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A periodic boundary value problem with vanishing Green’s function
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Abstract

In this work, the authors consider the boundary value problem{
y′′

+ a(t)y = g(t) f (y), 0 ≤ t ≤ 2π,

y(0) = y(2π), y′(0) = y′(2π),

and establish the existence of nonnegative solutions in the case where the associated Green’s function may have zeros. The results
are illustrated with an example.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recently, Krasnosel’skii’s theorem of cone expansion/compression type has been used to study the existence of
positive solutions of periodic boundary value problems in several papers; see, for example, Atici and Guseinov [1],
Jiang et al. [4,5], O’Regan and Wang [7], Torres [8], Zhang and Wang [10], and the references contained therein. In
these papers, the major assumption is that their associated Green’s functions are of one sign. In Section 2 of this work,
we generalize the related results to the case where the associated Green’s functions have zeros. More specifically, we
study the existence of nonnegative solutions to the periodic boundary value problem{

y′′
+ a(t)y = g(t) f (y), 0 ≤ t ≤ 2π,

y(0) = y(2π), y′(0) = y′(2π),
(1.1)

without the assumption that the associated Green’s function is strictly positive, i.e., it only needs to be nonnegative.
One of the key features in our proof is that a new cone is defined in which to apply Krasnosel’skii’s fixed point
theorem. While we do not assume that the Green’s function G(t, s) for (1.1) is positive for all t and s, we do ask that

β = min
0≤s≤2π

∫ 2π

0
G(t, s)dt > 0. (1.2)

∗ Corresponding author.
E-mail addresses: john-graef@utc.edu (J.R. Graef), lingju-kong@utc.edu (L. Kong), wangh@asu.edu (H. Wang).

0893-9659/$ - see front matter c© 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.aml.2007.02.019

http://www.elsevier.com/locate/aml
mailto:john-graef@utc.edu
mailto:lingju-kong@utc.edu
mailto:wangh@asu.edu
http://dx.doi.org/10.1016/j.aml.2007.02.019


J.R. Graef et al. / Applied Mathematics Letters 21 (2008) 176–180 177

For example, consider the problem{
y′′

+ m2 y = g(t) f (y), 0 ≤ t ≤ 2π,

y(0) = y(2π), y′(0) = y′(2π),
(1.3)

where m > 0 is a constant. It is well known that if m 6= 1, 2, . . . , then the Green’s function for (1.3) is given by

G(t, s) =


sin m(t − s) + sin m(2π − t + s)

2m(1 − cos 2mπ)
, 0 ≤ s ≤ t ≤ 2π,

sin m(s − t) + sin m(2π − s + t)

2m(1 − cos 2mπ)
, 0 ≤ t ≤ s ≤ 2π.

Let

Ĝ(x) =
sin(mx) + sin m(2π − x)

2m(1 − cos 2mπ)
for x ∈ [0, 2π ].

Then, it is easy to check that Ĝ is increasing on [0, π], decreasing on [π, 2π ], and G(t, s) = Ĝ(|t − s|). Thus,

sin 2mπ

2m(1 − cos 2mπ)
= Ĝ(0) ≤ G(t, s) ≤ Ĝ(π) =

sin mπ

m(1 − cos 2mπ)

for s, t ∈ [0, 2π ]. Moreover, G(t, s) is positive on [0, 2π ] × [0, 2π ] for 0 < m < 1/2. When the Green’s function is
positive, we can always find its positive minimum A and maximum B. Define a cone as follows:{

u ∈ C[0, 2π ] : min
0≤t≤2π

u(t) ≥
A

B
‖u‖

}
.

Then, Krasnosel’skii’s fixed point theorem can be used to prove the existence and multiplicity of positive solutions
(see [1,4,5,7,8,10]). However, if m = 1/2, then the Green’s function is zero at t = s. The minimum value of the
Green’s function is zero and the above cone cannot be used to apply Krasnosel’skii’s theorem. However, (1.2) holds.

2. Existence results when Green’s functions have zeros

The assumptions to be used in this work are as follows:

(H1) f : [0, ∞) → [0, ∞) is continuous;
(H2) g : [0, 2π ] → [0, ∞) is continuous and η = mint∈[0,2π ] g(t) > 0;
(H3) f : [0, ∞) → [0, ∞) is convex and nondecreasing.

For convenience, we introduce the notation

f0 = lim
u→0

f (u)

u
and f∞ = lim

u→∞

f (u)

u
.

We now state our main results in this work. Analogous results for the Dirichlet/Neumann boundary value problems
were established in [2].

Theorem 2.1. Assume that (H1) and (H2) hold.

(a) If f0 = ∞ and f∞ = 0, then (1.1) has a nontrivial solution u(t) ≥ 0.
(b) If f0 = 0, f∞ = ∞, and (H3) holds, then (1.1) has a nontrivial solution u(t) ≥ 0.

To prove Theorem 2.1, we define a new function

f ∗(u) = max
0≤t≤u

{ f (t)}

and let f ∗

0 = limu→0 f ∗(u)/u and f ∗
∞ = limu→∞ f ∗(u)/u. The following two lemmas are needed in the proof of

Theorem 2.1.

Lemma 2.1 ([9]). Assume (H1) holds. Then f ∗

0 = f0 and f ∗
∞ = f∞.
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Lemma 2.2 ([3,6]). Let X be a Banach space and let K ⊂ X be a cone. Assume Ω1,Ω2 are bounded open subsets of
X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let

F : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either

(i) Fu 6≤ u for any u ∈ K ∩ ∂Ω1 and Fu 6≥ u for any u ∈ K ∩ ∂Ω2,

or
(ii) Fu 6≥ u for any u ∈ K ∩ ∂Ω1 and Fu 6≤ u for any u ∈ K ∩ ∂Ω2.

Then F has a fixed point in K ∩ (Ω2 \ Ω1).

Let X be the Banach space C[0, 2π ] endowed with the norm

‖u‖ = max
0≤t≤2π

|u(t)|.

Define the cone E in X by

E =

{
u ∈ X : u(t) ≥ 0 on [0, 2π ] and

∫ 2π

0
u(t)dt ≥

β

M
max

t∈[0,2π ]

u(t)

}
,

where β is defined by (1.2) and M = maxt,s∈[0,2π ] |G(t, s)|. For any r > 0, let

Ωr = {u ∈ E : ‖u‖ < r}.

Define the map T : E → X by

T u(t) =

∫ 2π

0
G(t, s)g(s) f (u(s))ds, 0 ≤ t ≤ 2π.

We claim that T : E → E . In fact, note that∫ 2π

0
T u(t)dt =

∫ 2π

0

∫ 2π

0
G(t, s)g(s) f (u(s))dsdt

=

∫ 2π

0
g(s) f (u(s))

∫ 2π

0
G(t, s)dtds.

Then, from (1.2), we see that∫ 2π

0
T u(t)dt ≥ β

∫ 2π

0
g(s) f (u(s))ds.

On the other hand,

T u(t) =

∫ 2π

0
G(t, s)g(s) f (u(s))ds ≤ M

∫ 2π

0
g(s) f (u(s))ds

for t ∈ [0, 1]. Thus,∫ 2π

0
T u(t)dt ≥

β

M
max

t∈[0,2π ]

T u(t),

i.e., T E → E .

Proof of Theorem 2.1. Part (a). Since f0 = ∞, we can choose r1 > 0 sufficiently small that

f (u) ≥ θu for u ≤ r1,

where θ satisfies β2ηθ/(2π M) > 1 with η defined in (H2). We now show that

T u 6≤ u for u ∈ ∂Ωr1 .
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In fact, if there exists u1 ∈ ∂Ωr1 such that T u1 ≤ u1, then, from (1.2) and the definition of η, we have

‖u1‖ ≥ ‖T u1‖ ≥
1

2π

∫ 2π

0
T u1(t)dt

=
1

2π

∫ 2π

0
g(s) f (u1(s))

∫ 2π

0
G(t, s)dtds

≥
1

2π
βη

∫ 2π

0
f (u1(s))ds ≥

1
2π

βηθ

∫ 2π

0
u1(s)ds

≥
β2ηθ

2π M
‖u1‖ > ‖u1‖,

which is a contradiction.
Since f∞ = 0, Lemma 2.1 implies limu→∞ f ∗(u)/u = 0. Thus, there exists r2 ∈ (r1, ∞) such that

f ∗(r2) <
1

2π M‖g‖
r2.

We next show that

T u 6≥ u for u ∈ ∂Ωr2 .

Now if there exists u2 ∈ ∂Ωr2 such that T u2 ≥ u2, then

r2 = ‖u2‖ ≤ ‖T u2‖ ≤ 2π M‖g‖ f ∗(r2) < r2,

which is a contradiction. Hence, from the first part of Lemma 2.2, T has a fixed point u ∈ (Ω2 \Ω1). Clearly, u(t) ≥ 0
is a nontrivial solution of (1.1).

Part (b). Since f∞ = ∞, we can choose r2 > 0 sufficiently large that

f

(
β

M
r2

)
≥

β

M
θr2,

where θ satisfies that β2ηθ/(2π M) > 1 with η defined in (H2).
We will now show that

T u 6≤ u for u ∈ ∂Ωr2 .

If there exists u2 ∈ ∂Ωr2 such that T u2 ≤ u2, then, from (1.2) and the definition of η, it is clear that

2π‖T u2‖ ≥

∫ 2π

0
T u2(t)dt

=

∫ 2π

0
g(s) f (u2(s))

∫ 2π

0
G(t, s)dtds

≥ βη

∫ 2π

0
f (u2(s))ds.

Hence, in view of (H3) and Jensen’s Inequality, we have

2π‖T u2‖ ≥ βη f

(∫ 2π

0
u2(s)ds

)

≥ βη f

(
β

M
‖u2‖

)
.

Thus,

r2 = ‖u2‖ ≥ ‖T u2‖ ≥
βη

2π
f

(
β

M
r2

)
≥

β2ηθ

2π M
r2 > r2,

which is a contradiction.
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Since f0 = 0, by Lemma 2.1, limu→0 f ∗(u)/u = 0. Thus, there exists r1 ∈ (0, r2) such that

f ∗(r1) <
1

2π M‖g‖
r1.

To show that

T u 6≥ u for u ∈ ∂Ωr1 ,

suppose there exists u1 ∈ ∂Ωr1 such that T u1 ≥ u1. Then,

r1 = ‖u1‖ ≤ ‖T u1‖ ≤ 2π M‖g‖ f ∗(r1) < r1,

which is a contradiction. Hence, from the second part of Lemma 2.2, T has a fixed point u ∈ (Ω2 \ Ω1). Clearly,
u(t) ≥ 0 is a nontrivial solution of (1.1). This completes the proof of the theorem. �

We conclude this work with the following example.

Example 2.1. Consider the boundary value problem (1.3) where 0 < m ≤ 1/2, g(t) is any positive continuous
function on [0, 2π ], and f (u) = uα with α ∈ (0, 1) ∪ (1, ∞). We claim that (1.3) has a nontrivial solution u(t) ≥ 0.

In this case,

β =
2 sin2 mπ

m2(1 − cos 2mπ)
,

and so (1.2) holds. With the above functions g and f , we see that (H1) and (H2) hold, and, in addition, (H3) holds if
α ∈ (1, ∞). Moreover, it is easy to see that

f0 = ∞ and f∞ = 0 if α ∈ (0, 1)

and

f0 = 0 and f∞ = ∞ if α ∈ (1, ∞).

Then the conclusion follows from Theorem 2.1(a) if α ∈ (0, 1) and Theorem 2.1(b) if α ∈ (1, ∞).

Remark 2.1. As we noted earlier, if m = 1/2, the Green’s function G(t, s) for (1.3) is zero at t = s. Now the papers
[1,7,8,10] all consider the same type of boundary conditions as the ones in this work, but none of those results apply
since they all require that the Green’s function be strictly positive.
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