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Abstract

We prove that appropriate combinations of superlinearity and sublinearitypfvith respect to
® at zero and infinity guarantee the existence, multiplicity, and nonexistence of positive solutions to
boundary value problems for thedimensional systeni®(u’))’ + Ah()f(u)=0, 0 <t < 1. The
vector-valued functiond is defined by®(u') = (o)), ..., (uy)), whereu = (uy, ..., un) andg
covers the two important case&:’ ) = u’ ande (') = |u'|”~2u’, p > 1. Our methods employ fixed
point theorems in a cone.
0 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In this paper we consider the existence, multiplicity, and nonexistence of positive solu-
tions for the system

(®W)) +rh(Hf(u) =0, 0<r<1, (1.1)

with one of the following three sets of the boundary conditions:

u0)=u( =0, (1.2a)
u'(0) =u(l) =0, (1.2b)
u(0) =u'(1) =0, (1.2c)
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whereu = (u1, ..., u,), ®WU') = (p)), ..., ¢y)), h(t) = diaghi(t), ..., h, ()], and
fu) = (fYur,...,up), ..., f"(u1,...,u,)). We understand that, ®, f(u) are (column)
n-dimensional vector-valued functions. (1.1) means that

()) + rha(t) frua, ...,uy) =0, O0<t<1,
(1.3)
(@)Y 4+ rhy(t) f*(u1, ..., uy) =0, O<r<1.

By a solutionu to (1.1)—(1.2) we understand a vector-valued functiecnC([0, 1], R")
with ®(u’) € C1((0, 1), R"), which satisfies (1.1) fare (0, 1) and one of (1.2). A solution
u@®) = (u1(t), ..., u,(2)) is positive if, foreaci = 1, ..., n, u;(¢) > Oforallz € (0, 1) and
there is at least one nontrivial componentiofn fact, we shall show that such a nontrivial
component ofi is positive on(0, 1).

Whenn =1, (1.1) reduces to the scalar equation

(o)) +rh(t) f) =0, 0<t<1. (1.4)

The investigation of the existence of positive solutions of boundary value problems
for (1.4) originates from a variety of different areas of applied mathematics and physics
and has received growing attention in connection with positive radial solutions of partial
differential equations in annular regions. For the classical case wieteé = u’, several
results are available in the literature. Bandle et al. [2] and Lin [11] established the existence
of positive solutions of (1.4) with (1.2} = 1) under the assumption thgtis superlinear,

i.e., fo=limu_o(fw)/u) =0 and fs = liM,_ e (f () /u) = co.

On the other hand, we [13] obtained the existence of positive solutions of (1.4) with (1.2)
(n=1, ¢(u’) = u’') under the assumption thdtis sublinear, i.e.,fo = co and fo, = 0.

For the case(u') = |u'|P~2u’, p > 1, i.e., the one-dimensionatLaplacian, we refer to
Ben-Naoum and De Coster [3], Manasevich and Mawhin [12], Wang [16], and references
therein for some additional details. Related results for scalar equations may also be found
in[1,5,8]. For the case(u’) = u’ andn = 2, Dunninger and Wang [6,7] obtained existence
and multiplicity results.

In recent papers [14,15], we introduced a new and general assumption (see Al) on the
functiong(u’), which covers the two important case&:’) = u’ ande(u’) = [u’|P~%u/,

p > 1. Under such an assumption, we were able to show that appropriate combinations
of superlinearity and sublinearity gf(ux) with respect tap at zero and infinity guarantee

the existence, multiplicity, and nonexistence of positive solutions of (1.4). Specifically, we
proved that results similar to Theorems 1.1 and 1.2 hold for (1.4) with (2.2)1).

The main purpose of this paper is to extend the above results te-timensional
system (1.1). For this purpose, we introduce some new notation in 3.8hdf, to
characterize superlinearity and sublinearity with respeet for (1.1). They are natural
extensions offy and f, defined above for the scalar equation (1.4). Based on the new
notation, we obtain criteria of determining the number of positive solutions of (1.1)—(1.2).
Our main results (Theorems 1.1 and 1.2) clearly exhibit the structure of the set of positive
solutions of (1.1)—(1.2). These results are new even for the ¢agés=u’ ande(u’) =
lu'|P=2u’, p > 1. Our arguments are closely related to those of [13]. In [13] we used a fixed
point theorem in a cone due to Krasnoselskii, which is essentially the same as Lemma 2.1.
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Let

R = (—00, 00), R+=[0,00), and R1=R+X---XR+.
[N
n

Also, foru = (ug,...,u,) € R, let ull = >"7_4 |u;|. We make the following assump-
tions:

(Al) ¢ is an odd, increasing homeomorphisnfobntoR and there exist two increasing
homeomorphismg; andir2 of (0, co) onto (0, co) such that
Y1(0)ex) < p(ox) < yY2(0)e(x) forallo andx > 0.

(A2) fi:R% — Ry is continuousj =1,...,n.

(A3) h;(1):[0,1] — R, is continuous and;(z) % 0 on any subinterval of0, 1], i =
1,...,n.

(A4) fi(uy,...,up)>0foru=(ug,...,u,) eRY} and|lu| >0,i=1,...,n.

In order to state our results we introduce the new notation

S L () : i .

L — |im , ' = lim , ueR, i=1,...,n,

0= W0 pqun” 1™ T e o(Iul) + ! "
n n

fo=Y fo. =) fL. (1.5)
i=1 i=1

Our main results are:
Theorem 1.1. AssumégAl1)—(A3) hold.

(a) If fo=0andfs = oo, then for allx > 0 (1.1)—(1.2has a positive solution.
(b) If fo = o0 andfs =0, then for allx > 0 (1.1)—(1.2has a positive solution.

Theorem 1.2. AssumégAl)—(A4) hold.

(a) If fo=0or fu =0, then there existsp > 0 such that for allx > 1 (1.1)—(1.2)has a
positive solution.

(b) If fo = 0o or fo, = 00, then there existsg > 0 such that for all0 < A < Ag (1.1)-(1.2)
has a positive solution.

(c) If fo =fx =0, then there existdp > 0 such that for allx > A¢ (1.1)—(1.2)has two
positive solutions.

(d) If fo =fo = 00, then there exist > 0 such that for all0 < A < 1p (1.1)—(1.2)has
two positive solutions.

(e) If fo < oo andfy, < oo, then there existsp > 0 such thatforalld < A < 1g (1.1)—(1.2)
has no positive solution.

() If fo > 0 andf, > 0, then there existsg > 0 such that for allx > A (1.1)—(1.2)has
no positive solution.
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2. Preliminaries

The following well-known result of the fixed point index is crucial in our arguments.
Lemma 2.1 [4,9,10]. Let E be a Banach space anl a cone inE. For r > 0, define
K, ={u € K: ||x|| < r}. Assume that": K, — K is completely continuous such that

Tx#xforxedK, ={uek: ||x|=r}.

(i) If |Tx]| = |x|| forx € 0K, then

i(T,K,, K)=0.
@ii) f|Tx| < x| forx € 0K,, then
i(T,K,,K)=1.

In order to apply Lemma 2.1 to (1.1)—(1.2), létbe the Banach space
C[0,1] x --- x C[0, 1]

n
and, foru= (uy, ..., u,) € X,

n

lul =" sup |u;(1)].

i=1 t€[0,1]

Foru e X orR”, |lu]| denotes the norm af in X or R’} , respectively.
DefineK to be a cone irX by

K:{u:(ul,...,un)eX: u;(t)>0,re[0,1],i=1,...,n, and

n

. 1

min i(t) = =|ull ¢ .

1/4<t<3/4_2;”’() L ||}
1=

Also, define, for- a positive numbelrs2, by
2,={uek: ul <r}.
Note thatd 2, = {u € K: |ju]| =r}. '
LetT,:K — X be a map with componentgy, ..., 7). We defineT}, i =1,...,n,
by
Joo M7 Mhi(0) fru(r) dTyds, 0<t <oy,
Jre X2 ahi (@) fiu)dryds, o <t <1,

whereo; = 0 for (1.1), (1.2b) and; = 1 for (1.1), (1.2c). For (1.1), (1.2a); € (0, 1) isa
solution of the equation

Olu@t)=0, 0<r<1, (2.2)
where the ma@’ : K — C[0, 1] is defined by

Tiu(r) = : (2.1)
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t t
@iu(t)=/<p_l</khi(r)fi (u(t))dt) ds
0 K

1 s

_/(p—1</khi(t)fi(u(r))dr> ds, 0<r<L (2.3)

t t

By virtue of Lemma 2.2, the operatdy, is well defined.

Lemma 2.2. AssumgA1)—(A3) hold. Then, forany e K andi =1,...,n, @'u(t) =0
has at least one solution if0, 1). In addition, if(ril < Ul_z €(0,1),i=1,...,n, are two
solutions of®u(r) = 0, thenh; (1) f (u(t)) =0 for ¢ € [0}, 0] and anyo; € [0}, 02] is
also a solution of®’u(r) = 0. Furthermore,Tj\u(t), i=1,...,n, is independent of the
choice ofo; € [0}, 52].

Proof. Let o (t) = Ah; (1) fi(u(z)). If & =0 on[0, 1], we may choose any; € (0, 1).
Let us assume that there ise (0, 1) such thate’(z) > 0. Therefore®u(0) < 0 and
®'u(l) > 0. It follows from the continuity of@’u(r) that @’u(r) = 0 has at least one
solution in (0, 1). Moreover, it is not difficult to check that whil ¢=2(/! & (r)d7) ds
is nondecreasing[tlgofl([ts o' (t)dt)ds is nonincreasing. Therefor&)!u(r) is nonde-
creasing function o0, 1].

If o} < 2 € (0, 1) are two solutions 0B’ u(t) = 0, we consider

5.2 5.2 5.2 0'.2 U.l 0-2
/sol(/a"(r)dr> ds=/<o1</a"(r>dr) dS—/<p1</ai(t)dr> ds
il $ 0 s 0 s
o? o? ol ol
</<ﬂl</(¥i(f)df) ds—/(pl</oti(t)dr>ds.
0 s 0 s

Now, because ob’u(s}) = ®'u(c?) = 0, we have

o? U'l-2

; 1 s 1 K
/(pl(/ai(f)df> ds</¢l</ai(7:)d‘r> ds—/(pl</01i(l')d‘r> ds
1 s 2 o2 (ril

1
i i i oj

(p_l</oci (‘L’)dt) ds <0,

1 1
i 9j

N
0. !
—

which implies that () =0 on[o}, 02]. Leto; € [0}, 0?] and observe that
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) oi Uil ail
/(p_l</ai(t)dr> ds=/<p_1</ai(r)dt) ds
0 s 0 s
1 s 1 s
Z/fﬂ_l(/ai(f)dt)ds:/<p‘1</ai(r)dt)ds.
ol ol i 0

This yields thab; is a solution of®u(r) = 0. Hence, (2.1) implies
1 .
Joo X(fT e (r)dr)ds, O<t<ol,
1 1.
Jo oM @l () dryds, ot <t<a;,

Tum=4" " 0 ,
fal_zfp (fol_zoz (r)dr)ds, o;<t<of,

(2.4)

[le et @dods,  of<i<1,

1

which is independentaf;,. O

Lemma 2.3. AssumgALl) holds. Letu andv € C[0, 1] with u > 0 and v < 0 satisfying
(p")) =v. Then

u() zmin{r,1—1t} sup u(r) forre]l0,1].
t€[0,1]

In particular, ming 4, <3/4u(t) = (1/4) SUR¢(0,1) U (1)-

Proof. Sinceg(u’) is nonincreasing angd—1 is increasing, it follows that’ is nonincreas-
ing. Hence, for X<t <1 <1,

t
u(t) — u(to) =/u/(S)ds > (t — to)u' (1)
fo
and
1
u(ry) —u(t) = / W' (s)ds < (11— Du' (1),
t
from which we have
(t —to)u(r1) + (11 — t)u(to)
1—1o
Considering the above inequality & o] and[o, 1], we obtain

u(t) =

u(t) >t sup u(t) forre[0,0],
t€[0,1]
u(t) > A —1t) sup u(r) fortelo,1],
t€[0,1]
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whereo € [0, 1] is such thati (o) = SURq 1% (7). Hence, we have

u(t) >min{r,1—1t} sup u(t) forre][O,1]. O
te[0,1]

We remark that, according to Lemma 2.3, any nontrivial component of non-negative
solutions of (1.1)—(1.2) is positive a0, 1).

Lemma 2.4. AssuméA1)—(A3) hold. Then,foi = 1,...,n, ®': K — C[0, 1] is compact
and continuous.

Proof. Let R > 0 and define

M = 1+A[ sup hi(t)][sup{fi(u): ueR’, |ul <R}]>0
t€[0,1]

andCi, = SURc(0,u1i ¢~ 1(s) > 0. We now show tha®’: K — C[0, 1] is compact. Let
(Un)men be a bounded sequenceknand letR > 0 be such thaffu,, || < R for all m e N.

Setv, = @'u,,. Thus|vi ()| < 2C!, t € [0, 1]. In other words,(v})),cn is uniformly
bounded inC[0, 1]. We next show the equicontinuity @b, ),,cn. Again, letal, (t) =

Mhi () f1 (U (7). For anye > 0, from the continuity ofp~1 on [0, MZ], it follows that
there exists &1 > 0 such thatp~1(t1) — ¢ 1(12)| < /4 for everyry, t, € [0, M}] and
|t1 — t2] < 81. Thus, if 1,72 € [0, 1] and |ty — 2] < § = min{e/(4C%), 81/ MY}, we have
(without loss of generality assume that< )

12 15
/<p1</a£n(r)dt) ds

1 s

|vh, (t2) — vh, (1) | <

1 173 I
+ /|:g01</a,’;1(t)dr> ds—<pl</a,’;1(r)dt)i|ds
0 s s
t2 s
+ /(p_1</a,’;1(t)dr> ds
f "
1 s s
+ /|:(pl</a,’;1(t)dr> ds—<pl</a,’;1(r)dt)i|ds
12 1 2

: &
< 2CRltr — 11|+ > <e.

This shows that(v,"ﬂ)meN is equicontinuous on0, 1]. Therefore, it follows from the
Arzela—Ascoli theorem that there exist a functiore C[0, 1] and a subsequence of
(v,"ﬂ)meN converging uniformly taw on[O0, 1].

Finally, we prove the continuity a’. Let (u,,).cn be any sequence converging &n
tou e K andR > 0 be such thaju,, || < R for all m € N. Note thatp—1 is continuous on
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on [0, M;}] and f!(u) is continuous on the closed dete R : |ull < R}. Itis not hard to
see that the dominated convergence theorem guarantees that

lim ©@'u, () =O'u®) (2.5)
m—0o0

for eachr € [0, 1]. Moreover, the compactness 6f implies that®'u,,(z) converges
uniformly to ®@u(z) on [0, 1]. Suppose this is false. Then there exist> 0 and a
subsequenc@l, ;) jen Of (Un)men Such that

SUp [@'un; (1) — O'u(r)| >e0, jeN. (2.6)
t€[0,1]

Now, it follows from the compactness 6f' that there exists a subsequence{w,xj)jeN
(withoutloss of generality assume that the subsequemueljsjeN) such that®’ U ) jeN
converges uniformly tag € C[0, 1]. Thus, from (2.6), we easily see that

sup |yo(t) — O'u(r)| > «o. 2.7)
t€[0,1]

On the other hand, from the pointwise convergence (2.5) we obtain
Yo(t) = ©'u(r), 1€[0,1].

This is a contradiction to (2.7). Therefo®& is continuous. O

Lemma 2.5. Assum&Al1)—(A3) hold. ThenT,(K) C K andT, : K — K is compact and
continuous.

Proof. Lemma 2.3 implies thatT; (K) ¢ K. We now show thafT, is compact. Let
(Un)men be a bounded sequenceknand letR > 0 be such thafu,,|| < R forall m € N.
Hence by the definition of ,, we have, foi =1, ..., n,

D @27 Mhi () flUn () dT),  0<i<ay,
(71)L Um) (t) = -1 t i
=@ [y, Mi (D) f1(Un (1)) dT), 01 <t <1,

whereo; may be dependent om,,. Then it is easy to see that botfi,u,)..y and
((Taum) )men are uniformly bounded sequences. It follows from the Arzela—Ascoli
theorem that there exists\vac K and a subsequence ®f u,, converging uniformly to
vonl0,1].

It remains to show the continuity of,. Let us take a sequena@,,),cy in K
converging uniformly on[0,1] to u € K and fixi, i = 1,...,n. Again, leto’(r) =
Mhi () f1(u(z)) andel (t) = Ahi(T) f1(Un (7). We know that, for alu € K, o; in (2.1)
is 0 or 1 for (1.1), (1.2b) or (1.1), (1.2c), respectively. Clearly, for (1.1), (1.2b) and (1.1),
(1.2¢), the dominated convergence theorem and the compactndss gfarantee that
T, U, () converges uniformly td,u(z) on [0, 1] in a similar manner as in Lemma 2.4.
We now consider (1.1), (1.2a). Lef" ando* be zeros of®'u,, (t) = 0 and®'u(r) = 0
on (0, 1), respectively. Thus, it follows from Lemma 2.4 that

lim ©'u(s/") =0. (2.8)

m—00
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Furthermore, it is easy to see that(if,mj)jeN is a subsequence @&,"),,cn such that
lim; e crl.mj = crio, then@iu(crio) = 0. Now let us consider the following two cases:

(i) ®'u(r) =0 has only one zere; on (0, 1);
(i) ®'u(r) =0 has at least two zeros @8, 1).

For case (i), we have ligy. o 0/" = o;*. Therefore, the dominated convergence theorem
and the compactness©f guarantee that, u,, () converges uniformly td , u(z) on|[O0, 1]
in a similar manner as in Lemma 2.4.

We consider case (i) in the remaining part of the proof. By Lemma 2.2, it is easy to
see that there exigt! < g2 € [0, 1] such that@'u(r) # 0 for ¢ € [0, B}) U (82, 1] and
O'u(t) =0 on[p}, B2]. Thena! (r) =0 on[BL, B2]. Thus(o/")men is divided into three
possible subsequences

1

(o; ])jeN c [0.57). (o ])jeN c [ 7], and (o J)jeN c (B7.1].

It is possible that some of the three subsequences are finite or empty. At least one of the
three subsequences is infinite. In what follows, we will show that for any fixefD, 1],

n

jILmoo T} Uy (1) = Tyu() if (o, '),y isinfinite, n=1,2.3.

Thus for any fixed € [0, 11, lim,,—o0 T} Uy (t) = T} u(t). Again, the compactness
guarantees thatj\um(t) converges uniformly td’iu(r) on [0, 1], and thenr, is continu-
ous.

We now turn to the pointwise convergence?génm (t) for the three subsequences. For
simplicity (without loss of generality), we discués™),cn instead of the notation for its
three subsequences.

If (6)men C [0, BY), then lim, .o 0/ = B. Suppose this is false. Then there exist
o0 € [0,}) and a subsequend®;’) ey Of (0/")men such that iMoo, ' = o0
Therefore, we have thaff)iu(al.o) = 0, which is a contradiction. By the same argument,
we have that if(c/")men C (82, 1], then lim,—.o 0" = B2. Note that bothg! and 2
are zeros o@'u(r) = 0 on (0, 1). As for case (i), the dominated convergence theorem
implies thatT? u,, (1) converges td u(t) on [0, 1] for the two case$o,")uen C [0, B
and (o) men C (B2, 11.

If (6™)men C [BL, B2, (2.4) implies that, for any",

S (" i (r)dT)ds, 0<rt<Bl,
Jeo X ol (vydryds, teBLBD, 1 <o,
_/;l(p_l(f(fim o (v)dr)ds, teBLpA), t>a",

[reT i @dnyds, pE<i<L.

Tiu(t) = (2.9)
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On the other hand, sineg” € [8], B51, m € N, we have

Joo ([ dl (vydryds, 0<t< B,
Joo X7 aly(vydryds, te B BD), <o,
SR i dly(mydryds, 1€ (B D). 1> o,

[l o e (@ydryds, <1<,

Tiuy (1) = (2.10)

Consequently, the dominated convergence theorem implies thaiulggﬂ" Uy (t) =
Tju(t) for ¢ € [0, 1]. Thus our proof is complete.0
Now it is not difficult to show that (1.1)—(1.2) is equivalent to the fixed point equation
Tu=u Iink.

Lemma 2.6. AssumégA1l) holds. Then for alb, x € (0, co)

¥y H(0)x <9 Hop(x) < vy Ho)x.
Proof. Sinceo = Y1 (Y1 (0)) = Y2(¥; 1 (0)) andp(p Lo p(x))) = op(x), it follows
that

Y2 (¥5 () e) = p(¢ Hop))) = v (v 1))
On the other hand, we have by (A1) that

Y1(¥1H@))e@) < (vy Ho)x) and Ya(¥;(0))e) = o(v5 Ho)x).
Hencep (¥, 2(0)x) < o9~ o9(x))) < o7 (0)x). Thus, we obtain that; 1 (0)x <
o Hop() <Y Ho)x. O

Let
t t 3/4 s
y,-(t)=%|: /w21</h[(t)dr>ds+/w21</h,~(r)dt)dsi|, i=1...,n,
1/4 s t t
wheret € [1/4, 3/4]. It follows from (A1)—(A3) that

. 1 3
F:mln{yi(t)i Zgrgz, i:l,...,n} > 0.

Lemma 2.7. AssumgA1)—(A3) hold. Letu = (ug, ..., uy) € K andn > 0. If there exists
a componeny’ of f such that

fiu®) = w(ném(ﬂ) fors e [% ﬂ
then
ITaull = vy o) Molull.
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Proof. Note, from the definition ofT,u, that 7, u(o;) is the maximum value of;u
on [0, 1]. If o; € [1/4, 3/4], we have

ITaull > sup |Tiu@)|

t€[0,1]
> %[ /<p—1<f)\h,-(r)f"(u(r))dr> ds
1/4 s
3/4 s
+/¢1</Ah,~(r)fi(u(r))dr> ds]
> %[ f¢—1<th,-(r)so (an(r)) dr) ds
1/4 5 i=1
3/4 s )
+/<p‘1</khi(f)¢<n2ui(t)> dr) ds},
a; a; i:]'

and in view of Lemma 2.3 and condition (A1), we find that

o

1 7
ITrull > §|: /‘Pl(/lﬂz(lﬂzl()»))hi(r)(p(%HUH)d‘r) ds

1/4
3/4 s

+/<ﬂl(/wz(wil(k))hi(TW(%IIUII)df) dS]

O

> %[ fgo—l(fhi(r>drgo<x/f2‘1(x)%||u||)> ds

1/4 s
3/4 s
+/go‘l(/h,-(r)dw(wz1(A)%||u||)>ds}.

Now, because of Lemma 2.6, we have

aj 3/4

_1 i s
IToul > W[ / 1//2_1</h,~(t)dr> ds + / 1//2_1</h,-(r)dt) ds:|

1/4 s

>y Y0 Myl
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Foro; > 3/4, it is easy to see that
3/4 3/4
|7iu] > / (pl< / Ahi () £ (u(r)) dr) ds.
1/4 s
On the other hand, we have
3/4 5

. . 1
[T ul >/<p_l</kh[(t)f’(u(r))dr> ds ifoi < 7.
1/4 1/4
Therefore, similar arguments show that, u| > wgl(A)Fn||u|| if o; >3/4 0ro; <
1/4. O
Foreach =1, ..., n, define a new functimf" )Ry — Ry by
fi) =max{ fi(u): ueR" and|ul| <t}.

Note that/] = lim,_.o(f (t)/¢(t)) and fi, = im0 (f (1) /@ (1)).
Lemma 2.8. AssuméA1)—(A2) hold. Thenfi = f¢ and fi, = fi,i=1,...,n.

Proof. It is easy to see th@% = fé- For the second part, we consider the following two
cases: (a)f'(u) is bounded and (by’(u) is unbounded. For case (a), it follows, from
lim; o @(t) = 00, that i, = 0= f.,. For case (b), for an§ > O, letM' = f' () and

Ny =inf{llull: ueRY, flul =8, f(u)=>M'} >3,
then

max{ £ (u): ull <N}, ue R} =M' =max{ f (u): |lul =N}, ueR:}.
Thus, for anys > 0, there existsV; > § such that

fiy=max{ fi(u: Ni < |lul <r, ueR™} fors> Nj.
Now, suppose that’, < oo. In other words, for any > 0, there is$ > 0 such that
[
e(lulD

Thus, fort > NI, there existus, uz € R such that|ui|| = ¢, r > [luz|| > Ni, and
fi(uz) = fi(1). Therefore,

fluy _ i@ [l fiw)

fi—e< < flo+e forueRL, |lul>3. (2.11)

< = < . (2.12)
edlual) — @@) p@)  e(uzl)
(2.11) and (2.12) yield that
féo—e<fl(t)<f;o+e for¢ > Nj. (2.13)
@)

Hencef! = fi . Similarly, we can show thatl, = fi if fi, =oco. O
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Lemma 2.9. AssumdA1)—(A3) hold and letr > 0. If there exitss > 0 such that
i <yn@e@r), i=1...n,

then
IToull < ¥y t)eCllull forueds,.

where the constard = Y7, t/fl_l(folhi(f) dr).

Proof. From the definition off}, for u € 9£2,, we have
0 1

ITaull=)" suri]lT;u(r)\ < Z¢‘1< / hi () f! (u(r))dr)
i=1

i:l’e[o’ 5

1 n 1

< Zgol( / hi(t)dT 2 [’ (r)) < Zgol( / hi(t)dr wl(e)go(r))
i=1 i=1

0 0
Note thath, = wl(t/fl’l(k)). Then (Al) and Lemma 2.6 imply that

1

n n 1
IToull < Zgo—l( / hi(r)dT go(wl‘l(x)sr)) <Yy tery wf( f hi(T) dr)
i=1 0

i=1 0
=y tWeClull. O

The following two lemmas are weak forms of Lemmas 2.7 and 2.9.

Lemma 2.10. Assumd&Al)—(A4) hold. Ifu € 482,, r > 0, then
IToull = 4y, )Mo~ t0hy),

wherer, = min{ f/(u): ue R% andr/4< |lul| <r,i=1,...,n} >0,

Proof. Since f; (u(t)) > i, = ¢(¢~1(m,)) for t € [1/4,3/4], i =1,...,n, itis easy to
see that this lemma can be shown in a similar manner as in Lemma@2.7.

Lemma 2.11. Assumd&Al)—(A4) hold. Ifu € 382, r > 0O, then
IToull < vyt Ve (M) C,

where M, = max f'(u): ueR™ and|ju| <r,i=1,...,n} > 0andC is the positive
constant defined in Lemn#z9.

Proof. Since f; (U(t)) < M, = (¢~ 1(M,)) for t € [0,1],i = 1,...,n, it is easy to see
that this lemma can be shown in a similar manner as in Lemma 219.
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3. Proof of Theorem 1.1

(a) fo = 0 implies thatfé' =0,i=1,...,n. It follows from Lemma 2.8 tha;f(’)' =0,
i =1,...,n. Therefore, we can choose > 0 so thatfi (r1) < y1(e)e(r1), i =1,...,n,
where the constant> 0 satisfies

Y teC <1,
andC is the positive constant defined in Lemma 2.9. We have by Lemma 2.9 that
IThull < 1,0171()»)8éllull <|lull forueds,.

Now, sincef, = 0o, there exists a componeyit of f such thatf!, = co. Therefore, there
is H > 0 such that

FHW) = yame(llull)
foru= (us,...,u,) € R% and|u|| > H, wheren > 0 is chosen so that
v tooyrn > 1.

Letrp = max2r, 4H). If U= (u1, ..., u,) € 052,,, then
n

min_ > (t)>1||u|| L

ui(t) > - =-r>H,

1/4<i<3/4 ' 4 42
1=

which implies that
fiu@) = I/fZ(n)(ﬂ(iMi(f)> > qo(n iu;-(t)) fort e [% i—i]
i=1 i=1
It follows from Lemma 2.7 that
ITull > 1ﬁz_l()»)l“nllull > |lull foruedg,.
By Lemma 2.1,
i(Ty,2,,K)=1 and i(T;, 2, K)=0.
It follows from the additivity of the fixed point index that
i(Ty, 2\ 2,1, K)=—1.

Thus,i(T;, 2,, \ 2,,, K) # 0, which implies thafl;, has a fixed pointi € £2,, \ £2,, by
the existence property of the fixed point index. The fixed poiats2,, \ 2, is the desired
positive solution of (1.1)—(1.2).

(b) If fo = oo, there exists a componelfit such thatf] = co. Therefore, there is an
r1 > 0 such that

i) = yame(llull)

foru= (u1,...,u,) € R} and|u| <r1, wheren > 0 is chosen so that

v toyrn > 1.
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If u=(uq,...,un) €982,, then
) n n
ﬁwm)>wmw(§)mn>>¢0§:mm> for 7 € [0, 1.
i=1 i=1
Lemma 2.7 implies that
ITull > 1ﬁz_l()»)l“nllull > |lull forueas2,.

We now determines2,,. foo = 0 implies thatf(;'o =0,i=1,...,n. It follows from
Lemma 2.8 thayfl, =0,i =1,...,n. Therefore there is arp > 2r1 such that

flr <ya@e(r2), i=1,...n,
where the constant> 0 satisfies
YrteC <1,
andC is the positive constant defined in Lemma 2.9. Thus, we have by Lemma 2.9 that
IToull < 1ﬁl_l()»)e?(t“llull <|lull foruedg,.
By Lemma 2.1,
i(T),2,,.K)=0 and i(T;,2,,,K)=1

It follows from the additivity_of the fixed point index tha{T,, £2,, \ .(_2,1, K)=1.Thus,
T, has a fixed pointinf2,, \ §2,,, which is the desired positive solution of (1.1)—(1.2)a

4. Proof of Theorem 1.2

(a) Fix a number; > 0. Lemma 2.10 implies that there exigtis> 0 such that

ITrull > [ull forueds2,, x> Ao.

If fo=0,thenfj=0,i=1,...,n. Itfollows from Lemma 2.8 that
fé:O, i=1,...,n.

Therefore, we can chooser; < r1 so that
flo) <o), i=1....n,

where the constant> 0 satisfies
Yt e <1,

andC is the positive constant defined in Lemma 2.9. We have by Lemma 2.9 that
ITAull < ¥t eClull < flull foru e 352,.

If foo = 0, thenfi =0,i =1,...,n. Itfollows from Lemma 2.8 thaf’, =0,i =1,....n.
Therefore there is arg > 2r1 such that

flirs) <yn(e)ers), i=1,....n,
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where the constant> 0 satisfies
v teC <1,

andC is the positive constant defined in Lemma 2.9. Thus, we have by Lemma 2.9 that
ITaull < 1,D{l(?»)eéllull <|lull forue ds2,.

It follows from Lemma 2.1 that
i(Ty, $2,,K)=0, i(Ty, $2,,,K)=1, and i(Ty, 2, K)=1

Thusi (T, £2,, \ £2r,, K) = —1 andi(Ty, 2, \ 2,,, K) = 1. Hence[T; has a fixed point
in £2,, \ £, or £, \ £,, according tofo = 0 or fo, = 0, respectively. Consequently,
(1.1)—(2.2) has a positive solution far> 1.

(b) Fix a numbery > 0. Lemma 2.11 implies that there exigts> 0 such that

ITaull <llull forueag2,,, 0<i< Ao

If fo = oo, there exists a componeyit of f such thatfé = oo. Therefore, there is a positive
numberry < r1 such that

SH) = y2me(llul)
foru=(ua,...,u,) e R’} and|jul| <rz, wheren > 0 is chosen so that
v toorn > 1.
Then
fHum) = wz(n)go(Zui(t)) > w(n Zm(t))
i=1 i=1
foru= (uy,...,uy) € 082y, t €[0,1]. Lemma 2.7 implies that
ITull > 1ﬁz_l()»)l“nllull > |lu]l  forued$2y,.

If fo = o0, there exists a componeyit of f such thatf!, = co. Therefore, there i&l > 0
such that

FLw = vame(llull)
foru=(ua,...,u,) e R} and|jull > a, wheren > 0 is chosen so that
vy toyrn > 1.

Letrs=max2r, 4H}. If U= (u1,...,u,) € 052,5, then
n

min § (t)>1||u|| ! >H
u; = = —r3 = 5
1/4<i<3/4 ! 4 43

=

which implies that

) n n 1 3
fHum) = wmw(Zuim) >¢(n;ui(r)> fors e [Z’ Z]

i=1
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It follows from Lemma 2.7 that
ITrull > 1ﬁz_l(k)l“nIIUII > |lull foruedg2,.
It follows from Lemma 2.1 that
i(Ty, 2, K)=1, i(Ty, £2,,,K)=0, and i(T;, $2, K)=0.

Hencei (T, 2, \ 2., K) =1 andi(T;, £, \ 2,,, K) = —1. Thus,T; has a fixed point
in $2,, \ £, or £2,, \ £2,, according tofo = o0 Or fx = 0o, respectively. Consequently,
(1.1)—(1.2) has a positive solution for<OA < Ag.

(c) Fix two numbers G< r3 < r4. Lemma 2.10 implies that there exists > 0 such that
we have, fon. > Ag,

IThull > lull  forue a2, (i=23,4).

Sincefg = 0 andf,, =0, it follows from the proof of Theorem 1.2(a) that we can choose
0 < r1 <r3/2 andrz > 2r4 such that

ITaull <|lull forueds2, (i =1,2).
It follows from Lemma 2.1 that

i(T), 0., K)=1, i(Ty, 25, K)=1,
and

i(Ty, $2,5, K)=0, i(Ty, $2+,,K)=0.

Hence,i (T, 2,5 \ 2,1, K) = —1 andi(T,, 2, \ £,,, K) = 1. Thus, T, has two fixed
pointsuy(r) andux(¢) such thatui(¢) € 2., \ £2,, andux(?) € £2,, \ $2,,, which are the
desired distinct positive solutions of (1.1)—(1.2) for 1o satisfying

r1 < |luill <rg <rg <|uzll <ro.

(d) Fix two numbers & r3 < r4. Lemma 2.11 implies that there existg > 0 such that
we have, for O< A < Ag,

IThull < |lull  forue a2, (i=23,4).

Sincefg = co andf,, = o0, it follows from the proof of Theorem 1.2(b) that we can choose
0 < r1 <r3/2 andrz > 2r4 such that

ITaull > Jlull forueds2, (i =1,2).
It follows from Lemma 2.1 that

i(Ty, $2,,K)=0, i(Ty, $2+,, K)=0,
and

i(Ty, 2,5, K)=1, i(Ty, $2,,,K)=1.

Hence,i(Tx, 2,5 \ 2,1, K) =1 andi(T;, 2,, \ £2,,, K) = —1. Thus, T, has two fixed
pointsu1(r) andux(¢) such thatui(¢) € 2, \ £2,, andux(?) € £2,, \ $2,,, which are the
desired distinct positive solutions of (1.1)—(1.2) fok 1o satisfying

r1 < |luill <rg <rg <|uzll <r2.
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(e) Sincefg < 0o andf, < o0, thenf(’)' <ooandfl <oo,i=1,...,n. Therefore, for
eachi = 1,...,n, there exist positive numbes$, 5, r}, andr}, such thati < r,

i <eje(ull) forueRy, |ull <,
and

i) <ebo(lull) forueR™, fujl > rb.
Let

: ;o fHu) : :
gl = max{s’l,s’z, max{ cueR, < ull <rp >0

e(lul)

ande = max—1 __,{e'} > 0. Thus, we have

flwy<ep(ul) forueR), i=1,...,n.

Assumev(¢) is a positive solution of (1.1)—(1.2). We will show that this leads to a
contradiction for O< A < Ag, where

1
ro wl(z;?:ll//l1(8/01h,-(r)dr))'
In fact, for 0< A < Ag, sinceT;Vv(t) = v(¢) for ¢t € [0, 1], we have
n 1
Vil =Tvll < Z(ﬂl(/hi(f)edf)»w(llvll))
i=1 0
1

<Z¢—1< f hi(r>edw(wl‘1(x>||vn))
i=1

0
1

<Y 1@)2%1(8 / hi(r>dr)nvn <|Ivll,

i=1 0
which is a contradiction. _ ‘ .
(f) Sincefp > 0 andf, > 0, there exist two component$ and f/ of f such thatfg > 0
and £, > 0. Therefore, there exist positive numbegsn,;, r1, andr, such that < rp,

£l =me(lul) forueR?,

lull < ra,
and

I = n2e(lull) forueRy, full > ra.
Let

I(u
I ) yerr, E<||u||<r2”>o.

n3 = min{ 71, 72, Min :
{ {w(IIUII) 4

Thus, we have

i =nae(lull) forueR%, full <ri.
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and

/W = nze(lul) forue Ry, ful > 7.
sincenze(llul) = w2(¥;5 *a)elull, it follows from (A1) that

£l = et allul) forueRY, full <ri, (4.1)
and

P = gz olul) forueRy. juj > = (4.2)

Assumev(r) = (v1, ..., v,) IS a positive solution of (1.1)—(1.2). We will show that this
leads to a contradiction for> Ao = wz(l/(ngl(ng))). Infact, if |v|| < r1, (4.1) implies
that

flvin) =g <l/f21(773) D v (r)) for € [0, 1].
i=1
On the other hand, ifv|| > r1, then

" 1 1
min (1) > =|v -r,
1/4@@4;1),() 2= 2

which, together with (4.2), implies that

fv) > <p<l/f2‘1(n3) > (t)) fors e [% Z]

i=1
SinceT,v(t) = v(¢) fort € [0, 1], it follows from Lemma 2.7 that, fok > Aq,

IV =TVl = ¥yt Tyt ) IVIE > IV,
which is a contradiction. O
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