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Abstract

We prove that appropriate combinations of superlinearity and sublinearity off(u) with respect to
� at zero and infinity guarantee the existence, multiplicity, and nonexistence of positive solut
boundary value problems for then-dimensional system(�(u′ ))′ + λh(t)f(u) = 0, 0< t < 1. The
vector-valued function� is defined by�(u′ )= (ϕ(u′

1), . . . , ϕ(u
′
n)), whereu = (u1, . . . , un) andϕ

covers the two important casesϕ(u′ )= u′ andϕ(u′ )= |u′|p−2u′, p > 1. Our methods employ fixe
point theorems in a cone.
 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

In this paper we consider the existence, multiplicity, and nonexistence of positive
tions for the system(

�(u′ )
)′ + λh(t)f(u)= 0, 0< t < 1, (1.1)

with one of the following three sets of the boundary conditions:

u(0)= u(1)= 0, (1.2a)

u′(0)= u(1)= 0, (1.2b)

u(0)= u′(1)= 0, (1.2c)
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0022-247X/03/$ – see front matter 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0022-247X(03)00100-8
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whereu = (u1, . . . , un), �(u′ ) = (ϕ(u′
1), . . . , ϕ(u

′
n)), h(t) = diag[h1(t), . . . , hn(t)], and

f(u) = (f 1(u1, . . . , un), . . . , f
n(u1, . . . , un)). We understand thatu,�, f(u) are (column)

n-dimensional vector-valued functions. (1.1) means that

(ϕ(u′

1))
′ + λh1(t)f

1(u1, . . . , un)= 0, 0< t < 1,
. . .

(ϕ(u′
n))

′ + λhn(t)f
n(u1, . . . , un)= 0, 0< t < 1.

(1.3)

By a solutionu to (1.1)–(1.2) we understand a vector-valued functionu ∈ C1([0,1],Rn)

with �(u′ ) ∈ C1((0,1),Rn), which satisfies (1.1) fort ∈ (0,1) and one of (1.2). A solution
u(t)= (u1(t), . . . , un(t)) is positive if, for eachi = 1, . . . , n, ui(t)� 0 for all t ∈ (0,1) and
there is at least one nontrivial component ofu. In fact, we shall show that such a nontriv
component ofu is positive on(0,1).

Whenn= 1, (1.1) reduces to the scalar equation(
ϕ(u′ )

)′ + λh(t)f (u)= 0, 0< t < 1. (1.4)

The investigation of the existence of positive solutions of boundary value prob
for (1.4) originates from a variety of different areas of applied mathematics and ph
and has received growing attention in connection with positive radial solutions of p
differential equations in annular regions. For the classical case whereϕ(u′ ) = u′, several
results are available in the literature. Bandle et al. [2] and Lin [11] established the exi
of positive solutions of (1.4) with (1.2)(n= 1) under the assumption thatf is superlinear
i.e.,f0 = limu→0(f (u)/u)= 0 andf∞ = limu→∞(f (u)/u)= ∞.

On the other hand, we [13] obtained the existence of positive solutions of (1.4) with
(n = 1, ϕ(u′ ) = u′) under the assumption thatf is sublinear, i.e.,f0 = ∞ andf∞ = 0.
For the caseϕ(u′ )= |u′|p−2u′, p > 1, i.e., the one-dimensionalp-Laplacian, we refer to
Ben-Naoum and De Coster [3], Manasevich and Mawhin [12], Wang [16], and refer
therein for some additional details. Related results for scalar equations may also be
in [1,5,8]. For the caseϕ(u′ )= u′ andn= 2, Dunninger and Wang [6,7] obtained existen
and multiplicity results.

In recent papers [14,15], we introduced a new and general assumption (see A1)
functionϕ(u′ ), which covers the two important casesϕ(u′ ) = u′ andϕ(u′ ) = |u′|p−2u′,
p > 1. Under such an assumption, we were able to show that appropriate combin
of superlinearity and sublinearity off (u) with respect toϕ at zero and infinity guarante
the existence, multiplicity, and nonexistence of positive solutions of (1.4). Specificall
proved that results similar to Theorems 1.1 and 1.2 hold for (1.4) with (1.2)(n= 1).

The main purpose of this paper is to extend the above results to then-dimensional
system (1.1). For this purpose, we introduce some new notation in (1.5),f0 and f∞, to
characterize superlinearity and sublinearity with respect toϕ for (1.1). They are natura
extensions off0 andf∞ defined above for the scalar equation (1.4). Based on the
notation, we obtain criteria of determining the number of positive solutions of (1.1)–
Our main results (Theorems 1.1 and 1.2) clearly exhibit the structure of the set of po
solutions of (1.1)–(1.2). These results are new even for the casesϕ(u′ )= u′ andϕ(u′ ) =
|u′|p−2u′, p > 1. Our arguments are closely related to those of [13]. In [13] we used a
point theorem in a cone due to Krasnoselskii, which is essentially the same as Lemm
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Let

R = (−∞,∞), R+ = [0,∞), and R
n+ = R+ × · · · × R+︸ ︷︷ ︸

n

.

Also, for u = (u1, . . . , un) ∈ R
n+, let ‖u‖ = ∑n

i=1 |ui |. We make the following assump
tions:

(A1) ϕ is an odd, increasing homeomorphism ofR ontoR and there exist two increasin
homeomorphismsψ1 andψ2 of (0,∞) onto(0,∞) such that

ψ1(σ )ϕ(x)� ϕ(σx)�ψ2(σ )ϕ(x) for all σ andx > 0.

(A2) f i :Rn+ → R+ is continuous,i = 1, . . . , n.
(A3) hi(t) : [0,1] → R+ is continuous andhi(t) �≡ 0 on any subinterval of[0,1], i =

1, . . . , n.
(A4) f i(u1, . . . , un) > 0 for u = (u1, . . . , un) ∈ R

n+ and‖u‖> 0, i = 1, . . . , n.

In order to state our results we introduce the new notation

f i
0 = lim‖u‖→0

f i(u)
ϕ(‖u‖) , f i∞ = lim‖u‖→∞

f i(u)
ϕ(‖u‖) , u ∈ R

n+, i = 1, . . . , n,

f0 =
n∑
i=1

f i
0, f∞ =

n∑
i=1

f i∞. (1.5)

Our main results are:

Theorem 1.1. Assume(A1)–(A3) hold.

(a) If f0 = 0 andf∞ = ∞, then for allλ > 0 (1.1)–(1.2)has a positive solution.
(b) If f0 = ∞ andf∞ = 0, then for allλ > 0 (1.1)–(1.2)has a positive solution.

Theorem 1.2. Assume(A1)–(A4) hold.

(a) If f0 = 0 or f∞ = 0, then there existsλ0 > 0 such that for allλ > λ0 (1.1)–(1.2)has a
positive solution.

(b) If f0 = ∞ or f∞ = ∞, then there existsλ0 > 0 such that for all0< λ< λ0 (1.1)–(1.2)
has a positive solution.

(c) If f0 = f∞ = 0, then there existsλ0 > 0 such that for allλ > λ0 (1.1)–(1.2)has two
positive solutions.

(d) If f0 = f∞ = ∞, then there existsλ0 > 0 such that for all0< λ < λ0 (1.1)–(1.2)has
two positive solutions.

(e) If f0 <∞ andf∞ <∞, then there existsλ0 > 0 such that for all0< λ< λ0 (1.1)–(1.2)
has no positive solution.

(f) If f0 > 0 andf∞ > 0, then there existsλ0 > 0 such that for allλ > λ0 (1.1)–(1.2)has
no positive solution.



290 H. Wang / J. Math. Anal. Appl. 281 (2003) 287–306

s.

at
2. Preliminaries

The following well-known result of the fixed point index is crucial in our argument

Lemma 2.1 [4,9,10].Let E be a Banach space andK a cone inE. For r > 0, define
Kr = {u ∈ K: ‖x‖ < r}. Assume thatT : K̄r → K is completely continuous such th
T x �= x for x ∈ ∂Kr = {u ∈K: ‖x‖ = r}.

(i) If ‖T x‖ � ‖x‖ for x ∈ ∂Kr , then

i(T ,Kr,K)= 0.

(ii) If ‖T x‖ � ‖x‖ for x ∈ ∂Kr , then

i(T ,Kr,K)= 1.

In order to apply Lemma 2.1 to (1.1)–(1.2), letX be the Banach space

C[0,1] × · · · ×C[0,1]︸ ︷︷ ︸
n

and, foru = (u1, . . . , un) ∈X,

‖u‖ =
n∑
i=1

sup
t∈[0,1]

∣∣ui(t)∣∣.
For u ∈X or R

n+, ‖u‖ denotes the norm ofu in X or R
n+, respectively.

DefineK to be a cone inX by

K =
{

u = (u1, . . . , un) ∈X: ui(t)� 0, t ∈ [0,1], i = 1, . . . , n, and

min
1/4�t�3/4

n∑
i=1

ui(t)� 1

4
‖u‖

}
.

Also, define, forr a positive number,Ωr by

Ωr = {
u ∈K: ‖u‖< r

}
.

Note that∂Ωr = {u ∈K: ‖u‖ = r}.
Let Tλ :K →X be a map with components(T 1

λ , . . . , T
n
λ ). We defineT i

λ , i = 1, . . . , n,
by

T i
λu(t)=

{∫ t
0 ϕ

−1(
∫ σi
s
λhi(τ )f

i(u(τ )) dτ) ds, 0 � t � σi ,∫ 1
t
ϕ−1(

∫ s
σi
λhi(τ )f

i(u(τ )) dτ) ds, σi � t � 1,
(2.1)

whereσi = 0 for (1.1), (1.2b) andσi = 1 for (1.1), (1.2c). For (1.1), (1.2a),σi ∈ (0,1) is a
solution of the equation

Θiu(t)= 0, 0 � t � 1, (2.2)

where the mapΘi :K →C[0,1] is defined by
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Θiu(t)=
t∫

0

ϕ−1

( t∫
s

λhi(τ )f
i
(
u(τ )

)
dτ

)
ds

−
1∫
t

ϕ−1

( s∫
t

λhi(τ )f
i
(
u(τ )

)
dτ

)
ds, 0 � t � 1. (2.3)

By virtue of Lemma 2.2, the operatorTλ is well defined.

Lemma 2.2. Assume(A1)–(A3) hold. Then, for anyu ∈ K and i = 1, . . . , n, Θiu(t) = 0
has at least one solution in(0,1). In addition, ifσ 1

i < σ 2
i ∈ (0,1), i = 1, . . . , n, are two

solutions ofΘiu(t) = 0, thenhi(t)f i(u(t)) ≡ 0 for t ∈ [σ 1
i , σ

2
i ] and anyσi ∈ [σ 1

i , σ
2
i ] is

also a solution ofΘiu(t) = 0. Furthermore,Ti
λu(t), i = 1, . . . , n, is independent of th

choice ofσi ∈ [σ 1
i , σ

2
i ].

Proof. Let αi(τ ) = λhi(τ )f
i(u(τ )). If αi ≡ 0 on [0,1], we may choose anyσi ∈ (0,1).

Let us assume that there isτ ∈ (0,1) such thatαi(τ ) > 0. Therefore,Θiu(0) < 0 and
Θiu(1) > 0. It follows from the continuity ofΘiu(t) thatΘiu(t) = 0 has at least on
solution in(0,1). Moreover, it is not difficult to check that while

∫ t
0 ϕ

−1(
∫ t
s α

i(τ ) dτ) ds

is nondecreasing,
∫ 1
t ϕ

−1(
∫ s
t α

i(τ ) dτ) ds is nonincreasing. Therefore,Θiu(t) is nonde-
creasing function on[0,1].

If σ 1
i < σ 2

i ∈ (0,1) are two solutions ofΘiu(t)= 0, we consider

σ2
i∫

σ1
i

ϕ−1

( σ2
i∫

s

αi(τ ) dτ

)
ds =

σ2
i∫

0

ϕ−1

( σ2
i∫

s

αi (τ ) dτ

)
ds −

σ1
i∫

0

ϕ−1

( σ2
i∫

s

αi(τ ) dτ

)
ds

�
σ2
i∫

0

ϕ−1

( σ2
i∫

s

αi (τ ) dτ

)
ds −

σ1
i∫

0

ϕ−1

( σ1
i∫

s

αi(τ ) dτ

)
ds.

Now, because ofΘiu(σ 1
i )=Θiu(σ 2

i )= 0, we have

σ2
i∫

σ1
i

ϕ−1

( σ2
i∫

s

αi(τ ) dτ

)
ds �

1∫
σ2
i

ϕ−1

( s∫
σ2
i

αi (τ ) dτ

)
ds −

1∫
σ1
i

ϕ−1

( s∫
σ1
i

αi (τ ) dτ

)
ds

� −
σ2
i∫

σ1
i

ϕ−1

( s∫
σ1
i

αi (τ ) dτ

)
ds � 0,

which implies thatαi(τ )≡ 0 on[σ 1, σ 2]. Let σi ∈ [σ 1, σ 2] and observe that
i i i i
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σi∫
0

ϕ−1

( σi∫
s

αi(τ ) dτ

)
ds =

σ1
i∫

0

ϕ−1

( σ1
i∫

s

αi (τ ) dτ

)
ds

=
1∫

σ1
i

ϕ−1

( s∫
σ1
i

αi (τ ) dτ

)
ds =

1∫
σi

ϕ−1

( s∫
σi

αi(τ ) dτ

)
ds.

This yields thatσi is a solution ofΘiu(t)= 0. Hence, (2.1) implies

T i
λu(t)=




∫ t
0 ϕ

−1(
∫ σ1

i
s

αi(τ ) dτ) ds, 0 � t � σ 1
i ,∫ σ1

i

0 ϕ−1(
∫ σ1

i
s

αi(τ ) dτ) ds, σ 1
i � t � σi ,∫ 1

σ2
i
ϕ−1(

∫ s
σ2
i
αi (τ ) dτ) ds, σi � t � σ 2

i ,∫ 1
t ϕ

−1(
∫ s
σ2
i
αi (τ ) dτ) ds, σ 2

i � t � 1,

(2.4)

which is independent ofσi . ✷
Lemma 2.3. Assume(A1) holds. Letu and v ∈ C[0,1] with u � 0 and v � 0 satisfying
(ϕ(u′ ))′ = v. Then

u(t)� min{t,1− t} sup
t∈[0,1]

u(t) for t ∈ [0,1].

In particular, min1/4�t�3/4u(t)� (1/4)supt∈[0,1] u(t).

Proof. Sinceϕ(u′ ) is nonincreasing andϕ−1 is increasing, it follows thatu′ is nonincreas
ing. Hence, for 0� t0 < t < t1 � 1,

u(t)− u(t0)=
t∫

t0

u′(s) ds � (t − t0)u
′(t)

and

u(t1)− u(t)=
t1∫
t

u′(s) ds � (t1 − t)u′(t),

from which we have

u(t)� (t − t0)u(t1)+ (t1 − t)u(t0)

t1 − t0
.

Considering the above inequality on[0, σ ] and[σ,1], we obtain

u(t)� t sup
t∈[0,1]

u(t) for t ∈ [0, σ ],
u(t)� (1− t) sup u(t) for t ∈ [σ,1],
t∈[0,1]
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whereσ ∈ [0,1] is such thatu(σ)= supt∈[0,1] u(t). Hence, we have

u(t)� min{t,1− t} sup
t∈[0,1]

u(t) for t ∈ [0,1]. ✷

We remark that, according to Lemma 2.3, any nontrivial component of non-neg
solutions of (1.1)–(1.2) is positive on(0,1).

Lemma 2.4. Assume(A1)–(A3) hold. Then, fori = 1, . . . , n, Θi :K → C[0,1] is compact
and continuous.

Proof. LetR > 0 and define

Mi
R = 1+ λ

[
sup

t∈[0,1]
hi(t)

][
sup

{
f i(u): u ∈ R

n+, ‖u‖ �R
}]
> 0

andCi
R = sups∈[0,Mi

R] ϕ−1(s) > 0. We now show thatΘi :K → C[0,1] is compact. Let
(um)m∈N be a bounded sequence inK and letR > 0 be such that‖um‖ �R for all m ∈ N.
Set vim = Θium. Thus |vim(t)| � 2Ci , t ∈ [0,1]. In other words,(vim)m∈N is uniformly
bounded inC[0,1]. We next show the equicontinuity of(vim)m∈N. Again, letαim(τ ) =
λhi(τ )f

i(um(τ)). For anyε > 0, from the continuity ofϕ−1 on [0,Mi
R], it follows that

there exists aδ1 > 0 such that|ϕ−1(t1) − ϕ−1(t2)| < ε/4 for everyt1, t2 ∈ [0,Mi
R] and

|t1 − t2| < δ1. Thus, if t1, t2 ∈ [0,1] and |t1 − t2| < δ = min{ε/(4Ci
R), δ1/M

i
R}, we have

(without loss of generality assume thatt1 < t2)

∣∣vim(t2)− vim(t1)
∣∣�

∣∣∣∣∣
t2∫

t1

ϕ−1

( t2∫
s

αim(τ ) dτ

)
ds

∣∣∣∣∣
+
∣∣∣∣∣

t1∫
0

[
ϕ−1

( t2∫
s

αim(τ ) dτ

)
ds − ϕ−1

( t1∫
s

αim(τ ) dτ

)]
ds

∣∣∣∣∣
+
∣∣∣∣∣

t2∫
t1

ϕ−1

( s∫
t1

αim(τ ) dτ

)
ds

∣∣∣∣∣
+
∣∣∣∣∣

1∫
t2

[
ϕ−1

( s∫
t1

αim(τ ) dτ

)
ds − ϕ−1

( s∫
t2

αim(τ ) dτ

)]
ds

∣∣∣∣∣
< 2Ci

R|t2 − t1| + ε

2
� ε.

This shows that(vim)m∈N is equicontinuous on[0,1]. Therefore, it follows from the
Arzela–Ascoli theorem that there exist a functionv ∈ C[0,1] and a subsequence
(vim)m∈N converging uniformly tov on [0,1].

Finally, we prove the continuity ofΘi . Let (um)m∈N be any sequence converging onK
to u ∈K andR > 0 be such that‖um‖ � R for all m ∈ N. Note thatϕ−1 is continuous on
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1.1),
t
4.
on [0,Mi
R] andf i(u) is continuous on the closed set{u ∈ R

n+: ‖u‖ �R}. It is not hard to
see that the dominated convergence theorem guarantees that

lim
m→∞Θium(t)=Θiu(t) (2.5)

for eacht ∈ [0,1]. Moreover, the compactness ofΘi implies thatΘium(t) converges
uniformly to Θiu(t) on [0,1]. Suppose this is false. Then there existε0 > 0 and a
subsequence(umj )j∈N of (um)m∈N such that

sup
t∈[0,1]

∣∣Θiumj (t)−Θiu(t)
∣∣� ε0, j ∈ N. (2.6)

Now, it follows from the compactness ofΘi that there exists a subsequence of(umj )j∈N

(without loss of generality assume that the subsequence is(umj )j∈N) such that(Θiumj )j∈N

converges uniformly toy0 ∈C[0,1]. Thus, from (2.6), we easily see that

sup
t∈[0,1]

∣∣y0(t)−Θiu(t)
∣∣� ε0. (2.7)

On the other hand, from the pointwise convergence (2.5) we obtain

y0(t)=Θiu(t), t ∈ [0,1].
This is a contradiction to (2.7). ThereforeΘi is continuous. ✷
Lemma 2.5. Assume(A1)–(A3) hold. ThenTλ(K) ⊂K andTλ :K →K is compact and
continuous.

Proof. Lemma 2.3 implies thatTλ(K) ⊂ K. We now show thatTλ is compact. Let
(um)m∈N be a bounded sequence inK and letR > 0 be such that‖um‖ �R for all m ∈ N.
Hence by the definition ofTλ, we have, fori = 1, . . . , n,

(
T i
λum

)′
(t)=

{
ϕ−1(

∫ σi
t
λhi(τ )f

i(um(τ)) dτ), 0 � t � σi ,

−ϕ−1(
∫ t
σi
λhi(τ )f

i(um(τ)) dτ), σi � t � 1,

whereσi may be dependent onum. Then it is easy to see that both(Tλum)m∈N and
((Tλum)′ )m∈N are uniformly bounded sequences. It follows from the Arzela–As
theorem that there exists av ∈ K and a subsequence ofTλum converging uniformly to
v on [0,1].

It remains to show the continuity ofTλ. Let us take a sequence(um)m∈N in K

converging uniformly on[0,1] to u ∈ K and fix i, i = 1, . . . , n. Again, let αi(τ ) =
λhi(τ )f

i(u(τ )) andαim(τ ) = λhi(τ )f
i(um(τ)). We know that, for allu ∈ K, σi in (2.1)

is 0 or 1 for (1.1), (1.2b) or (1.1), (1.2c), respectively. Clearly, for (1.1), (1.2b) and (
(1.2c), the dominated convergence theorem and the compactness ofTλ guarantee tha
Tλum(t) converges uniformly toTλu(t) on [0,1] in a similar manner as in Lemma 2.
We now consider (1.1), (1.2a). Letσmi andσ ∗

i be zeros ofΘium(t) = 0 andΘiu(t) = 0
on (0,1), respectively. Thus, it follows from Lemma 2.4 that

lim Θiu
(
σmi
)= 0. (2.8)
m→∞
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Furthermore, it is easy to see that if(σ
mj

i )j∈N is a subsequence of(σmi )m∈N such that

limj→∞ σ
mj

i = σ 0
i , thenΘiu(σ 0

i )= 0. Now let us consider the following two cases:

(i) Θiu(t)= 0 has only one zeroσ ∗
i on (0,1);

(ii) Θiu(t)= 0 has at least two zeros on(0,1).

For case (i), we have limm→∞ σmi = σ ∗
i . Therefore, the dominated convergence theo

and the compactness ofTλ guarantee thatTλum(t) converges uniformly toTλu(t) on[0,1]
in a similar manner as in Lemma 2.4.

We consider case (ii) in the remaining part of the proof. By Lemma 2.2, it is ea
see that there existβ1

i < β2
i ∈ [0,1] such thatΘiu(t) �= 0 for t ∈ [0, β1

i ) ∪ (β2
i ,1] and

Θiu(t) ≡ 0 on[β1
i , β

2
i ]. Then,αi(τ )≡ 0 on [β1

i , β
2
i ]. Thus(σmi )m∈N is divided into three

possible subsequences

(
σ
m1
j

i

)
j∈N

⊂ [
0, β1

i

)
,

(
σ
m2
j

i

)
j∈N

⊂ [
β1
i , β

2
i

]
, and

(
σ
m3
j

i

)
j∈N

⊂ (
β2
i ,1

]
.

It is possible that some of the three subsequences are finite or empty. At least one
three subsequences is infinite. In what follows, we will show that for any fixedt ∈ [0,1],

lim
j→∞T i

λumµ
j
(t)= T i

λu(t) if
(
σ
m
µ
j

i

)
j∈N

is infinite, µ= 1,2,3.

Thus for any fixedt ∈ [0,1], limm→∞ T i
λum(t) = T i

λu(t). Again, the compactness ofTλ

guarantees thatTi
λum(t) converges uniformly toTi

λu(t) on [0,1], and thenTλ is continu-
ous.

We now turn to the pointwise convergence ofT i
λum(t) for the three subsequences. F

simplicity (without loss of generality), we discuss(σmi )m∈N instead of the notation for it
three subsequences.

If (σmi )m∈N ⊂ [0, β1
i ), then limm→∞ σmi = β1

i . Suppose this is false. Then there ex

σ 0
i ∈ [0, β1

i ) and a subsequence(σ
mj

i )j∈N of (σmi )m∈N such that limj→∞ σ
mj

i = σ 0
i .

Therefore, we have thatΘiu(σ 0
i ) = 0, which is a contradiction. By the same argume

we have that if(σmi )m∈N ⊂ (β2
i ,1], then limm→∞ σmi = β2

i . Note that bothβ1
i andβ2

i

are zeros ofΘiu(t) = 0 on (0,1). As for case (i), the dominated convergence theo
implies thatTi

λum(t) converges toTi
λu(t) on [0,1] for the two cases(σmi )m∈N ⊂ [0, β1

i )

and(σmi )m∈N ⊂ (β2
i ,1].

If (σmi )m∈N ⊂ [β1
i , β

2
i ], (2.4) implies that, for anyσmi ,

T i
λu(t)=




∫ t
0 ϕ

−1(
∫ σmi
s αi(τ ) dτ) ds, 0 � t � β1

i ,∫ t
0 ϕ

−1(
∫ σmi
s αi(τ ) dτ) ds, t ∈ (β1

i , β
2
i ), t � σmi ,∫ 1

t ϕ
−1(

∫ s
σmi

αi(τ ) dτ) ds, t ∈ (β1
i , β

2
i ), t > σmi ,∫ 1

ϕ−1(
∫ s

m αi(τ ) dτ) ds, β2 � t � 1.

(2.9)
t σi i
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On the other hand, sinceσmi ∈ [βi1, βi2], m ∈ N, we have

T i
λum(t)=




∫ t
0 ϕ

−1(
∫ σmi
s

αim(τ ) dτ) ds, 0� t � β1
i ,∫ t

0 ϕ
−1(

∫ σmi
s

αim(τ ) dτ) ds, t ∈ (β1
i , β

2
i ), t � σmi ,∫ 1

t
ϕ−1(

∫ s
σmi

αim(τ ) dτ) ds, t ∈ (β1
i , β

2
i ), t > σmi ,∫ 1

t ϕ
−1(

∫ s
σmi

αim(τ ) dτ) ds, β2
i � t � 1.

(2.10)

Consequently, the dominated convergence theorem implies that limm→∞ T i
λum(t) =

T i
λu(t) for t ∈ [0,1]. Thus our proof is complete.✷

Now it is not difficult to show that (1.1)–(1.2) is equivalent to the fixed point equat

Tλu = u in K.

Lemma 2.6. Assume(A1) holds. Then for allσ,x ∈ (0,∞)

ψ−1
2 (σ )x � ϕ−1(σϕ(x))�ψ−1

1 (σ )x.

Proof. Sinceσ = ψ1(ψ
−1
1 (σ )) = ψ2(ψ

−1
2 (σ )) andϕ(ϕ−1(σϕ(x))) = σϕ(x), it follows

that

ψ2
(
ψ−1

2 (σ )
)
ϕ(x)= ϕ

(
ϕ−1(σϕ(x)))=ψ1

(
ψ−1

1 (σ )
)
ϕ(x).

On the other hand, we have by (A1) that

ψ1
(
ψ−1

1 (σ )
)
ϕ(x)� ϕ

(
ψ−1

1 (σ )x
)

and ψ2
(
ψ−1

2 (σ )
)
ϕ(x)� ϕ

(
ψ−1

2 (σ )x
)
.

Hence,ϕ(ψ−1
2 (σ )x)� ϕ(ϕ−1(σϕ(x)))� ϕ(ψ−1

1 (σ )x). Thus, we obtain thatψ−1
2 (σ )x �

ϕ−1(σϕ(x))�ψ−1
1 (σ )x. ✷

Let

γi(t)= 1

8

[ t∫
1/4

ψ−1
2

( t∫
s

hi(τ ) dτ

)
ds +

3/4∫
t

ψ−1
2

( s∫
t

hi (τ ) dτ

)
ds

]
, i = 1, . . . , n,

wheret ∈ [1/4,3/4]. It follows from (A1)–(A3) that

Γ = min

{
γi(t):

1

4
� t � 3

4
, i = 1, . . . , n

}
> 0.

Lemma 2.7. Assume(A1)–(A3) hold. Letu = (u1, . . . , un) ∈ K andη > 0. If there exists
a componentf i of f such that

f i
(
u(t)

)
� ϕ

(
η

n∑
i=1

ui(t)

)
for t ∈

[
1

4
,

3

4

]
,

then

‖Tλu‖ �ψ−1
2 (λ)Γ η‖u‖.
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Proof. Note, from the definition ofTλu, that T i
λu(σi) is the maximum value ofT i

λu
on [0,1]. If σi ∈ [1/4,3/4], we have

‖Tλu‖ � sup
t∈[0,1]

∣∣T i
λu(t)

∣∣

� 1

2

[ σi∫
1/4

ϕ−1

( σi∫
s

λhi(τ )f
i
(
u(τ )

)
dτ

)
ds

+
3/4∫
σi

ϕ−1

( s∫
σi

λhi(τ )f
i
(
u(τ )

)
dτ

)
ds

]

� 1

2

[ σi∫
1/4

ϕ−1

( σi∫
s

λhi(τ )ϕ

(
η

n∑
i=1

ui(τ )

)
dτ

)
ds

+
3/4∫
σi

ϕ−1

( s∫
σi

λhi(τ )ϕ

(
η

n∑
i=1

ui(τ )

)
dτ

)
ds

]
,

and in view of Lemma 2.3 and condition (A1), we find that

‖Tλu‖ � 1

2

[ σi∫
1/4

ϕ−1

( σi∫
s

ψ2
(
ψ−1

2 (λ)
)
hi(τ )ϕ

(
η

4
‖u‖

)
dτ

)
ds

+
3/4∫
σi

ϕ−1

( s∫
σi

ψ2
(
ψ−1

2 (λ)
)
hi(τ )ϕ

(
η

4
‖u‖

)
dτ

)
ds

]

� 1

2

[ σi∫
1/4

ϕ−1

( σi∫
s

hi(τ ) dτϕ

(
ψ−1

2 (λ)
η

4
‖u‖

))
ds

+
3/4∫
σi

ϕ−1

( s∫
σi

hi(τ ) dτϕ

(
ψ−1

2 (λ)
η

4
‖u‖

))
ds

]
.

Now, because of Lemma 2.6, we have

‖Tλu‖ �
ψ−1

2 (λ)η‖u‖
8

[ σi∫
1/4

ψ−1
2

( σi∫
s

hi(τ ) dτ

)
ds +

3/4∫
σi

ψ−1
2

( s∫
σi

hi(τ ) dτ

)
ds

]

�ψ−1(λ)Γ η‖u‖.
2
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wo
m

Forσi > 3/4, it is easy to see that

∥∥T i
λu
∥∥�

3/4∫
1/4

ϕ−1

( 3/4∫
s

λhi(τ )f
i
(
u(τ )

)
dτ

)
ds.

On the other hand, we have

∥∥T i
λu
∥∥�

3/4∫
1/4

ϕ−1

( s∫
1/4

λhi(τ )f
i
(
u(τ )

)
dτ

)
ds if σi <

1

4
.

Therefore, similar arguments show that‖Tλu‖ � ψ−1
2 (λ)Γ η‖u‖ if σi > 3/4 or σi <

1/4. ✷
For eachi = 1, . . . , n, define a new function̂f i(t) :R+ → R+ by

f̂ i(t)= max
{
f i(u): u ∈ R

n+ and‖u‖ � t
}
.

Note thatf̂ i
0 = limt→0(f̂

i(t)/ϕ(t)) andf̂ i∞ = limt→∞(f̂ i (t)/ϕ(t)).

Lemma 2.8. Assume(A1)–(A2) hold. Thenf̂ i
0 = f i

0 andf̂ i∞ = f i∞, i = 1, . . . , n.

Proof. It is easy to see that̂f i
0 = f i

0. For the second part, we consider the following t
cases: (a)f i(u) is bounded and (b)f i(u) is unbounded. For case (a), it follows, fro
limt→∞ ϕ(t)= ∞, thatf̂ i∞ = 0= f i∞. For case (b), for anyδ > 0, letMi = f̂ i (δ) and

Ni
δ = inf

{‖u‖: u ∈ R
n+, ‖u‖ � δ, f i(u)�Mi

}
� δ,

then

max
{
f i(u): ‖u‖ �Ni

δ, u ∈ R
n+
}=Mi = max

{
f i(u): ‖u‖ =Ni

δ, u ∈ R
n+
}
.

Thus, for anyδ > 0, there existsNi
δ � δ such that

f̂ i(t)= max
{
f i(u): Ni

δ � ‖u‖ � t, u ∈ R
n+
}

for t > Ni
δ .

Now, suppose thatf i∞ <∞. In other words, for anyε > 0, there isδ > 0 such that

f i∞ − ε <
f i(u)
ϕ(‖u‖) < f i∞ + ε for u ∈ R

n+, ‖u‖> δ. (2.11)

Thus, for t > Ni
δ , there existu1,u2 ∈ R

n+ such that‖u1‖ = t , t � ‖u2‖ � Ni
δ , and

f i(u2)= f̂ i(t). Therefore,

f i(u1)

ϕ(‖u1‖) � f̂ i (t)

ϕ(t)
= f i(u2)

ϕ(t)
� f i(u2)

ϕ(‖u2‖) . (2.12)

(2.11) and (2.12) yield that

f i∞ − ε <
f̂ i(t)

ϕ(t)
< f i∞ + ε for t > Ni

δ . (2.13)

Hencef̂ i∞ = f i∞. Similarly, we can show that̂f i∞ = f i∞ if f i∞ = ∞. ✷
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Lemma 2.9. Assume(A1)–(A3) hold and letr > 0. If there exitsε > 0 such that

f̂ i(r)�ψ1(ε)ϕ(r), i = 1, . . . , n,

then

‖Tλu‖ �ψ−1
1 (λ)εĈ‖u‖ for u ∈ ∂Ωr.

where the constant̂C =∑n
i=1ψ

−1
1 (

∫ 1
0 hi(τ ) dτ).

Proof. From the definition ofTλ, for u ∈ ∂Ωr , we have

‖Tλu‖ =
n∑
i=1

sup
t∈[0,1]

∣∣T i
λu(t)

∣∣� n∑
i=1

ϕ−1

( 1∫
0

λhi(τ )f
i
(
u(τ )

)
dτ

)

�
n∑
i=1

ϕ−1

( 1∫
0

hi(τ ) dτ λf̂
i (r)

)
�

n∑
i=1

ϕ−1

( 1∫
0

hi(τ ) dτ λψ1(ε)ϕ(r)

)
.

Note thatλ=ψ1(ψ
−1
1 (λ)). Then (A1) and Lemma 2.6 imply that

‖Tλu‖ �
n∑
i=1

ϕ−1

( 1∫
0

hi(τ ) dτ ϕ
(
ψ−1

1 (λ)εr
))

�ψ−1
1 (λ)εr

n∑
i=1

ψ−1
1

( 1∫
0

hi(τ ) dτ

)

=ψ−1
1 (λ)εĈ‖u‖. ✷

The following two lemmas are weak forms of Lemmas 2.7 and 2.9.

Lemma 2.10. Assume(A1)–(A4) hold. If u ∈ ∂Ωr , r > 0, then

‖Tλu‖ � 4ψ−1
2 (λ)Γ ϕ−1(m̂r),

wherem̂r = min{f i(u): u ∈ R
n+ andr/4 � ‖u‖ � r, i = 1, . . . , n}> 0.

Proof. Sincefi(u(t)) � m̂r = ϕ(ϕ−1(m̂r )) for t ∈ [1/4,3/4], i = 1, . . . , n, it is easy to
see that this lemma can be shown in a similar manner as in Lemma 2.7.✷
Lemma 2.11. Assume(A1)–(A4) hold. If u ∈ ∂Ωr , r > 0, then

‖Tλu‖ �ψ−1
1 (λ)ϕ−1(M̂r )Ĉ,

whereM̂r = max{f i(u): u ∈ R
n+ and ‖u‖ � r, i = 1, . . . , n} > 0 and Ĉ is the positive

constant defined in Lemma2.9.

Proof. Sincefi(u(t)) � M̂r = ϕ(ϕ−1(M̂r )) for t ∈ [0,1], i = 1, . . . , n, it is easy to see
that this lemma can be shown in a similar manner as in Lemma 2.9.✷
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n

3. Proof of Theorem 1.1

(a) f0 = 0 implies thatf i
0 = 0, i = 1, . . . , n. It follows from Lemma 2.8 thatf̂ i

0 = 0,

i = 1, . . . , n. Therefore, we can chooser1 > 0 so thatf̂ i(r1) � ψ1(ε)ϕ(r1), i = 1, . . . , n,
where the constantε > 0 satisfies

ψ−1
1 (λ)εĈ < 1,

andĈ is the positive constant defined in Lemma 2.9. We have by Lemma 2.9 that

‖Tλu‖ �ψ−1
1 (λ)εĈ‖u‖< ‖u‖ for u ∈ ∂Ωr1.

Now, sincef∞ = ∞, there exists a componentf i of f such thatf i∞ = ∞. Therefore, there
is Ĥ > 0 such that

f i(u)�ψ2(η)ϕ
(‖u‖)

for u = (u1, . . . , un) ∈ R
n+ and‖u‖ � Ĥ , whereη > 0 is chosen so that

ψ−1
2 (λ)Γ η > 1.

Let r2 = max{2r1,4Ĥ }. If u = (u1, . . . , un) ∈ ∂Ωr2, then

min
1/4�t�3/4

n∑
i=1

ui(t)� 1

4
‖u‖ = 1

4
r2 � Ĥ ,

which implies that

f i
(
u(t)

)
�ψ2(η)ϕ

(
n∑
i=1

ui(t)

)
� ϕ

(
η

n∑
i=1

ui(t)

)
for t ∈

[
1

4
,

3

4

]
.

It follows from Lemma 2.7 that

‖Tλu‖ �ψ−1
2 (λ)Γ η‖u‖> ‖u‖ for u ∈ ∂Ωr2.

By Lemma 2.1,

i(Tλ,Ωr1,K)= 1 and i(Tλ,Ωr2,K)= 0.

It follows from the additivity of the fixed point index that

i(Tλ,Ωr2 \ Ω̄r1,K)= −1.

Thus,i(Tλ,Ωr2 \ Ω̄r1,K) �= 0, which implies thatTλ has a fixed pointu ∈ Ωr2 \ Ω̄r1 by
the existence property of the fixed point index. The fixed pointu ∈Ωr2 \ Ω̄r1 is the desired
positive solution of (1.1)–(1.2).

(b) If f0 = ∞, there exists a componentf i such thatf i
0 = ∞. Therefore, there is a

r1 > 0 such that

f i(u)�ψ2(η)ϕ
(‖u‖)

for u = (u1, . . . , un) ∈ R
n+ and‖u‖ � r1, whereη > 0 is chosen so that

ψ−1(λ)Γ η > 1.
2
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hat
If u = (u1, . . . , un) ∈ ∂Ωr1, then

f i
(
u(t)

)
�ψ2(η)ϕ

(
n∑
i=1

ui(t)

)
� ϕ

(
η

n∑
i=1

ui(t)

)
for t ∈ [0,1].

Lemma 2.7 implies that

‖Tλu‖ �ψ−1
2 (λ)Γ η‖u‖> ‖u‖ for u ∈ ∂Ωr1.

We now determineΩr2. f∞ = 0 implies thatf i∞ = 0, i = 1, . . . , n. It follows from
Lemma 2.8 thatf̂ i∞ = 0, i = 1, . . . , n. Therefore there is anr2 > 2r1 such that

f̂ i(r2)�ψ1(ε)ϕ(r2), i = 1, . . . , n,

where the constantε > 0 satisfies

ψ−1
1 (λ)εĈ < 1,

andĈ is the positive constant defined in Lemma 2.9. Thus, we have by Lemma 2.9 t

‖Tλu‖ �ψ−1
1 (λ)εĈ‖u‖< ‖u‖ for u ∈ ∂Ωr2.

By Lemma 2.1,

i(Tλ,Ωr1,K)= 0 and i(Tλ,Ωr2,K)= 1.

It follows from the additivity of the fixed point index thati(Tλ,Ωr2 \ Ω̄r1,K) = 1. Thus,
Tλ has a fixed point inΩr2 \ Ω̄r1, which is the desired positive solution of (1.1)–(1.2).✷

4. Proof of Theorem 1.2

(a) Fix a numberr1 > 0. Lemma 2.10 implies that there existsλ0 > 0 such that

‖Tλu‖> ‖u‖ for u ∈ ∂Ωr1, λ > λ0.

If f0 = 0, thenf i
0 = 0, i = 1, . . . , n. It follows from Lemma 2.8 that

f̂ i
0 = 0, i = 1, . . . , n.

Therefore, we can choose 0< r2 < r1 so that

f̂ i(r2)�ψ1(ε)ϕ(r2), i = 1, . . . , n,

where the constantε > 0 satisfies

ψ−1
1 (λ)εĈ < 1,

andĈ is the positive constant defined in Lemma 2.9. We have by Lemma 2.9 that

‖Tλu‖ �ψ−1
1 (λ)εĈ‖u‖< ‖u‖ for u ∈ ∂Ωr2.

If f∞ = 0, thenf i∞ = 0, i = 1, . . . , n. It follows from Lemma 2.8 that̂f i∞ = 0, i = 1, . . . , n.
Therefore there is anr3 > 2r1 such that

f̂ i(r3)�ψ1(ε)ϕ(r3), i = 1, . . . , n,
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where the constantε > 0 satisfies

ψ−1
1 (λ)εĈ < 1,

andĈ is the positive constant defined in Lemma 2.9. Thus, we have by Lemma 2.9 t

‖Tλu‖ �ψ−1
1 (λ)εĈ‖u‖< ‖u‖ for u ∈ ∂Ωr3.

It follows from Lemma 2.1 that

i(Tλ,Ωr1,K)= 0, i(Tλ,Ωr2,K)= 1, and i(Tλ,Ωr3,K)= 1.

Thusi(Tλ,Ωr1 \ Ω̄r2,K)= −1 andi(Tλ,Ωr3 \ Ω̄r1,K)= 1. Hence,Tλ has a fixed poin
in Ωr1 \ Ω̄r2 or Ωr3 \ Ω̄r1 according tof0 = 0 or f∞ = 0, respectively. Consequentl
(1.1)–(1.2) has a positive solution forλ > λ0.

(b) Fix a numberr1 > 0. Lemma 2.11 implies that there existsλ0 > 0 such that

‖Tλu‖< ‖u‖ for u ∈ ∂Ωr1, 0< λ< λ0.

If f0 = ∞, there exists a componentf i of f such thatf i
0 = ∞. Therefore, there is a positiv

numberr2 < r1 such that

f i(u)�ψ2(η)ϕ
(‖u‖)

for u = (u1, . . . , un) ∈ R
n+ and‖u‖ � r2, whereη > 0 is chosen so that

ψ−1
2 (λ)Γ η > 1.

Then

f i
(
u(t)

)
�ψ2(η)ϕ

(
n∑
i=1

ui(t)

)
� ϕ

(
η

n∑
i=1

ui(t)

)

for u = (u1, . . . , un) ∈ ∂Ωr2, t ∈ [0,1]. Lemma 2.7 implies that

‖Tλu‖ �ψ−1
2 (λ)Γ η‖u‖> ‖u‖ for u ∈ ∂Ωr2.

If f∞ = ∞, there exists a componentf i of f such thatf i∞ = ∞. Therefore, there iŝH > 0
such that

f i(u)�ψ2(η)ϕ
(‖u‖)

for u = (u1, . . . , un) ∈ R
n+ and‖u‖ � Ĥ , whereη > 0 is chosen so that

ψ−1
2 (λ)Γ η > 1.

Let r3 = max{2r1,4Ĥ }. If u = (u1, . . . , un) ∈ ∂Ωr3, then

min
1/4�t�3/4

n∑
i=1

ui(t)� 1

4
‖u‖ = 1

4
r3 � Ĥ ,

which implies that

f i
(
u(t)

)
�ψ2(η)ϕ

(
n∑
ui(t)

)
� ϕ

(
η

n∑
ui(t)

)
for t ∈

[
1

4
,

3

4

]
.

i=1 i=1
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It follows from Lemma 2.7 that

‖Tλu‖ �ψ−1
2 (λ)Γ η‖u‖> ‖u‖ for u ∈ ∂Ωr3.

It follows from Lemma 2.1 that

i(Tλ,Ωr1,K)= 1, i(Tλ,Ωr2,K)= 0, and i(Tλ,Ωr3,K)= 0.

Hence,i(Tλ,Ωr1 \ Ω̄r2,K)= 1 andi(Tλ,Ωr3 \ Ω̄r1,K)= −1. Thus,Tλ has a fixed poin
in Ωr1 \ Ω̄r2 or Ωr3 \ Ω̄r1 according tof0 = ∞ or f∞ = ∞, respectively. Consequentl
(1.1)–(1.2) has a positive solution for 0< λ< λ0.

(c) Fix two numbers 0< r3 < r4. Lemma 2.10 implies that there existsλ0 > 0 such that
we have, forλ > λ0,

‖Tλu‖> ‖u‖ for u ∈ ∂Ωri (i = 3,4).

Sincef0 = 0 andf∞ = 0, it follows from the proof of Theorem 1.2(a) that we can cho
0< r1 < r3/2 andr2 > 2r4 such that

‖Tλu‖< ‖u‖ for u ∈ ∂Ωri (i = 1,2).

It follows from Lemma 2.1 that

i(Tλ,Ωr1,K)= 1, i(Tλ,Ωr2,K)= 1,

and

i(Tλ,Ωr3,K)= 0, i(Tλ,Ωr4,K)= 0.

Hence,i(Tλ,Ωr3 \ Ω̄r1,K) = −1 andi(Tλ,Ωr2 \ Ω̄r4,K) = 1. Thus,Tλ has two fixed
pointsu1(t) andu2(t) such thatu1(t) ∈ Ωr3 \ Ω̄r1 andu2(t) ∈ Ωr2 \ Ω̄r4, which are the
desired distinct positive solutions of (1.1)–(1.2) forλ > λ0 satisfying

r1 < ‖u1‖< r3 < r4 < ‖u2‖< r2.

(d) Fix two numbers 0< r3 < r4. Lemma 2.11 implies that there existsλ0 > 0 such that
we have, for 0< λ< λ0,

‖Tλu‖< ‖u‖ for u ∈ ∂Ωri (i = 3,4).

Sincef0 = ∞ andf∞ = ∞, it follows from the proof of Theorem 1.2(b) that we can cho
0< r1 < r3/2 andr2 > 2r4 such that

‖Tλu‖> ‖u‖ for u ∈ ∂Ωri (i = 1,2).

It follows from Lemma 2.1 that

i(Tλ,Ωr1,K)= 0, i(Tλ,Ωr2,K)= 0,

and

i(Tλ,Ωr3,K)= 1, i(Tλ,Ωr4,K)= 1.

Hence,i(Tλ,Ωr3 \ Ω̄r1,K) = 1 andi(Tλ,Ωr2 \ Ω̄r4,K) = −1. Thus,Tλ has two fixed
pointsu1(t) andu2(t) such thatu1(t) ∈ Ωr3 \ Ω̄r1 andu2(t) ∈ Ωr2 \ Ω̄r4, which are the
desired distinct positive solutions of (1.1)–(1.2) forλ < λ0 satisfying

r1 < ‖u1‖< r3 < r4 < ‖u2‖< r2.
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o a
(e) Sincef0 <∞ andf∞ <∞, thenf i
0 <∞ andf i∞ <∞, i = 1, . . . , n. Therefore, for

eachi = 1, . . . , n, there exist positive numbersεi1, εi2, ri1, andri2 such thatri1 < ri2,

f i(u)� εi1ϕ
(‖u‖) for u ∈ R

n+, ‖u‖ � ri1,

and

f i(u)� εi2ϕ
(‖u‖) for u ∈ R

n+, ‖u‖ � ri2.

Let

εi = max

{
εi1, ε

i
2,max

{
f i(u)
ϕ(‖u‖) : u ∈ R

n+, ri1 � ‖u‖ � ri2

}}
> 0

andε = maxi=1,...,n{εi}> 0. Thus, we have

f i(u)� εϕ
(‖u‖) for u ∈ R

n+, i = 1, . . . , n.

Assumev(t) is a positive solution of (1.1)–(1.2). We will show that this leads t
contradiction for 0< λ< λ0, where

λ0 =ψ1

(
1∑n

i=1ψ
−1
1 (ε

∫ 1
0 hi(τ ) dτ)

)
.

In fact, for 0< λ< λ0, sinceTλv(t)= v(t) for t ∈ [0,1], we have

‖v‖ = ‖Tλv‖ �
n∑
i=1

ϕ−1

( 1∫
0

hi(τ )ε dτ λϕ
(‖v‖)

)

�
n∑
i=1

ϕ−1

( 1∫
0

hi(τ )ε dτ ϕ
(
ψ−1

1 (λ)‖v‖)
)

�ψ−1
1 (λ)

n∑
i=1

ψ−1
1

(
ε

1∫
0

hi(τ ) dτ

)
‖v‖< ‖v‖,

which is a contradiction.
(f) Sincef0 > 0 andf∞ > 0, there exist two componentsf i andf j of f such thatf i

0 > 0

andf j∞ > 0. Therefore, there exist positive numbersη1, η2, r1, andr2 such thatr1 < r2,

f i(u)� η1ϕ
(‖u‖) for u ∈ R

n+, ‖u‖ � r1,

and

f j (u)� η2ϕ
(‖u‖) for u ∈ R

n+, ‖u‖ � r2.

Let

η3 = min

{
η1, η2,min

{
f j (u)
ϕ(‖u‖) : u ∈ R

n+,
r1

4
� ‖u‖ � r2

}}
> 0.

Thus, we have

f i(u)� η3ϕ
(‖u‖) for u ∈ R

n+, ‖u‖ � r1,
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is

ntial

e

lus,

inear
and

f j (u)� η3ϕ
(‖u‖) for u ∈ R

n+, ‖u‖ � r1

4
.

Sinceη3ϕ(‖u‖)=ψ2(ψ
−1
2 (η3))ϕ(‖u‖), it follows from (A1) that

f i(u)� ϕ
(
ψ−1

2 (η3)‖u‖) for u ∈ R
n+, ‖u‖ � r1, (4.1)

and

f j (u)� ϕ
(
ψ−1

2 (η3)‖u‖) for u ∈ R
n+, ‖u‖ � r1

4
. (4.2)

Assumev(t)= (v1, . . . , vn) is a positive solution of (1.1)–(1.2). We will show that th
leads to a contradiction forλ > λ0 =ψ2(1/(Γ ψ

−1
2 (η3))). In fact, if ‖v‖ � r1, (4.1) implies

that

f i
(
v(t)

)
� ϕ

(
ψ−1

2 (η3)

n∑
i=1

vi(t)

)
for t ∈ [0,1].

On the other hand, if‖v‖> r1, then

min
1/4�t�3/4

n∑
i=1

vi(t)� 1

4
‖v‖> 1

4
r1,

which, together with (4.2), implies that

f j
(
v(t)

)
� ϕ

(
ψ−1

2 (η3)

n∑
i=1

vi(t)

)
for t ∈

[
1

4
,

3

4

]
.

SinceTλv(t)= v(t) for t ∈ [0,1], it follows from Lemma 2.7 that, forλ > λ0,

‖v‖ = ‖Tλv‖ �ψ−1
2 (λ)Γ ψ−1

2 (η3)‖v‖> ‖v‖,
which is a contradiction. ✷

References

[1] R. Agarwal, H. Lu, D. O’Regan, Eigenvalues and the one-dimensionalp-Laplacian, J. Math. Anal. Appl. 266
(2002) 383–400.

[2] C. Bandle, C.V. Coffman, M. Marcus, Nonlinear elliptic problems in annular domains, J. Differe
Equations 69 (1987) 322–345.

[3] A. Ben-Naoum, C. De Coster, On the existence and multiplicity of positive solutions of thep-Laplacian
separated boundary value problem, Differential Integral Equations 10 (1997) 1093–1112.

[4] K. Deimling, Nonlinear Functional Analysis, Springer, Berlin, 1985.
[5] M. Del Pino, M. Elgueta, R. Manasevich, A homotopic deformation alongp of a Leray–Schauder degre

result and existence for(|u′|p−2u′ )′ + f (t, u) = 0, u(0) = u(T ) = 0, p > 1, J. Differential Equations 80
(1989) 1–13.

[6] D. Dunninger, H. Wang, Multiplicity of positive radial solutions for an elliptic system on an annu
Nonlinear Anal. 42 (2000) 803–811.

[7] D. Dunninger, H. Wang, Existence and multiplicity of positive radial solutions for elliptic systems, Nonl
Anal. 29 (1997) 1051–1060.



306 H. Wang / J. Math. Anal. Appl. 281 (2003) 287–306

Anal.

1988.

mains,

and

rential

, Adv.

blems

.

[8] L. Erbe, S. Hu, H. Wang, Multiple positive solutions of some boundary value problems, J. Math.
Appl. 184 (1994) 640–648.

[9] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Orlando, FL,
[10] M. Krasnoselskii, Positive Solutions of Operator Equations, Noordhoff, Groningen, 1964.
[11] S.S. Lin, On the existence of positive radial solutions for semilinear elliptic equations in annular do

J. Differential Equations 81 (1989) 221–233.
[12] R. Manasevich, J. Mawhin, The spectrum ofp-Laplacian systems with various boundary conditions

applications, Adv. Differential Equations 5 (2000) 1289–1318.
[13] H. Wang, On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Diffe

Equations 109 (1994) 1–7.
[14] H. Wang, On the structure of positive radial solutions for quasilinear equations in annular domains

Differential Equations, in press.
[15] H. Wang, On the existence, multiplicity and nonexistence of positive solutions of boundary value pro

involving thep-Laplacian, submitted.
[16] J. Wang, The existence of positive solutions for the one-dimensionalp-Laplacian, Proc. Amer. Math

Soc. 125 (1997) 2275–2283.


