote
the performance of the clustering approach. There is a
clear association between the performance and the number
of categories. It is reasonable to expect that the recall and
F-measure are not very high as we have 69 categories in
Soc and 244 classes in Kids. The semantics based hierar-
chy eventuates better hierarchical classification performance
than the clustering-based hierarchy. This set of results also
indicates that the prior knowledge embedded in a taxonomy
is useful in classification.

500 1000 2000 5000 7500 10000

0.35

0.4

0.45

Feature Number

M
ac

ro
 R

ec
al

l

Adjusted Hierarchy
Original Hierarchy
Clustering

500 1000 2000 5000 7500 10000
0.32

0.34

0.36

0.38

0.4

Feature Number

M
ac

ro
 F

−
m

ea
su

re

Adjusted Hierarchy
Original Hierarchy
Clustering

Figure 15: Performance on Soc Data

500 1000 2000 5000 7500 10000
0.25

0.3

0.35

0.4

0.45

Feature Number

M
ac

ro
 R

ec
al

l

Adjusted Hierarchy
Original Hierarchy
Clustering

500 1000 2000 5000 7500 10000
0.25

0.3

0.35

0.4

0.45

Feature Number

M
ac

ro
 F

−
m

ea
su

re Adjusted Hierarchy
Original Hierarchy
Clustering

Figure 16: Performance on Kids Data

Comparatively, our algorithm, which starts from the given
hierarchy, could achieve significant improvement over the
original taxonomy on both data sets. This shows that we
can automatically adjust the content taxonomies for more
accurate classifiers. One interesting result is: when we select
more and more features, the difference between the newly
generated hierarchy and given hierarchy wanes. We discuss
this in Section 7.3.

Tables 3 and 4 summarize some statistics on both data
sets: the number of iterations, hierarchy evaluations, hier-
archy modification elementary operations and the height of
the hierarchy after modification. After a constant number
of iterations, our algorithm will stop at a hierarchy which
performs better than the original hierarchy.

7. FURTHER ANALYSIS
The experiments have shown that given data and a prede-

fined hierarchy, we can find a better taxonomy for accurate
classification. As we use a “wrapper” model: build a hierar-
chical model and evaluate it for each neighbor hierarchy, we
need to check its time complexity. Besides, we keep modify-
ing the hierarchy until no performance improvement on the
training data is observed, is it possible that the hierarchy
over-fits the data? Here, we provide further analysis and
discuss how the number of features affects the performance.

7.1 Time Complexity

Table 3: Soc Performance statistics
Fold Iterations Evaluations Operations Height

1 6 582 43 6
2 6 585 37 9
3 3 265 33 7
4 5 449 41 6
5 7 805 67 13
6 8 754 68 6
7 5 448 48 9
8 5 494 42 11
9 3 268 44 5
10 8 748 62 7
ave 5.6 539.8 48.5 7.9

Table 4: Kids Performance statistics
Fold Iterations Evaluations Operations Height

1 12 4244 217 13
2 9 3014 172 10
3 10 3483 224 13
4 8 2275 190 13
5 7 2379 159 12
6 12 4181 166 15
7 10 3640 230 16
8 9 3312 185 18
9 11 3733 215 12
10 9 3174 221 16
ave 9.7 3343.5 197.9 13.8

Though our algorithm exploits a kind of wrapper model
in search of a better hierarchy, the time complexity of al-
gorithm is still linear in terms of, the number of categories
and instances in the data. For näıve Bayes classifier, the
training time and testing time is linear to the number of
instances and dimensionality. For each category, we could
summarize the statistic of term given classes using just one
vector. Then, building a hierarchial model just costs O(Cod)
where C0 is the number of internal nodes in the hierarchy,
and d is the dimensionality. However, evaluation still costs
O(hnd) where h is the average height of the hierarchy and n
is the number of instances in the validation data. Therefore,
for our algorithm, the main computational cost is spent on
evaluating hierarchical models. Hence, the number of eval-
uations determines our time complexity.

In each iteration, we check each node in the hierarchy.
For each node, we can generate no more than 3 neighbors
as there are only three possible elementary operations. Let
c denote the number of nodes in the hierarchy, then a node
can never be checked more than c times in one iteration.
The worst case is that each time we update the nodes list
after checking a new node, we have to recheck the previous
checked nodes . Then, the worst time complexity is for one
iteration is O(c2hnd).

However, the bound above is pretty loose. As we take
top-down traversal of the tree and all the hierarchy changes
are local, the worst case can seldom happen based on a
semantic-based hierarchy. In reality, on average, a node will
be checked no more than twice in one iteration. As in Ta-
ble 3, the average number of evaluations of one iteration
is 539.8/5.6 = 96.39. The number of nodes in the original
hierarchy is 83, hence, each node will be checked roughly
96.39/83

.
= 1.16 < 2 times. Similarly, on Kids data (Ta-

ble 4), each node will be checked roughly 3343.5/(9.7∗299)
.
=

0.3

0.35

0.4

0.45

0.5

0.55

1 2 3 4 5 6 7

Iteration No.

M
a
c
r
o

 R
e
c
a
ll

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Fold 6

Fold 7

Fold 8

Fold 9

Fold 10

Figure 17: Over-fitting on Soc

0.25

0.27

0.29

0.31

0.33

0.35

0.37

0.39

1 2 3 4 5 6 7 8 9 10 11

Iteration No.

M
a
c
r
o

 R
e
c
a
ll

Fold 1

Fold 2

Fold 3

Fold 4

Fold 5

Fold 6

Fold 7

Fold 8

Fold 9

Fold 10

Figure 18: Over-fitting on Kids

1.15 < 2 times in one iteration. Hence, empirically, the time
of one iteration should be roughly O(2chnd) = O(chnd).
In practice, the number of iterations is bounded by a con-
stant(we use I to denote it). Hence, the total time complex-
ity of our algorithm is O(Ichnd) which is linear. Here, I is
the number of iterations, c is the number of nodes in the
hierarchy, h is the height of the hierarchy, n is the number
of instances, d is the dimensionality.

7.2 Robustness
As mentioned in the experiments part, we keep hierar-

chy modification until no classification improvement could
be observed on training data. However, the hierarchy might
over-fit the training data as the number of iterations in-
creases. We build hierarchical models on the training data
based on the hierarchy after each iteration and test them
on the testing data. We show the trend on both Soc and
Kids in Figures 17 and 18, respectively. Clearly, the per-
formance on the testing data does not necessarily improve
with the iteration number increase. For most of the folds,
the performance on the testing data remains unchanged or
goes down after 2 iterations. This tells us that over-fitting
might occur if we run our algorithm too many iterations.

Instead of stopping until no improvement on the training
data can be observed, we run our algorithm just two itera-
tions to obtain a robust hierarchy. Figure 19 compares the
performance of our algorithm running multiple iterations
and mere 2 iterations. On Soc, running our algorithm just 2
iterations results in a more robust hierarchy compared with
many iterations. On Kids, we also obtain a hierarchy as
good as the one obtained following the original algorithm.

500 1000 2000 5000 7500 10000
0.43

0.44

0.45

0.46

0.47

Feature Number

M
ac

ro
 R

ec
al

l

Soc Data

Multiple Iterations
2 Iterations

500 1000 2000 5000 7500 10000
0.3

0.35

0.4

0.45

Feature Number

M
ac

ro
 R

ec
al

l

Kids Data

Multiple Iterations
2 Iterations

Figure 19: Multiple vs. 2 Iterations

Moreover, the computational time is also reduced sharply.
As shown in Table 5, the majority of the hierarchy modifi-
cations (operations) is done after just 2 iterations. But the
average number of evaluations decreases significantly. As
argued in the previous section, the key issue to the time
complexity of our algorithm is the number of evaluations.
By reducing the number of evaluations, the computational
time is significantly reduced.

Table 5: Efficiency Comparison
Data Iterations Evaluations Operations

Soc Multiple 539.8 48.5
Soc 2 211.8 38.5
Kids Multiple 3343.5 197.9
Kids 2 784.9 136.3

7.3 Sensitivity to Number of Features
Feature selection can help improve classification efficiency,

reduce noise in the data, and help avoid over-fitting, and is
widely adopted in text classification [9, 24]. The number of
features selected can have an important impact on classifi-
cation accuracy. However, it is unclear about the impact
of the number of selected features on the quality of a hi-
erarchy. Hence, in our experiments, we selected a range of
feature numbers to observe the performance changes with
disparate settings. An interesting observation in the exper-
imental results is that the differences in performance of the
different hierarchies diminish with the increasing number of
selected features. When the number of selected features is
small (e.g., 500), a better hierarchy can significantly out-
performs a worse hierarchy. When the number of features
becomes large, performance differences reduce. This was
observed in both toy and real-world data. In other words,
the loss in accuracy in a bad hierarchy could be partially
compensated by selecting more features.

This is because the subcategories of a good hierarchy share
many features, but the subcategories of a bad one do not.
For a good hierarchy, a small set of features is often suffi-
cient to distinguish one category from another. When more
features are selected, they are either redundant or irrelevant,
causing potential performance deterioration. Since subcat-
egories of a bad hierarchy do not share many terms, the
increasing number of features can help better represent the
parent category. An important implication is that more fea-
tures should be selected for a hierarchy with lexically dis-

similar subcategories than one with lexically similar sub-
categories. Although the loss in accuracy for a bad hierar-
chy can be partially recovered by selecting more features, it
is clear that a large number of selected features results in
lower classification efficiency, which is an extremely impor-
tant performance metric for a content categorization service
for Internet service providers.

8. CONCLUSIONS
Hierarchical models are effective for classification when we

have a predefined semantically sound taxonomy. In this pa-
per, we suggest that a given taxonomy may not necessarily
lead to the best classification performance. By anatomiz-
ing some concrete examples, we illuminate why and how
we could improve a semantically sound hierarchy for clas-
sification. After formulating the hierarchy search problem,
we propose an effective data-driven approach to modify the
given hierarchy. Experiments on the real-world data show
that our data-driven algorithm can adapt a hierarchy to
achieve improved classification performance. In addition, we
also investigated the over-fitting problem associating with
the number of iterations and how to mitigate the problem
in effectively finding a robust hierarchy. The proposed ap-
proach is particularly applicable for an environment where a
taxonomy is relatively stable than the changes in text data;
in other words, this approach helps the taxonomy evolve by
learning from data as shown in our “Hurricane” application
in the introduction.

This paper is a starting point to adapt some prior hierar-
chy information according to the data. Much work remains
to be done along this direction. For example, a “wrapper”
model is used here, but a more efficient “filter” model can be
tried. It is noticed that the number of features selected at
each node can affect the performance and the structure of a
hierarchy. When the class distribution is imbalanced, which
is common in real-world applications, we should also pay at-
tention to the problem of feature selection in order to avoid
the bias associated with skewed class distribution [9, 18].
An effective criterion to select features can be explored in
combination with the hierarchy information in this regard.

9. ACKNOWLEDGMENTS
Lei Tang is partly supported by GPSA Research Grant of

Arizona State University.

10. REFERENCES
[1] America online inc. http://www.aol.com/.

[2] Charu C. Aggarwal, Stephen Gates, and Philip Yu.
On the merits of building categorization systems by
supervised clustering. In KDD, pages 352–356, 1999.

[3] Lijuan Cai and Thomas Hofmann. Hierarchical
document categorization with support vector
machines. In CIKM, pages 78–87, 2004.

[4] Soumen Chakrabarti, Byron Dom, Rakesh Agrawal,
and Prabhakar Raghavan. Scalable feature selection,
classification and signature generation for organizing
large text databases into hierarchical topic
taxonomies. The VLDB Journal, 7(3):163–178, 1998.

[5] Shui-Lung Chuang and Lee-Feng Chien. A practical
web-based approach to generating topic hierarchy for
text segments. In CIKM, pages 127–136, 2004.

[6] Ofer Dekel, Joseph Keshet, and Yoram Singer. Large
margin hierarchical classification. In ICML, pages
209–216, 2004.

[7] Inderjit S. Dhillon, James Fan, and Yuqiang Guan.
Efficient clustering of very large document collections.
In Data Mining for Scientific and Engineering
Applications. Kluwer Academic Publishers, 2001.

[8] Susan Dumais and Hao Chen. Hierarchical
classification of web content. In SIGIR, 2000.

[9] George Forman. An extensive empirical study of
feature selection metrics for text classification. J.
Mach. Learn. Res., 3:1289–1305, 2003.

[10] Daphne Koller and Mehran Sahami. Hierarchically
classifying documents using very few words. In ICML,
pages 170–178, 1997.

[11] Tao Li and Shenghuo Zhu. Hierarchical document
classification using automatically generated hierarchy.
In SDM, 2005.

[12] Tie-Yan Liu, Yiming Yang, Hao Wan, Hua-Jun Zeng,
Zheng Chen, and Wei-Ying Ma. Support vector
machines classification with a very large-scale
taxonomy. SIGKDD Explor. Newsl., 7(1):36–43, 2005.

[13] Andrew McCallum, Ronald Rosenfeld, Tom M.
Mitchell, and Andrew Y. Ng. Improving text
classification by shrinkage in a hierarchy of classes. In
ICML, pages 359–367, 1998.

[14] Kunal Punera, Suju Rajan, and Joydeep Ghosh.
Automatically learning document taxonomies for
hierarchical classification. In WWW: Special interest
tracks and posters of the 14th international conference
on World Wide Web, pages 1010–1011, 2005.

[15] Joho Rousu, Craig Saunders, Sandor Szedmak, and
John Shawe-Taylor. Learning hierarchical multi
category text classification models. In ICML, 2005.

[16] Miguel E. Ruiz and Padmini Srinivasan. Hierarchical
neural networks for text categorization (poster
abstract). In SIGIR, pages 281–282, 1999.

[17] Aixin Sun and Ee-Peng Lim. Hierarchical text
classification and evaluation. In ICDM, 2001.

[18] Lei Tang and Huan Liu. Bias analysis in text
classification for highly skewed data. In ICDM, 2005.

[19] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. Support vector
machine learning for interdependent and structured
output spaces. In ICML, pages 104-111, 2004.

[20] Ke Wang, Senqiang Zhou, and Shiang Chen Liew.
Building hierarchical classifiers using class proximity.
In VLDB, pages 363–374, 1999.

[21] Andreas S. Weigend, Erik D. Wiener, and Jan O.
Pedersen. Exploiting hierarchy in text categorization.
Inf. Retr., 1(3):193–216, 1999.

[22] Wahyu Wibowo and Hugh E. Williams. Strategies for
minimising errors in hierarchical web categorisation.
In CIKM, pages 525–531, 2002.

[23] Yiming Yang, Jian Zhang, and Bryan Kisiel. A
scalability analysis of classifiers in text categorization.
In SIGIR, pages 96–103, 2003.

[24] Lei Yu and Huan Liu. Toward integrating feature
selection algorithms for classification and clustering.
IEEE Transactions on Knowledge and Data
Engineering, 17(3):1–12, 2005.

