
Adversarial Policy Training against Deep
Reinforcement Learning

Xian Wu1∗, Wenbo Guo1∗, Hua Wei1∗, Xinyu Xing1

1The Pennsylvania State University
{xkw5132, wzg13, hzw77, xxing}@ist.psu.edu

Abstract
Reinforcement learning is a set of goal-oriented learning al-
gorithms, through which an agent could learn to behave in
an environment, by performing certain actions and observing
the reward which it gets from those actions. Integrated with
deep neural networks, it becomes deep reinforcement learn-
ing, a new paradigm of learning methods. Recently, deep
reinforcement learning demonstrates great potential in many
applications such as playing video games, mastering GO com-
petition, and even performing autonomous pilot. However,
coming together with these great successes is adversarial at-
tacks, in which an adversary could force a well-trained agent
to behave abnormally by tampering the input to the agent’s
policy network or training an adversarial agent to exploit the
weakness of the victim.

In this work, we show existing adversarial attacks against
reinforcement learning either work in an impractical setting
or perform less effectively when being launched in a two-
agent competitive game. Motivated by this, we propose a new
method to train adversarial agents. Technically speaking, our
approach extends the Proximal Policy Optimization (PPO) al-
gorithm and then utilizes an explainable AI technique to guide
an attacker to train an adversarial agent. In comparison with
the adversarial agent trained by the state-of-the-art technique,
we show that our adversarial agent exhibits a much stronger
capability in exploiting the weakness of victim agents. Be-
sides, we demonstrate that our adversarial attack introduces
less variation in the training process and exhibits less sensi-
tivity to the selection of initial states.

1 Introduction

With the recent breakthroughs of deep neural networks (DNN)
in problems like computer vision, machine translation, and
time series prediction, we have witnessed a great advance
in the area of reinforcement learning (RL). By integrating
deep neural networks into reinforcement learning algorithms,
∗Equal Contribution.

the machine learning community designs various deep rein-
forcement learning algorithms [29, 43, 53] and demonstrates
their great success in a variety of applications, ranging from
defeating world champions of Go [45] to mastering a wide
variety of Atari games [30].

Different from conventional deep learning, deep reinforce-
ment learning (DRL) refers to goal-oriented algorithms,
through which one could train an agent to learn how to attain
a complex objective or, in other words, maximize the reward
it can collect over many steps (actions). Like a dog incen-
tivized by petting and intimidation, reinforcement learning
algorithms penalize the agent when it takes the wrong action
and reward when the agent takes the right ones.

In light of the promising results in many reinforcement
learning tasks, researchers recently devoted their energies
to investigating the security risk of reinforcement learning
algorithms. For example, early research has proposed various
methods to manipulate the environment that an agent interacts
with (e.g., [4, 18, 21]). Their rationale behind such a kind of
attack is as follows. In a reinforcement learning task, an agent
usually takes as input the observation of the environment. By
manipulating the environment, an attacker could influence the
agent observation as well as its decision (action), and thus
mislead the agent to behave abnormally (e.g., subtly changing
some pixel values of the sky in the Super Mario game, or
injecting noise into the background canvas of the Pong game).

In many recent research works, attacks through environ-
ment manipulation have demonstrated great success in failing
a well-trained agent to complete a certain task (e.g., [18,19]).
However, such attacks are not practical in the real world. For
example, in the application of online video games, the input
of a pre-trained master agent is the snapshot of the current
game scenes. From the attackers’ perspective, it is difficult
for them to hack into the game server, obtain the permission
of manipulating the environment, influence arbitrary pixels in
that input image, and thus launch an adversarial attack as they
expect. As a result, recent research proposes a new method to
attack a well-trained agent [10].

Different from attacks through environment manipulation,

the new attack is designed specifically for the two-agent com-
petitive game – where two participant agents compete with
each other – and the goal of this attack is to fail one well-
trained agent in the game by manipulating the behaviors of
the other. In comparison with the environment manipulation
methods, the new attack against RL is more practical because,
to trigger the weakness of the victim agent, this attack does
not assume full control over the environment nor that over
the observation of the victim agent. Rather, it assumes only
the free access of the adversarial agent (i.e., the agent that the
attacker trains to compete with his opponent’s agent).

In [10], researchers have already shown that the method of
attacking through an adversarial agent could be used for an
alternative, practical approach to attack a well-trained agent
in reinforcement learning tasks. However, as we will demon-
strate in Section 6, this newly proposed attack usually ex-
hibits a relatively low success rate of failing the opponent (or
in other words victim) agent.1 This is because the attack is
a simple application of the state-of-the-art Proximal Policy
Optimization (PPO) algorithm [43] and, by design, the PPO
algorithm does not train an agent for exploiting the weakness
of the opponent agent.

Inspired by this discovery, we propose a new technique to
train an adversarial agent and thus exploit the weakness of
the opponent (victim) agent. First, we arm the adversarial
agent with the ability to observe the attention of the victim
agent while it plays with our adversarial agent. By using this
attention, the adversarial agent can easily figure out at which
time step the opponent agent pays more attention to the ad-
versary. Second, under the guidance of the victim’s attention,
the adversary subtly varies its actions. With this practice, as
we will show and elaborate in Section 4 and 5, the adversarial
agent could trick a well-trained opponent agent into taking
sub-optimal actions and thus influence the corresponding re-
ward that the opponent is supposed to receive.

Technically speaking, to develop the attack method men-
tioned above, we first approximate the policy network as well
as the state-transition model of the opponent agent. Using
the approximated network and model, we can determine the
attention of the opponent agent by using an explainable AI
technique. Besides, we can predict the action of the opponent
agent when our adversarial agent takes a specific action.

With the predicted action in hand, our attack method then
extends the PPO algorithm by introducing a weighted term
into its objective function. As we will specify in Section 5,
the newly introduced term measures the action deviation of
the opponent agent with and without the influence of our ad-
versarial agent. The weight is the output of the explainable AI
technique, which indicates by how much the opponent agent
pays its attention to the adversarial agent. By maximizing
the weighted deviation together with the advantage function
in the objective function of PPO, we can train an adversarial

1Note that the paper uses “victim agent” and “opponent agent” inter-
changeably.

agent to take the action that could influence the action of the
opponent agent the most.

In this paper, we do not claim that our proposed technique
is the first method for attacking reinforcement learning. How-
ever, we argue that this is the first work that can effectively
exploit the weakness of victim agents without the manipula-
tion of the environment. Using MuJoCo [50] and roboschool
Pong [33] games, we show that our method has a stronger
capability of attacking a victim agent than the state-of-the-art
method [10] (an average of 60% vs. 50% winning rate for
MuJoCo game and 100% vs. 90% for the Pong game). In
addition, we demonstrate that, in comparison with the state-
of-the-art method of training an adversarial policy [10], our
proposed method could construct an adversarial agent with a
50% winning rate in fewer training cycles (11 million vs. 20
million iterations for MuJoCo game, and 1.0 million vs. 1.3
million iterations for Pong game). Last but not least, we also
show that using our proposed method to train an adversarial
agent, it usually introduces fewer variations in the training
process. We argue this is a very beneficial characteristic
because this could make our algorithm less sensitive to the
selection of initial states. We released the game environment,
victim agents, source code, and our adversarial agents. 2

In summary, the paper makes the following contributions.

• We design a new practical attack mechanism that trains
an adversarial agent to exploit the weakness of the oppo-
nent in an effective and efficient fashion.

• We demonstrate that an explainable AI technique can
be used to facilitate the search of the adversarial policy
network and thus the construction of the corresponding
adversarial agents.

• We evaluate our proposed attack by using representative
simulated robotics games – MuJoCo and roboschool
Pong – and compare our evaluation results with that
obtained from the state-of-the-art attack mechanism [10].

The rest of this paper is organized as follows. Section 2
describes the problem scope and assumption of this research.
Section 3 describes the background of deep reinforcement
learning. Section 4 and 5 specifies how we design our attack
mechanism to train adversarial agents. Section 6 summa-
rizes the evaluation results of our proposed attack mechanism.
Section 7 provides the discussion of related work, followed
by the discussion of some related issues and future work in
Section 8. Finally, we conclude the work in Section 9.

2 Problem Statement and Assumption

Problem statement. Reinforcement learning refers to a set
of algorithms that address the sequential decision-making

2https://github.com/psuwuxian/rl_attack

https://github.com/psuwuxian/rl_attack

Agent

Observation
(state)

of the agent

Policy network
of the agent

0.2 0.90.51.3

…

…

(a) Single agent game.

Adversarial
agent

Opponent
agent

Policy
network

of attacker
agent

Policy
network
of opp.
agent

State of the
environment

2.1 0.11.3 1.7

…

2.1 0.11.3 1.7

…

(b) Two-agent game.

Figure 1: The illustration of reinforcement learning tasks.

problem in complex scenarios. As is depicted in Figure 1, a
game is formalized as an RL learning task, in which an agent
observes and interacts with the game environment through
a series of actions. In this process of interaction, the agent
collects the reward for each of the actions it takes. Using the
reward as a feedback signal, the agent could be aware of how
well it performs at each time step.

The goal of RL is to learn an optimal policy, which guides
the agent to take actions more effective and thus to maximize
the amount of the reward it could gather from the environment.
In the setting of deep reinforcement learning, as is shown in
Figure 1, the policy learned is typically a deep neural network,
which takes as the input the observation of the environment
(i.e., the current snapshot of the game) and outputs the ac-
tions that the agent would take (i.e., left/right and up/down
movements, etc.). In Section 3, we will describe more details
about how to model a reinforcement learning problem and
thus resolve an optimal policy for the agent involved.

As is demonstrated in Figure 1a, the game is formalized as
a reinforcement learning problem in which the environment
involves only a single agent. However, in many reinforcement
learning tasks, an environment could contain two agents com-
peting with each other while interacting with the environment
(see Figure 1b). Recently, such two-agent competitive games
driven by reinforcement learning have received great attention
and reinforcement learning algorithms have demonstrated a
great potential [32, 45]. In this work, we, therefore, focus
our problem in the two-agent competitive environment, de-
veloping practical methods to train an adversarial policy for
one agent to beat the other and win corresponding two-agent
games. To be more specific, in this work, we fix one agent
and train the other with the goal of having the trained agent
build up the ability to exploit the weakness of that fixed other.
Assumption. It should be noted that, in our problem, we do
not assume the victim agent adapts its policy based on its
opponent immediately. With this assumption, we simulate
a real-world scenario, where a game developer deploys an
online game with an offline-trained master agent controlling
its play with participants (e.g., playing a two-party Texas hold
’em or a GO game), and the goal of an adversary is to figure
out a way to defeat that master agent, rule the game, and
thus gather maximum rewards for fun or for profits. When

playing the game, the game developer could collect the game
episodes and retrain the master agent accordingly. However,
he cannot pull out the master agent and carry out retraining
immediately (or in other words right after each round of its
play). On the one hand, this is due to the fact that, training a
game agent with an RL algorithm generally requires a long
period of episode accumulation to receive a high winning rate
(e.g., the task of training the OpenAI’s hide-and-seek game
agent accumulates hundreds of millions of episodes [35]). On
the other hand, this is because, even if the game developer
retrains the master agent based on a large amount of game
episodes that he collects, he still needs to figure out a way to
preserve the generalizability of its master agent. As we will
demonstrate in Section 6, after retraining the master agent
using the episodes the master agent gathers when interacting
with the adversarial agent, the master agent could capture the
capability of defeating the adversary. However, it loses its
ability to defeat ordinary game agents.

It should also be noted that this work is very different
from many existing works, which assume an attacker has the
privilege to manipulate the environment freely or, in other
words, change the pixels in the snapshot that the victim agent
observes (e.g., [18, 40]). We believe the removal of this as-
sumption is crucial and could make an adversarial attack more
practical. To illustrate this argument, we again take for ex-
ample the aforementioned online games. In these examples,
the game environment refers to the game scenes created by
the game engine and the agents in the game. The activities of
directly manipulating the environment (game scenes) mean
that an adversary breaks into the game server or engine, alters
the game code related to the game scenes, and thus influences
the environment that the agents interacts with. Technically,
this inevitably introduces the efforts of the successful iden-
tification and exploitation of a software vulnerability on the
game server. In practice, having such a capability typically
implies tens of thousands of hours of effort from professional
hackers, and cannot always guarantee the return of their ef-
forts because of the defense mechanisms enabled in computer
systems. With the removal of the assumption commonly made
in previous works, we make the adversarial attack more cost-
efficient because, instead of putting efforts on breaking into
game server without the guarantee of success, an attacker only
needs to train an adversarial policy to control his own agent
and thus influences its opponent.

As is illustrated in Figure 1b, similar to the single-agent
game driven by reinforcement learning, in the setting of a two-
agent game, both of the agents take as input the observation
of the same environment, and then output the actions through
their own policy networks. In this work, when designing
methods to train an adversarial agent, we do not assume that
an attacker has access to the opponent agent’s policy network
nor its state transition model. Rather, we assume that the
attacker knows the observation of the opponent agent as well
as the action that the opponent takes. We believe this assump-

tion is reasonable and practical because, as we mentioned
above, both the attacker’s agent and the opponent agent take
the observation from the same environment, and the action
took by agents can be easily observed from the environment
as well. For example, the opponent agent’s policy network
outputs an upward movement, which the adversarial agent
could easily observe from the change of the environment.

3 Background of Reinforcement Learning

Recently, many reinforcement learning algorithms have been
proposed to train an agent interacting with an environment,
ranging from Q-learning based algorithms (e.g., [31, 53]) to
policy optimization algorithms (e.g., [22,29,41,43]). Among
all the learning algorithms, proximal policy optimization
(PPO) [43] is the one that has been broadly adopted in the
two-agent competitive games. For example, teams from Ope-
nAI utilize this algorithm to play Hide-and-Seek [35] and
world-famous game Dota2 [32]. In this work, we design our
method of training an adversarial policy by extending the
PPO learning algorithm. In this section, we briefly describe
how to model a reinforcement learning problem, and then
discuss how the PPO algorithm is designed to resolve the
reinforcement learning problem.

3.1 Modeling an RL Problem
Given a reinforcement learning problem, it is common to
model the problem as a Markov Decision Process (MDP)
which contains the following components:

• a finite set of states S , where each state s(t) (s(t) ∈ S)
represents the state of the agent at the time t and s(0) is
the initial state;

• a finite action set A , where each action a(t) (a(t) ∈ A)
refers to the action of the agent at the time t;

• a state transition model P : S ×A → S , where Pa
ss′ =

P[s(t+1) = s′|s(t) = s,a(t) = a] denotes the probability
that the agent transits from state s to s′ by taking action
a;

• a reward function R : S × A → R, where Ra
s =

E[r(t+1)|s(t) = s,a(t) = a] represents the expected reward
if the agent takes action a at state s(t); here r(t+1) indi-
cates the reward that the agent will receive at the time
t +1 after taking the action;

• a scalar discount factor γ ∈ [0,1], which is usually mul-
tiplied by future rewards as discovered by the agent in
order to dampen the effect of rewards upon the agent’s
choice of an action.

As is mentioned above, the ultimate goal of reinforcement
learning is to train the agent to find a policy π(a|s): (S → A)

that could maximize the expectation of the total rewards over
a sequence of actions generated through the policy. Mathemat-
ically, this could be accomplished by maximizing state-value
function Vπ(s) defined as

Vπ(s) = ∑
a∈A

π(a|s)(Ra
s + γ ∑

s′∈S
Pa

ss′Vπ(s′)) , (1)

or the action-value function Qπ(s,a) defined as

Qπ(s,a) = Ra
s + γ ∑

s′∈S
Pa

ss′ ∑
a′∈A

π(a′|s′)Qπ(s′,a′) . (2)

In reinforcement learning, the state-value function Vπ(s)
represents how good is a state for an agent to be in. It is equal
to the expected total reward for an agent starting from state s.
The value of this function depends on the policy π, by which
the agent picks actions to perform. Slightly different from
Vπ(s), the action-value function Qπ(s,a) is an indication for
how good it is for an agent to pick action a while being in
state s. By maximizing either of these functions above, one
could obtain an optimal policy π∗ for the agent to collect the
maximum amount of rewards from the environment.

3.2 Resolving an RL problem
Deep Q-learning. To find an optimal policy for an agent
to maximize its total reward, one method is to utilize deep
Q-learning, which takes a state s and approximates the Q-
value for each action based on that state (i.e., Qπ(s,a)). With
this approximation, although the agent cannot extract the
policy explicitly, it could still maximize its reward by taking
the action with the highest Q-value. As is shown in recent
research, such a method demonstrates a great success in many
applications, such as playing GO [45] and mastering a wide
variety of Atari games [30]. However, since deep Q-learning
usually calculates all possible actions in a discrete action
space, it has been barely adopted to two-agent games with
continuous action space, including simulation games, like
MuJoCo and RoboSchool, and real-world strategy games,
such as StarCraft and Dota. As a result, the policy gradient
approach is typically adopted.
Policy Gradient Algorithm. Policy gradient refers to the
techniques that directly parametrize the policy as a function
πθ(s,a) = P(a|s,θ). At the time t, this function takes as input
the state s(t) and outputs the action a(t). In recent research
article [29], researchers modeled the policy π as a deep neural
network (e.g., multilayer perceptron [55] or recurrent neural
networks [58]), and named the DNN as the policy network.

To learn a policy network for an agent, the policy
gradient algorithm defines an objective function J(θ) =
Es(0),a(0),...∼πθ

[∑∞
t=0 γtr(t)] which represents the expectation of

the total discounted rewards. By maximizing this objective
function, one could obtain the parameters θ and thus the op-
timal policy. In order to compute parameters θ, the policy
gradient algorithm computes the gradient of the objective

…… Vv(s)

⇡✓(a|s)Shared
parameter

�⇡

µ⇡

…… N(µ, σ2)

Figure 2: The neural network architecture involved in the
PPO algorithm. Note that the two networks share parameters
with each other.

function with respect to parameters (i.e., OθJ(θ)) and then
iteratively apply stochastic gradient-ascend to reach a local
maximum in J(θ). According to the Policy Gradient The-
orem [22], for any differentiable policy πθ(s,a), the policy
gradient can be written as

OθJ(θ) = Eπθ
[Oθlogπθ(s,a)Qπθ

(s,a)] , (3)

where πθ(s,a) is the policy network and Qπθ
(s,a) denotes the

action-value function of the corresponding MDP. As we can
easily observe from the equation above, to solve this equation,
we need to know function Qπθ

(s,a). In the policy gradient al-
gorithm, the action-value function Qπθ

(s,a) is approximated
by a deep neural network Qw(s,a), which can be learned to-
gether with the policy network. However, this design has a
limitation. In each iteration of the training process, an agent
has to compute the reward at the end of the episode, and then
average all actions. Therefore, an agent inevitably concludes
all the actions taken were good, if it receives a high reward,
even if some were really bad. To address this problem, one
straightforward approach is to enlarge the training sample
batch. Unfortunately, this could incur slow learning and the
agent has to take even longer time to converge.
Actor-Critic Framework. To improve the policy gradient
algorithm mentioned above, recent research introduces an
actor-critic framework, which defines a critic and an actor.
Through an action-value function Qπθ

(s,a), the critic mea-
sures how good the action taken is. Through a policy network
πθ, the actor controls how the agent behaves. With both of
these, we can rewrite the policy gradient as

OθJ(θ) = Eπθ
[Oθlogπθ(s,a)Aπθ

(s)] ,

Aπθ
(s,a) = Qπθ

(s,a)−Vπθ
(s) .

(4)

Here, Aπθ
(s,a) is an advantage function, which measures the

difference between the Q value for action a in state s and
the average value of that state [12]. Through this advantage
function, we can know the improvement over the average
the action taken at that state. In other words, this function
calculates the extra reward the agent gets if it takes this action.

To solve equation (4), the actor-critic framework approxi-
mates Vπθ

(s) through a deep neural network Vv(s) parameter-
ized by v and then utilizes this approximated Vπθ

(s) to deduce
Qπθ

(s,a). As is specified in [29], this neural network can be
learned together with the policy network πθ through either
Monte-Carlo methods or Temporal-Difference methods [42].
Proximal Policy Optimization (PPO) Algorithm. Using
the actor-critic framework to train an agent, recent research
indicates that the actor usually experiences enormous variabil-
ity in the training which influences the performance of the
trained agent [41]. To stabilize actor training, recent research
proposes the PPO algorithm [16, 43], which introduces a new
objective function called “Clipped surrogate objective func-
tion”. With this new objective function, the policy change
could be restricted in a small range.

As is discussed in [41], the original mathematical form of
clipped surrogate objective function is

maximizeθ E(a(t),s(t))∼πθold
[

πθ(a(t)|s(t))
πθold (a

(t)|s(t))Aπθold
(a(t),s(t))] ,

s.t. Es(t)∼πθold
[DKL(πθold (·|s(t))||πθ(·|s(t)))]≤ δ ,

(5)

where πθold is the old policy. DKL(p||q) refers to the KL-
divergence between distribution p and q [24]. Aπθold

(a(t),s(t))
refers to the advantage function in Equation (4). By solving
Equation (5), the new policy πθ can be obtained.

As is discussed in [43], solving Equation (5) is computa-
tionally expensive because it requires a second-order approxi-
mation of the KL divergence and computing Hessian matrices.
To address this problem, Schulman et al. [43] proposed the
PPO objective function, which replaces the KL-constrained
objective in Equation (5) by a clipped objective function

maximizeθ E(a(t),s(t))∼πθold
[min(clip(ρ(t),1− ε,1+ ε)A(t),ρ(t)A(t))] ,

ρ
(t) =

πθ(a(t)|s(t))
πθold (a

(t)|s(t)) , A(t) = Aπθold
(a(t),s(t)) .

(6)

Here, clip(ρ(t),1− ε,1+ ε) denotes clipping ρ(t) to the range
of [1− ε,1+ ε] and ε is a hyper-parameter. During the train-
ing process, in addition to updating the actor by solving the
optimization function in Equation (6), the PPO algorithm
iteratively updates the action-value function Qw(s,a) as well
as the state-value function Vv(s) (i.e., the critic) by using the
Temporal-Difference method.3 In Figure 2, we show the net-
work structure used in the PPO algorithm. As we can observe
from the figure, the network structure contains two deep neu-
ral networks, one for approximating the state-value function
Vv(s) and the other for modeling the policy network πθ. It
should be noted that the implementation of PPO algorithm
does not introduce an additional neural network to approxi-
mate action-value function Qw(s,a) but to deduce it through
the state-value function Vv(s).

3While the Monte-Carlo method is also available for the training, due
to the performance concern, the standard implementation of PPO considers
only the Temporal-Difference method.

…

…

Optimal action

Suboptimal action

t1 …

Suboptimal action

t2

Optimal action

WIN

tk

LOSS

o1
...
o5

o6

o7

o8
...
o13

2.1

0.0

1.3

0.0

0.0

0.0

3.0

0.0

ô1
...
ô5

ô6

ô7

ô8
...
ô13

s(t)

ŝ(t)

Figure 3: The overview of our proposed attack. The upper part on a grey canvas demonstrates a game episode where the policy
network of the opponent agent outputs the optimal actions and the opponent agent (in purple) wins the game. The lower part
shows an episode in which the adversarial agent (in blue) subtly manipulates the environment through its actions, forces the
opponent agents to choose a sequence of sub-optimal actions, and thus defeats the opponent. The arrow tied to the purple paddle
indicates the action the opponent agent takes. At each time step, the adversarial agent only introduces an imperceptible change
to the environment and therefore the scenes (or in other words states) on the grey canvas are nearly as same as those on the
white canvas (i.e, ‖s(t)− ŝ(t)‖ ≤ ε where ε is a small number restricting the action change of the adversarial). The feature vector
passing to the networks indicates the observation of the opponent agent. It is converted from the states of the opponent agent s(t)

and ŝ(t). The features in the red box (o5 · · ·o8 and ô5 · · · ô8) represent those corresponding to the adversarial action.

Different from the previous actor-critic algorithms, which
update actor by conducting stochastic gradient-ascend4 using
the approximated policy gradient of Equation (4), the PPO
algorithm can guarantee a monotonic improvement of the
total rewards when updating the policy network (i.e., J(θ)≥
J(θold)). With this property, the trained agent could not only
reach to the convergence faster but, more importantly, demon-
strate more accurate and more stable performance than the
previous actor-critic algorithms. To the best of our knowledge,
PPO is the state-of-art algorithm for training a policy network
for the agent in the two-agent competitive games. As such, we
design our attack by extending this PPO training algorithm.

4 Technical Overview

Recall that we attack a well-trained agent by training a pow-
erful adversarial agent. To achieve this, as is mentioned in
Section 2, we do not assume that an attacker has access to the
policy network of the opponent agent πv nor its state-transition
model Pv

ss′ . Rather, we assume the attacker could obtain the

observation and action of the opponent (i.e., the state s(t)v and
action a(t)v of the opponent agent at each time step t). In this
section, we first specify the basic idea of our attack method.
Then, we briefly describe how to utilize the aforementioned
states and actions to extend the PPO algorithm and thus im-

4Note that the performance of stochastic gradient-ascend highly depends
on the step size and it cannot guarantee to increase the objective function
monotonically.

plement our attack method at a high level.

4.1 Basic idea of the proposed attack

Admittedly, it is possible to design a simple reward function
for an adversarial agent to beat its opponent. However, the
reward function design is usually game-specific, and it is chal-
lenging to design a universal solution. As such, we follow
a different strategy to fulfill our objective as follows. In a
two-agent competitive game, one could train an agent to take
an optimal action at each state via selfplay [3]. Therefore,
as is depicted in Figure 3, to influence a well-trained agent,
one method is to maximize the deviation of the actions taken
by that agent and thus make the agent output a suboptimal
action (i.e., given the same/similar environment observation,
an agent takes an action which is very different from the one
it is supposed to take). With this practice, from the adver-
sary’s viewpoint, he can downgrade the opponent agent’s
performance and thus reduce its winning rate.

To maximize the action deviation, an adversary would
inevitably vary the observation of the victim agent. As is
mentioned above, a suboptimal action means that, given the
same or similar observation, the action of the agent is very
different from the one it is supposed to take. Therefore, as we
will specify in the following, when maximizing the deviation
of an opponent action, we need to ensure the minimal change
of the environment observation.

Recall that we do not assume an adversary has the privilege
to manipulate the environment, and, in a two-agent compet-

Time step

H
igh to Low

t2t1 t3 . . . tK. . .
o1

o5

o8

o13
..

.
..

.
..

.

Figure 4: A heatmap indicating the input feature impor-
tance of the opponent policy network of Roboschool Pong
game. The highlighted features (o5 · · ·o8) represent those
corresponding to the adversarial action. The heapmap is gen-
erated by using the output of explainable AI techniques.

itive game, the action of the adversarial agent is converted
as part of the environment observation of its opponent agent.
Take the example shown in Figure 3. The opponent observa-
tion is depicted as a feature vector, within which some of the
features represent the adversarial actions. As such, we can
subtly manipulate the action of the adversarial agent and thus
change the features indicating the adversarial action. With
this, we can change the input to the opponent’s policy network
and indirectly deviate the action of the opponent agent.

However, as is shown in Figure 4, by performing a sensitiv-
ity check for the policy network against the input features over
time, we note that the opponent’s policy network takes the
importance of the input features differently over time. There-
fore, intuition suggests that the best strategy is to perform the
corresponding feature manipulation only at the time when
the opponent policy network pays sufficient attention to the
features corresponding to the adversarial actions. To achieve
this, as we will specify below, we utilize an explanation AI
technique to examine the the victim policy network’ feature
importance at each time step. With this, we can pinpoint the
time frame when the victim policy network pays its attention
to the adversarial action, and thus employ an adjustable hyper-
parameter to control the level of action deviation adjustment.

4.2 More details
As is stated above, we design our attack in two steps – ¶
deviating the actions of the opponent agent with a minimal
change to its observation, and · adjusting the weight of the
action deviation of the opponent agent based on the influence
of the adversarial actions upon the opponent. In the following,
we specify how we implement this two-step design.
Deviating opponent actions. To deviate the action of the
opponent, we extend the PPO loss function LPPO mentioned
in Section 3. To be specific, we introduce into the PPO loss
function a new loss term

Lad = maximizeθ(−‖ô(t+1)
v −o(t+1)

v ‖+‖â(t+1)
v −a(t+1)

v ‖) , (7)

where θ represents the parameters in πα. ô(t+1)
v and â(t+1)

v
indicate the different observation and action taken by the op-
ponent agent if, at the time step t, the adversarial agent takes
an action different from the ones indicated by the trajectory

rollouts (i.e., different from the actions that the opponent is
supposed to take). As we can observe from the equation
above, the loss term contains two components. The design
of the first component ensures that, when launching attacks,
an adversary introduces only minimal variations to the ob-
servation of the opponent agent. The design of the second
component forces the opponent agent to take a suboptimal
action â(t+1)

v but not the optimal action a(t+1)
v , and thus trig-

ger the drop of its winning rate. It should be noted that we
compute both the action difference and observation difference
by using a norm, the output of which is a singular. As such,
when we can combine the observation and action differences
in a linear fashion.

As is mentioned in Section 2, neither the opponent policy
network πv nor its state-transition model pss′

v is available for
our method. Without the state-transition model, we cannot
predict the observation of the opponent agent ô(t+1)

v at the
time step t + 1, when our adversarial agent takes an action
at the time step t and subtly varies the observation of the
opponent at the time step t + 1. Without the access to the
policy network, even if ô(t+1)

v is given, we still cannot predict
the action of the opponent agent â(t+1)

v = πv(ô
(t+1)
v) at the

time step t +1. This imposes the challenge of computing the
loss term Lad in Equation (7).

To tackle the challenge, our method approximates the op-
ponent policy network as well as its state-transition model
by using two individual deep neural networks. By definition,
the state-transition model outputs the predicted observation
of the opponent o(t+1)

v at the time step t + 1. It takes as in-
put the observation of the opponent o(t)v , the action of the
adversarial agent a(t)α , and that of the opponent agent a(t)v at
the time step t. As we specify in Section 5, we train both of
the neural networks by using trajectory rollouts. It should be
noted that, to train the surrogate model, the attack needs to
access victim observation and action, which is a legitimate
assumption (See Section 2). However, we also admit that the
proposed attack would become harder when this information
is not available. This is because the attacker needs extra effort
to infer such information and then train the surrogate model
with the approximated victim observation and action.
Adjusting weights of action deviation. As is mentioned
above, the opponent/victim agent weights the action of the
adversarial differently over time when deciding its own action
through its policy network. As a result, when leveraging the
action of the adversarial to influence the environment obser-
vation and thus the action of the opponent agent, we adjust
the weight of the action deviation based on by how much the
victim agent pays attention to the action of the adversarial.
To achieve this, when optimizing the extended loss function
Lppo +Lad , we introduce a hyperparameter λ, indicating the
importance of our newly added term Lad . With this, we can
rewrite the extended loss function as Lppo +λ ·Lad . To max-
imize this loss function, we can adjust the weight assigned

to the new term (i.e., Lad) based on the weight that the oppo-
nent/victim agent pays attentions to the adversarial.

In this work, we utilize an explanation AI technique to
measure the weight that the victim agent pays attention to
the adversarial action. As is shown in Figure 3, the actions
of the adversarial are part of the observation of the victim
agent. They are encoded as part of the features passing to the
victim’s policy network. In Figure 3, we can easily observe
that a policy network is a deep neural network. Over the time,
the observation feature vector passing to the network varies.
Using an explanation AI technique at each time step against
the victim policy network, we can measure by how much the
policy network pays attention to the features corresponding
to the action of the adversarial.

Intuition suggests that, to obtain an optimal effect upon
the deviation of the opponent, the adversarial agent should
manipulate its actions at the time when the opponent pays its
attention to the adversary. Otherwise, the action manipulation
of the adversarial agent will introduce minimal influence upon
the action of the opponent agent. Following this intuition, we
assign the value for λ at each time step t based on the output
of an explainable AI technique. More specifically, we assign
a higher value to the weight λ when the opponent pays more
attention to the adversarial agent. Otherwise, we assign a
relatively low value on the weight to minimize the impact
of our newly added term. For more details of our weight
assignment, readers could refer to Section 5.

Over the past years, there are many techniques in the field
of explanation AI research, ranging from black-box meth-
ods (e.g., [9, 39]) to white-box approaches (e.g., [46–48]).
Among all these explanation AI techniques, we choose
gradient-based interpretation methods, serving as the way
to weight the influence of the adversarial actions upon oppo-
nent’s policy network. The rationales behind our choice is
as follow. In comparison with other explanation AI methods,
such as some black-box methods [39] which need to perform
intensive data sampling before deriving explanation, gradient-
based methods are computationally efficient. In the context
of deep reinforcement learning, the observation of the oppo-
nent/victim agent o(t)v changes over time rapidly and we need
to adjust the hyperparameter λ at each time step. In this work,
we rely upon gradient-based methods, which can minimize
the computation needed for weight adjustment. Considering
that past research [1] indicates different gradient-based ex-
planation methods provide different accuracy in explanation,
we thoroughly evaluate by how much the choice a particular
gradient based method would influence the performance of
our attack. We show our evaluation results in Section 6.

5 Technical Detail

In this section, we provide more details about our proposed
method. More specifically, we first formally define the prob-

lem that our method targets. Then, we specify the design
of our loss term. Finally, we discuss how we extend our
loss function through explainable AI and present our learning
algorithm as a whole.

5.1 Problem definition
Following the early research [44], we also formulate a two-
agent competitive game as a two-agent MDP, represented by
M =< S ,(Aα,Av),P ,(Rα,Rv),γ>. Here, S denotes the state
set. Aα and Av are the action sets for adversarial and oppo-
nent agents, respectively. P represents a joint state transition
function P : S ×Aα×Av→ ∆(S). The reward function can
be represented as Ri : S ×Aα×Av→ R; i ∈ {α,v}.

As is mentioned in Section 3, the state transition is a
stochastic process. Therefore, we use ∆(S) to represent a
probability distribution on S , from which the state at each
time step can be sampled. Note that using the PPO algorithm
for training agents in a two-agent competitive game, we can-
not obtain the state S and the state transitions function P in
an explicit form. From the game environment, each of the
agents can get only its own observation Oi; i ∈ {α,v}.

In this paper, we assume that the opponent agent follows a
fixed stochastic policy πv. Holding this assumption, our prob-
lem can be viewed as a single-agent MDP for the adversarial
agent, denoted by Mα =< S ,Aα,Pα,Rα,γ >. Here, the state-
transition model Pα is unknown, and S is equivalent to the
observation of the adversarial agent Oα. Under this problem
definition, the goal of this work is to identify an adversarial
policy πα that can guide the corresponding agent to beat its
opponent in the single-agent MDP.

5.2 Expected reward maximization
As is described in Section 4, we extend the PPO loss function
when designing our proposed method. As is introduced in the
early section, the PPO loss function can be written as

maximizeθ E
(a(t)α ,o(t)α)∼πold

α

[min(clip(ρ(t),1− ε,1+ ε)A(t),ρ(t)A(t))] ,

ρ
(t) =

πα(a
(t)
α |o(t)α)

πold
α (a(t)α |o(t)α)

, A(t) = A
πold

α
((a(t)α ,o(t)α)) .

(8)

Here, πold
α and πα denotes the old and new policy of the ad-

versarial agent, respectively. o(t)α is the observation of the
adversarial agent at the time step t. It encloses the action
of the opponent agent a(t)v . Following the standard PPO al-
gorithm, we use a neural network Vα(s) to approximate the
state-value function, and thus obtain the advantage A(t) at the
time step t. In this work, the model architectures of the state-
value function and the policy network are as same as those in
the PPO algorithm (see Figure 2). By solving the objective
function above, we could find an adversarial policy πα, with
which the corresponding adversarial agent could maximize
the expected total reward: ∑

∞
0 γ(t)Rα(s(t),a

(t)
α).

5.3 Action deviation maximization
Recall that we extend the PPO loss function by introducing a
new loss term

Lad = maximizeθ(‖â(t+1)
v −a(t+1)

v ‖1−‖ô(t+1)
v −o(t+1)

v ‖1) . (9)

As is shown above, we choose l1 norm distance as the dif-
ference measure instead of l2 norm. This is because l1 norm
encourages a larger difference than l2 norm, especially when
Ov is of a high dimensionality [2]. As we will empirically
show in Section 6, an adversarial agent trained with the l1
norm usually demonstrates a stronger capability of beating
opponent agents than that trained with l2 norm.
State transition approximation. To predict the observation
of the opponent agent at the time step t +1, we utilize a deep
neural network to approximate the state-transition model of
the opponent agent. As is mentioned in Section 4, the deep
neural network takes as input (o(t)v ,a(t)v ,a(t)α), and predicts
o(t+1)

v (i.e., the observation of the opponent agent at the time
step t+1). In this work, we train this neural network by using
the following equation

argminθh
‖H(o(t)v ,a(t)v ,a(t)α ;θh)−o(t+1)

v ‖∞ , (10)

where θh denotes the parameters of the neural network H. It
should be noted that ‖ · ‖∞ is non-differentiable. Therefore,
we adopt the approximation technique introduced in [7], and
use the alternative objective function

Lst = minimizeθh‖(|H(o(t)v ,a(t)v ,a(t)α)−o(t+1)
v |− εs)

+‖2
2 , (11)

to train the approximated state-transition model H. In the
equation above, (·)+ is equivalent to max(·,0). εs is a
hyperparameter, which controls the maximum l∞ between
H(o(t)v ,a(t)v ,a(t)α) and o(t+1)

v . To solve this objective function,
we collect the ground truth training data (o(t)v ,a(t)v ,a(t)α ,o(t+1)

v)
by using trajectory rollouts. Then, we utilize the ADAM op-
timization method [20] to minimize this objection function.
More specifically, as is shown in Algorithm 1 (step 7), the
state-transition model is trained jointly with the policy net-
work of the adversarial agent. At each iteration, we first
collect a set of trajectories by using current adversarial policy
to play against the opponent agent. The information contained
in the collect trajectories includes the opponent agent’s ac-
tions and observations. Using these actions and observations
as the ground truth, we can update the surrogate networks
by minimizing the loss functions above. It should be noted
that, while the state transition model H should be obtained
based on the old adversarial policy, we predict the state tran-
sition under the new adversarial policy. We argue this does
not introduce negative effect to our training process because
the PPO objective function guarantees a minor change in the
adversarial policy at each iteration.
Opponent policy network approximation. As is shown in
Equation (9), computing action deviation requires a(t+1)

v and

â(t+1)
v . In addition, as is mentioned earlier, our attack relies

upon the capability of knowing how a victim agent weights
the importance of the adversarial actions. To do that, as
we will elaborate in Section 5.4, we leverage gradient-based
explanation AI techniques, which need to take as input the
policy network of the victim agent. As such, in addition to the
state transition approximation, we use a deep neural network
F to approximate the policy network of the opponent agent.

In this work, to learn the victim’s policy network, we fol-
low existing imitation learning methods [52] and design the
following objective function

Lop = minimizeθ f ‖(|F(o(t)v ;θ f)−a(t)v |− εa)
+‖2

2 . (12)

Here, θ f represents the parameters of the deep neural net-
work F . As we can observe from the equation above, we
also use the approximated l∞ loss to train F . Similar to the
method above, we also collect the training samples (o(t)v ,a(t)v)
through trajectory rollouts and then apply the ADAM algorithm
to minimize the loss. As we will empirically illustrate in
Section 6, the network trained with l∞ norm usually exhibits
better performance than those trained with l2 and l1.

Note that, in MDP, both the state transition and the policy
network should be in the form of stochastic. This means that
the most typical way of approximating P and π should be
density estimation [14]. In this work, we, however, conduct
point estimations to reduce the computational cost. As we will
show in Section 6, while point estimate ignores the variance
of the original distribution and may introduce a bias, our
attack is still able to achieve decent performance in terms of
beating the opponent in the two-agent competitive game.

After obtaining the approximated models H and F , we
can predict the observation of the opponent agent ô(t+1)

v

through H(o(t)v ,a(t)v , â(t)α), and its action â(t+1)
v through

F(H(o(t)v ,a(t)v , â(t)α)). With these predictions, we can rewrite
Equation (9) as

Lad = maximizeθ(‖F(H(o(t)v ,a(t)v , â(t)α))−a(t+1)
v ‖1

−‖H(o(t)v ,a(t)v , â(t)α)−o(t+1)
v ‖1) .

(13)

Here, it should be noted that â(t)α is the new action derived
from the adversarial policy πα.

5.4 Hyperparameter adjustment
As is mentioned in Section 4, we introduce a hyperparameter
to balance the weight of the newly added loss term. In this
work, we automatically adjust λ by using an explainable AI
technique. More specifically, by using the gradient saliency
methods (e.g., [46]) at the time step t, we first compute g(t) =
O

o(t)v
F(o(t)v) which indicates the importance of each element

in the opponent agent’s observation.5 In this equation, F(o(t)v)

5Note that we do not have the access to the opponent policy network and,
therefore, we compute the gradient on the basis of its approximation F .

denotes the action of the opponent agent a(t)v predicted by F .

Supposing o(t)v ∈ Rp×1 and F(o(t)v) ∈ Rq×1, the gradi-
ent g(t) ∈ Rp×q is a matrix, in which each element g(t)i j =

O
(o(t)v)i

F(o(t)v) j indicates the importance of the i-th element in

o(t)v to the j-th element in F(o(t)v). To assess the overall impor-
tance of each element in o(t)v to F(o(t)v), we sum the elements
in each row of g(t) and transform it into a normalized vector
g̃(t) = ∑ j=1:q g(t)i j . Here, g̃(t) ∈ Rp×1 indicates the importance

of the i-th element in o(t)v to F(o(t)v).
After obtaining g̃(t), we then calculate the importance of

the adversarial agent’s action to the opponent agent’s action at
the time t. Recall that the observation of the opponent agent
o(t)v contains three components – environment, the action
of the opponent agent, and that of the adversarial agent –
and we focus only on the action of the adversarial agent.
Therefore, we eliminate the feature importance tied to the
environment and the action of the opponent agent. To do this,
we first perform an element-wise multiplication between g̃(t)

and a mask M ∈ Rp×1. Then, we borrow the idea of an early
research work [9], through which we compute λ as follows

I(t) = ‖F(o(t)v)−F(o(t)v � (g̃(t)�M))‖∞ , λ
(t) =

1
1+ I(t)

. (14)

Here, the vector o(t)v is a vector, indicating the observation at
time t. M is a vector with the same dimensionality as the vec-
tor o(t)v . In o(t)v , if the corresponding observation dimensions
indicate the actions of adversarial agent, we assign 1 to the
corresponding element in M. Otherwise, we assign 0 accord-
ingly. For example, assuming the kth ∼ (k+N)th dimensions
of o(t)v indicate the actions of the adversarial agent. Then, we
assign 1 to the kth to (k+N)th dimensions of M, and the rest
is assigned to 0. In this work, we normalize λ(t) to [0,1]. 6

From this equation, we can easily discover that, the higher
value of I(t) indicates a lower importance score, resulting in
a lower value of λ(t). In Algorithm 1, we illustrate how to
combine λ with our extended loss function, and thus train an
adversarial agent with the ability to attack its opponent.

6 Evaluation

In this section, we evaluate our proposed attack technique
from various aspects, compare it with the state-of-the-art
method, and demonstrate its effectiveness and efficiency by
using representative two-agent competitive games. Below,
we first present our experiment setup. Then, we discuss the
design of our experiment, followed by our experiment results.

6Normalization could capture temporal changes and prevent the influence
of its extreme values upon the PPO learning process.

Algorithm 1: Adversarial policy training algorithm.

1 Input: the adversarial agent’s policy πα parameterized by
θα, the adversarial agent’s value function network
Vα with parameter vα, the state transition model H with
parameter θh, the opponent’s policy approximation
model F with parameter θ f , and the pretrained
opponent agent’s policy πv.

2 Initialization: Initialize θ
(0)
α , θ

(0)
h , θ

(0)
f , and v(0)α .

3 for k = 0,1,2, ...,K do
4 Collect a set of trajectories Dk = {τi} by using adversarial

policy πk
α to play against the opponent agent πv, where

i = 1,2,, |Dk| and each trajectory contains T time step.
5 Obtain the reward of the time t in each trajectory τi: ri(t)

α .
6 Compute the estimated advantage of each time in each

trajectory: Ai(t) based on the current value function Vαk :

Ai(t) = ri(t)
α + γVαk (oi(t+1)

α)−Vαk (oi(t)
α).

7 Update the state transition approximation function H and
the opponent policy approximation function F using the
current trajectories according to the following objective
function

θ
k+1
h = argminθh

1
|Dk |T ∑

τ∈Dk

T

∑
t=0

Lst ,

θ
k+1
f = argminθ f

1
|Dk |T ∑

τ∈Dk

T

∑
t=0

Lop .

(15)

8 Based on the updated oi(t)
v , ai(t)

v in Dk, and F
θ

k+1
f

, compute

the penalty term for each time t in each trajectory i: λi(t)

according to Equation (14).
9 Update the policy by maximizing the following objective

function

θ
k+1
α = argmaxθα

1
|Dk |T

|Dk |
∑
i=1

T

∑
t=0

Lppo +λ
i(t)Lad . (16)

10 Update the value function by minimizing the following
objective function

vk+1
α = argminvα

1
|Dk |T

Dk

∑
i=0

T

∑
t=0

(V
αk (o

i(t)
α)− (ri(t)

α + γV
αk (o

i(t+1)
α)))2 .

(17)
11 end
12 Output: the well trained adversarial policy network πα.

6.1 Experiment setup

In our experiment, we choose the game “You Should Not
Pass” in the MuJoCo game zoo [50], which has recently been
adopted to demonstrate the effectiveness of a state-of-the-art
adversarial attack [10]. As we will specify in the consecu-
tive session, by using this game, we not only evaluate the
key components of our proposed design but, more impor-
tantly, compare the effectiveness of our proposed technique
with that of the state-of-the-art method [10]. In addition to
the MuJoCo game, we demonstrate our method on the ro-
boschool Pong game [33]. Together with the MuJoCo game,
we quantify by how much our proposed method outperforms

the state-of-the-art technique [10]. We believe the games of
our choice are representative for the following three reasons.
First, both games provide us with the interface to train agents
using reinforcement learning algorithms, giving us the free-
dom to develop our attack method. Second, as is discussed in
Section 2, our attack targets competitive games in which re-
inforcement learning algorithms are commonly used to train
agents. Both games of our choice are commonly used in
academia for evaluating reinforcement learning algorithms
in two-agent settings (e.g., [3]) and attack methods in ad-
versarial learning (e.g., [10]). Third, we design our attack
based on the PPO algorithm. When we choose games, we
need to ensure, the PPO algorithm should be the one most
commonly used for the games of our choice. Both MuJoCo
and Roboschool hold this selection criterion. In the following,
we briefly introduce both of these games, the opponent agents
in both games, and the evaluation metric.

MuJoCo. In this game, two agents (i.e., players) are first
initialized to face each other. As is illustrated in Figure 5a,
the blue humanoid robot then starts to run towards the finish
line (indicated by the red line in Figure 5a). In this process,
the red humanoid robot in the figure attempts to block the blue
robot from reaching the line right behind it. By design, the
blue robot could win the game only if it reaches the finish line.
Otherwise, the other robot wins. When playing this game,
both robots observe the game environment, the current status
of themselves (e.g., the position and velocity of their body),
and that of their opponent. Based on the observation, they
both utilize a policy network to decide their actions (i.e., the
direction and velocity of the next movement). The game ends
when the winning condition is triggered. At that time, the
winner receives a reward, whereas the loser gets penalized.

Roboschool Pong. As is depicted in Figure 5b, the Pong
game features two paddles and a ball. The reinforcement
learning agents control the movement of the paddles through
policy networks. At the beginning of the game, one agent
serves the ball, and the other returns the serve. In each
round of the game, an agent can claim a win only if its oppo-
nent fails to return the ball or violates the rule of the game
(e.g., successively hit the ball twice). If a single round of the
game runs out of time, a timeout will be triggered and the
game will conclude a tie. In this game, the observation of an
agent contains the agent itself, the opponent agent, and the
position and velocity of the ball. Based on the observation,
through its policy network, the agent can take an action in-
dicated by the direction and velocity of its next movement.
When playing this game, agents will receive a reward or be
penalized based on the performance of the agent.

Opponent agents. Following the work proposed in [10], re-
garding the MuJoCo game, we treat the blue humanoid robot
as the opponent agent and the red one as our adversarial agent.
For the Pong game, we take the purple paddle (on the right
of Figure 5b) as the opponent agent whereas the other as

(a) MuJoCo. (b) Roboschool Pong.

Figure 5: The illustration of the selected games.

the adversarial one.7 In this work, the policy networks of
opponent agents are all modeled as multilayer perceptrons,
which are trained through a self-play mechanism [3] because
this neural architecture has been broadly used by previous
research [3, 10, 33] and already demonstrated the best perfor-
mance in both MujoCo and Pong game. To be more specific,
for the MuJoCo game, we used the pre-trained policy net-
work released in the “agent zoo” [3] as the opponent policy
network. For the roboschool Pong game, we first trained a
policy network through the self-play mechanism by using the
PPO algorithm. Then we treated it as the opponent policy
network. We specify the architectures of these two opponent
policy networks in the Appendix.
Evaluation metric. Different from supervised learning algo-
rithms, many reinforcement learning algorithms typically do
not involve a data set collected offline for training an agent.
Instead, they usually expose a learning agent to interact with
the environment for many iterations. In each iteration, the
learning agent collects trajectories by using its policy net-
work learned from the last iteration, update its current policy
network with the new trajectories, and proceed to the next
iteration. In our experiment, we follow the metric commonly
used for evaluating reinforcement learning, measuring the
winning rate of the adversarial agent at each iteration. Given
the property of the competitive game, by subtracting the win-
ning rate of the adversarial agent, we can easily obtain that of
the opponent. The higher the winning rate for an adversarial
agent is, the more powerful the adversarial agent is in terms
of exploiting the weakness of its opponent.

6.2 Experiment design

We design our experiment from two different perspectives.
One is to evaluate some components of our proposed tech-
nique, and the other is to quantify the overall performance of
our proposed method. In the following, we describe the detail
of each of our experiment designs.
Experiment I. Recall that we utilize gradient-based explain-
able AI techniques to guide the selection of the hyperparam-
eter λ. To understand the contribution of the explanation

7Note that the two agents are symmetric; therefore, the choice of the
opponent agent does not influence the effectiveness of the learning algorithm.

component in our loss function, we first design an experi-
ment, in which we set up the hyperparameter λ with different
constant values, run our learning algorithm under this set-
ting on the MuJoCo game, and compare the performance of
the trained agent under each constant value with the one ob-
tained through our explanation-based method. With respect to
the explanation-based method, we choose different gradient-
based explainable AI techniques to serve as the explanation
component. In this experiment, we compare the correspond-
ing performance of the adversarial agent under each of our
choices. More specifically, the gradient-based explainable AI
methods in our choice set include vanilla gradient [46], inte-
grated gradient [48], and smooth gradient [47]. In addition to
these well-recognized gradient-based methods, our choice set
encloses a random explanation approach as a baseline method,
which derives feature importance score randomly.
Experiment II. We also design an experiment to validate
the choice of our distance measure. As is mentioned in Sec-
tion 5, we carefully design the measure of distance indicated
by Equation (11), (12), and (13). To ensure our choice of
the distance measure could truly benefit the agent trained by
our proposed method, we replace the corresponding distance
measures with the l1 and l2 norm respectively. In this work,
we compare the performance of the trained agent under each
of these setups.
Experiment III. We further design an experiment to examine
whether the approximated opponent policy network involved
in our technique imposes any risk of downgrading our agent’s
performance. As is mentioned in Section 4, to derive an
explanation and thus guide the adjustment of the hyperparam-
eter λ, we approximate the policy network of the opponent.
Since this approximation is based on point estimation, this
inevitably incurs errors and thus potentially influences the per-
formance of the adversarial agent trained by our method. To
test its impact upon the adversarial agent’s performance, we
replace the approximated policy network with the actual pol-
icy network of the opponent agent, run the proposed learning
algorithm, and compare the performance of the corresponding
agent with the one obtained through our method.
Experiment IV. Using the state-of-the-art attack method [10]
as our baseline, we also design an experiment to evaluate our
proposed method. To be specific, we use both methods to
train adversarial agents and then apply them in the MuJoCo
game and the Pong game. In each of the games, we then
compare the winning rate of the adversarial agents across the
number of iterations involved in the training process. This is
similar to the setup proposed in an early research [10].
Experiment V. Finally, we investigate a simple adversarial
training approach to safeguard victim models against the pro-
posed attack. More specifically, We play the victim agent
with the adversarial agent trained by our attack in the corre-
sponding game environment and collected the game episodes.
With these episodes, we then utilized our proposed learning
algorithm (Algorithm 1) to retrain the victim agent. Similar

to the experiment above, we compare the winning rate of the
retrained victim agent against the adversarial agent across the
number of iterations involved in the retraining process. In
addition, we employ the retrained victim agent to play with
an agent trained with self-play methods. With this setup, we
emulate a scenario where a robustified agent plays with a
regular (non-robustified) game agent. Through this, we study
if retrained victim agent could pick up the generalizability in
competitive game. In other words, we study whether a victim
agent still performs well when playing with a regular agent
even after we retrain it with adversarial training.
Additional experiment notes. It should be noted that, when
running any learning algorithms to train adversarial agents
and perform the aforementioned experiments, we go beyond
the suggestion mentioned in [10], increasing the number of
different initial states from 5 to 8 for each agent training. With
this setup, we can not only obtain the average performance of
each learning algorithm but also further reduce the influence
of randomness. It should also be noted that, when training an
agent, we cut off our training process after the training reaches
20 million iterations for the MuJoCo game and 4 million it-
erations for the Pong game. This is because our empirical
evidence indicates that, after these numbers of iterations, the
performance of the adversarial agent (the winning rate) con-
verges. Our method involves multiple hyper-parameters. In
our experiment, we conduct the sensitivity test for the main
hyper-parameters: the explanation method, λ, the distance
measure, η (Appendix). We find that our attack is robust
to all these hyper-parameters except the distance measure.
We present our choice of distance measure in Section 5 and
validate our choice in Experiment II. Regarding the hyper-
parameters inherited from our baseline [10], we apply the
default choices in [10] for a fair comparison. In the Appendix,
we specify the choices of the other hyper-parameters that are
not varied in the sensitivity test and how we decide them. For
the video demonstration of our adversarial agents, readers
could find them at https://tinyurl.com/vsnp5jr.

6.3 Experiment result

Here, we present the experiment results and analyze the rea-
sons behind our findings.
Comparison of hyperparameter selection strategies. Fig-
ure 6a shows the performance of the adversarial agent trained
with different hyperparameter selection strategies. As we can
observe from the figure, when the hyperparameter λ is set
up with a constant (i.e., red, green, and yellow lines in Fig-
ure 6a), the winning rate of the adversarial agent converges
at about 50% on average, which is comparable to the perfor-
mance of the adversarial agent trained by the state-of-the-art
method [10] (indicated by baseline in Figure 6a). However,
when using an explainable AI technique to adjust this hy-
perparameter over time, we can easily observe about 10%
improvement in the winning rate (about 60% vs. 50%). This

https://tinyurl.com/vsnp5jr

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

Baseline0.01 0.05 0.08

 0 0.5 1.0 1.5 2.0

(a) Constant λ.

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

InteGradGrad SmoothGrad

 0 0.5 1.0 1.5 2.0

(b) Explainable AI techniques.

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

 Random

 0 0.5 1.0 1.5 2.0

(c) Random λ.

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

BaselineOur

 0 0.5 1.0 1.5 2.0

(d) Distance measures.

Figure 6: The winning rates of our adversarial agent trained with different hyperparameter selection strategies and distance
measures. The darker solid lines in the figures are the average winning rate of the corresponding agent. The lighter shadow
represent the variation between the maximal and minimal winning rates.

aligns with the rationale behind our design. That is, the distri-
bution of the trajectory used for agent training is very unstable,
and it is generally difficult to find a constant value suitable
for all possible distributions.

As is shown in Figure 6b, we also discover that, although
the explanation methods in our choice set provide different
fidelity [1], integrated as a component of our attack, they do
not deviate the effectiveness of the attack. The adversarial
agent with each of the three explanation methods demon-
strates about 60% of a winning rate. This indicates the choice
of explanation methods has nearly no influence upon the per-
formance of our attack. In addition, we observe that, using a
randomly generated explanation to adjust hyperparameter λ,
the adversarial agent has only about 40% winning rate (see
Figure 6c). From a different angle, this implies the importance
of the explanation AI techniques upon our attack.
Comparison of distance measures. Figure 6d shows the per-
formance comparison of the adversarial agents trained under
different distance measures. As we can observe from the
figure, the adversarial agent trained under the l2 norm demon-
strates the worst winning rate, which is even lower than that
observed from the baseline method. The reason behind this
observation is as follows. The observations and actions in
the MuJoCo game are of high dimensionality. When mini-
mization or maximization problems involve high dimensional
input, the l2 norm is typically not able to impose a strong
penalty, and thus the model trained on such a distance mea-
sure usually exhibits poor performance.

From Figure 6d, we can also observe that the proposed
method under the setup of the l1 norm demonstrates better
performance than the baseline approach as well as that under
the l2 norm. However, it is still slightly below the performance
observed from our carefully selected distance measure. While
this observation could be used as an argument to support the
selection of our distance measure, we do not claim the l∞
norm cannot be replaced with the l1 norm, but argue that they
can be interchangeable. This is because, the performance
difference is subtle and, presumably in a different game, the
adversarial agent trained under the l1 norm might demonstrate
a slightly higher winning rate.
Comparison of our attack with the baseline method. Fig-

ure 7 shows the comparison of our method with the baseline
approach across two different games. First, we can discover
that using the baseline approach for the MuJoCo game, the
winning rate of the adversarial agent converges just slightly
above 50%. 8 This implies that the adversarial agent trained
by the baseline method can impose only a minimal risk to its
opponent. We believe the reason behind this is as follows.

As is mentioned in the section above, the baseline is a sim-
ple application of the PPO algorithm, which is not designed
specifically for training an agent to exploit the weakness of
the opponent. As a result, when used to train an adversar-
ial agent in a game, the algorithm may not be able to find a
policy that could significantly pull down the winning rate of
the opponent. From the perspective of the adversary, this is
indicated by the increase of his agent in the winning rate.

From Figure 7, we can also observe that the adversarial
agent trained by our method demonstrates significant improve-
ment. For the MuJoCo and the Pong game, our adversarial
agent could converge at 60% and 100% of the winning rates,
respectively. This indicates that the action deviation term
could better guide our algorithm to search adversarial policy
subspace, identifying the one that could exploit the weakness
of the opponent most effectively.

In addition to the improvement of the average winning
rates, our proposed method, to some extent, escalates the
efficiency of the training process. As we can imply from Fig-
ure 7, to train an adversarial agent with a certain winning rate,
our method usually takes fewer iterations than the baseline
approach. Take the MuJoCo game for example. To train an
adversarial agent with 50% of the winning rate, the baseline
takes about 20 million iterations where our method takes only
about 11 million iterations. We argue this is beneficial be-
cause reinforcement learning is known to be computationally
heavy and, with the capability of reducing the training itera-
tions, one could obtain an adversarial agent more efficiently.

8Note that the adversarial agent trained by this baseline approach does
not demonstrate the same winning rate as is stated in [10]. We believe this
is caused by the choice of initial states. Existing research [17] has shown
that DRL algorithms are sensitive to the choice of initial states. As such,
the standard method of evaluating a DRL algorithm is to run the algorithm
multiple times with different initial states and report the statistics of the
results. In this work, we follows this standard process and run each method
with eight randomly selected initial states.

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

BaselineOur Our W-B

 0 0.5 1.0 1.5 2.0

(a) MuJoCo winning rate.

 0 0.5 1.0 1.5 2.0

 20

 10

0
Time steps (1e7)

St
an

da
rd

 e
rr

or
 (%

)

BaselineOur

(b) MuJoCo standard error.

 0 1.0 2.0 3.0 4.0

100

60

30
Time steps (1e6)

W
in

ni
ng

 ra
te

 (%
)

BaselineOur Our W-B

(c) Roboshool winning rate.

 0 1.0 2.0 3.0 4.0

 20

 10

 0
Time steps (1e6)

St
an

da
rd

 e
rr

or
 (%

)

BaselineOur

(d) Roboshool standard error.

Figure 7: Our attack vs. the baseline approach [10] in two different games. Note that “Our W-B” represents our attack in the
white-box setting, where the approximated policy network of the victim agent was replaced with its actual policy network.

 0 0.5 1.0 1.5 2.0

100

50

0
Time Steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

(a) MuJoCo.

 0 1.0 2.0 3.0 4.0

100

50

30
Time Steps (1e6)

W
in

ni
ng

 ra
te

 (%
)

(b) Roboschool Pong.

Figure 8: The winning rate of adversary-retrained victim
agent against our adversarial agent in two different games.

Game Min Max Mean Std

MuJoCo 6.0% 25.0% 16.3% 6.2%
Roboschool Pong 40.0% 44.0% 41.4% 1.4%

Table 1: The winning rate of the adversary-retrained victim
agent against the corresponding regular agent in two different
games. Note that after retraining the victim agents, we test
them for one hundred episodes.

Finally, from Figure 7, we can observe that our method ex-
hibits fewer variations of the winning rates (i.e., less shadow
area) than the baseline approach when the initial state varies.
This implies our proposed method is less sensitive to the ini-
tial state of the training process. Similar to the property of
training efficiency above, this is also a critical characteristic
because reinforcement learning is also known to be sensitive
to the initial random states, with our method, one does not
need to set up a good initial state to obtain an adversarial
agent with decent performance.
Comparison of black-box approximation with white-box
prior. Figure 7 illustrates the performance of the adversarial
agents trained with the approximated opponent policy as well
as the one actually used by the opponent. As is indicated
by the lines marked as “W-B” in the figure, the performance
observed from the white-box setting and our approximated ap-
proach is approximately the same. This indicates that, while
our point estimate inevitably introduces errors in approxi-
mation, for both games used for our evaluation, they have
not yet been amplified to a level that could jeopardize the
performance of our adversarial agent.

Comparison of adversary-retained agents with regular
agents. Figure 8 depicts the winning rate of the victim agent
against our adversarial agent, after we retrained it by using
the method proposed to train the adversarial agent. As we
can observe in the figure, this adversarial training approach
significantly improves the robustness of the victim agent. The
retained victim agent demonstrates more than 95% winning
rates for both MuJoCo and Roboschool Pong games. This
indicates a simple adversarial training approach could be used
as an adversary-resistant method to robustify a game agent.
However, in Table 1, we also note that, when using the re-
trained victim agent to play with a regular agent (i.e., the
agent trained through self-play), the robustified agent does
not demonstrate a sufficient capability in beating the regular
agent. This implies that, though a simple adversarial train-
ing improves agent robustness, it cannot help a victim agent
obtain sufficient generalizability. We suspect this is caused
by the composition of the retraining episodes. Specifically, if
retraining the victim agent with the episodes of it playing with
both an adversarial agent and a regular agent, the retrained
agent will not only pick up adversarial robustness agent but
also preserve its generalizability.

7 Related Work

There is a large body of research on adversarial attacks against
deep neural networks (e.g., [7,8,11,13,27,36,49]). Recently,
the interest has been extended to deep reinforcement learning
(e.g., [18,19,40]). From the technical perspective, these previ-
ous works can be categorized into ¶ attacking reinforcement
learning through trojan backdoors, · attacking reinforcement
learning through an adversarial environment, and ¸ attacking
reinforcement learning through an adversarial agent. In the
following, we summarize the existing works and highlight
the key difference between these works and ours.
Trojan backdoors. A trojan backdoor attack refers to a hid-
den pattern implanted in a deep neural network [8, 13, 27].
When activated, it could force that infected deep neural net-
work misclassifying the contaminated inputs into a wrong
class. Recently, such an attack has been introduced to the con-
text of deep reinforcement learning. For example, in recent
works [21,56], researchers demonstrate that an attacker could

follow the approach below to insert trojan backdoors into the
policy networks of a trained agent.

First, the attacker injects a trigger into an environment.
Then, he runs the victim agent in that manipulated environ-
ment, collecting the contaminated training trajectories. By
assigning high rewards to these contaminated trajectories, the
attacker could train a trojan-implanted policy network for
the victim agent. As is shown in [21, 56], when a trigger
is presented to the trojan-inserted agent, the agent generally
exhibits undesired behaviors.

When launching the trojan backdoor attack, an adversary
not only has to involve the training process of the victim
agent but also obtain the control over the environment that
the agent interacts with. In our work, we neither assume the
involvement of the training process nor the freedom to change
the environment when attacking an agent. As is mentioned
in Section 2, we assume an adversary could only control the
attacking agent and observe the actions of the victim agent.
As such, our proposed attack is orthogonal to trojan attacks
and more realistic in the physical world.
Adversarial environment. Over the past years, many re-
search works have discovered that deep neural networks are
vulnerable to adversarial attacks [7, 11, 36, 49], in which an
attackers could subtly perturb a data input to a deep neural
network (e.g., an image) and thus force that network to mis-
classify the perturbed data into the wrong class. Recently,
such a kind of adversarial attacks has been extended and
launched against the deep reinforcement learning, or more
precisely, the policy network of a trained agent.

In a pioneering research work [18], Huang et al. leverage
the idea of adversarial learning to manipulate the environment
at each time step and thus the observation passing to the
policy network. They demonstrate that using this approach,
the perturbed environment could easily fail a game agent –
making it exhibit poor performance – regardless whether it is
trained by deep Q-learning or actor-critic algorithms.

Following the step of Huang and his colleagues, recent
research [23, 25, 40] designed and developed new approaches
to improve the efficiency of this attack. For example,
Kos et al. [23] suggest to perform environment manipula-
tion only at the times steps when the output of the value
function exceeds a certain threshold. Russo et al. [40] model
the selection of attacking time steps as a Markov decision
process. By solving this Markov decision process, an attacker
could identify the optimal time steps to launch attacks and
thus minimize his effort on environment manipulation.

Going beyond the efficiency improvement, recent research
also proposes methods to launch the aforementioned attack
in black-box settings. Rather than assuming an attacker has
the free access to the internal weights, the training algorithms,
and the training trajectories of the corresponding policy net-
work, the black-box setting restricts an attacker’s access only
to the input and output of the policy network. Under this
setup, Huang et al. [18] improves their adversarial attack.

More specifically, they trained a surrogate policy network
by using different training trajectory rollouts and algorithms.
Then, they utilized that network to construct an adversarial
environment (observations). Through a series of experiments,
they showed that the adversarial environment derived from the
surrogate network can still be useful for attacking the original
policy network. In addition to this black-box approach, recent
research proposes many other methods to generate an adver-
sarial environment in black-box settings (e.g., , [4, 54, 59]).
Similar to the work proposed in [18], they also demonstrated
that a trained agent could be attacked by an adversarial envi-
ronment, even if an attacker does not have prior knowledge
about its policy network.

Different from the works mentioned above, our attack does
not craft an adversarial environment but manipulate the action
of the adversarial agent through its policy network with the
goal of failing the opponent agent. This is a more practical
setup because, in the real world, an attacker could only control
its own agent but not have the freedom to change the environ-
ment that the victim agent interacts with (e.g., changing the
color of the sky in the super Mario game).
Adversarial agent. In terms of the problem setup, the work
most relevant to ours is the attacks through adversarial agents.
Different from the attacks mentioned above, this kind of at-
tack can be launched without the requirement of changing an
environment and/or accessing the training process of victim
agents. In early research, Gleave et al. [10] propose a train-
ing method that learns the policy network of the adversarial
agent by directly playing with the opponent agent.

Technically speaking, they first treat the opponent agent
as part of the observation of the adversarial agent and then
simply train the adversarial agent by using the PPO algorithm.
In [10], Gleave and his colleagues show that, by using their
learning method to train an adversarial agent for MuJoCo
game [3], an attacker could make that adversarial agent defeat
the opponent agent in the two-agent competitive setting.

However, as is discussed in the section above, the method
proposed in [10] demonstrates only a low success rate in
attacking opponent agents because the proposed method is
a simple application of the PPO algorithm, which has less
guidance for the adversarial agent to identify the weakness of
the opponent agent. In this work, we propose a new method
to guide the construction of an adversarial policy network.
Technically, it not only extends the objective function of the
PPO algorithm but, more importantly, utilizes the explainable
AI techniques to find the weakness of the opponent agent. As
we demonstrated in Section 6, the adversarial agent trained
through our method significantly outperforms that trained
through the method in [10].

8 Discussion and Future Work

In this section, we discuss some related issues of our proposed
method and our future plan.

Multiple agents. In this work, we develop our attack against
two-agent competitive games, whose real-world applications
include real-time strategy games (e.g., StarCraft II and Dota
2), online board games (e.g., Go, Poker), etc. In the future, we
plan to extend our work to multi-agent environments, where
multiple participants collaborate and/or compete with each
other. To achieve this, we will explore the solutions to tack-
ling the following challenges. First, different from our game
setting or typical single-agent reinforcement learning settings,
which can be modeled as a Markov Decision Process [41,53],
multi-agent reinforcement learning games require re-defining
the game model as either Markov game or extension form
game with totally different value function and action-value
function [38, 57]. Under these new game settings, the PPO
algorithm is no longer a standard learning method to train an
agent. In this work, we design our method based on the PPO
algorithm. As such, migrating our attack method to multi-
agent settings might require non-trivial modification and even
a completely new design. Second, even if recent research
proposes adaptive methods [34] to extend the PPO algorithm
into a multi-agent setting, it is still challenging to integrate
our proposed attack into a multi-agent game. On the one hand,
this is because recent research [57] demonstrates that a multi-
agent environment introduces non-stationary status and more
intense variance into the game environment, which inevitably
makes the training of our adversarial agent more difficult. On
the other hand, this is due to the fact that the integration of our
method inevitably introduces intensive computation and in-
creases the difficulty in tuning hyperparameters. For example,
in a multi-agent environment, agents compete with each other.
This indicates that we have to modify the aforementioned
loss term by deviating actions between each other. Under
this setup, we have to increase the number of loss terms by
n2, where n is the total number of agents in the environment.
Assume n is a number larger than 5. Then, we can expect a
final loss function with more than 25 loss terms, which makes
the optimization of that loss function hard to be resolved and
the hyperparameter tuning relatively difficult.
Defense and detection. Researchers have proposed several
defense and detection mechanisms for reinforcement learn-
ing. With respect to the efforts of defense, many research
works extend the idea of adversarial training [11, 51]. For
example, the works proposed in [5, 28, 37] utilize the tech-
nique proposed in [18] to generate adversarial samples and
then leverage these samples to retrain deep Q-networks or the
policy networks for the goal of improving their robustness.
The work proposed in [6] introduces random noise to the
weights of a deep Q-network during the training process. It
demonstrates that the trained network can be robust against
the adversarial sample attack proposed in [4].

Regarding the efforts of the detection, there have been
two existing works [15, 26]. They build independent neural
networks to identify adversarial samples to the policy net-
work, and demonstrate great success in pinpointing adversar-

ial attacks against reinforcement learning. However, existing
defense and detection are designed for the attack through en-
vironment manipulation. Thus, they cannot be easily adopted
or extended to defeat our attack. As we show in Section 6,
the victim agent robustified by adversarial training loses its
generalizability, and we suspect this is caused by the trajec-
tory split. As a part of future work, we plan to verify this
hypothesis by retraining the victim agent on two sets of game
episodes. One is from the victim agent’s interactions with
the corresponding regular agent. The other is from the victim
agent’s interactions with the adversarial agent learned through
our proposed approach. We will also vary the percentage of
the adversarial/regular episodes and observe the changes in
the retrained victim agent’s robustness and generalizability.
Transferability. Following the efforts of exploiting reinforce-
ment learning through an adversarial environment, recent
research has extended their interest to study the transferability
of adversarial environments (e.g., [18]). More specifically,
for the same reinforcement learning task, researchers have
shown that the adversarial environment crafted for one par-
ticular policy network can be easily transferred to a different
policy network, misleading the corresponding agent to behave
in an undesired manner. As part of our future work, we plan
to explore the transferability of our adversarial policy. We
will examine whether an adversarial policy network trained
against one particular opponent agent could also be used to
defeat the other agents trained differently but serving for the
same reinforcement learning task.

9 Conclusion

When launching an attack against an opponent agent in a
reinforcement learning problem, an adversary usually has
full control over his agent (adversarial agent) as well as the
freedom to passively observe the action/observation of his op-
ponent. However, it is very common that the adversary has no
access to the policy network of the opponent agent nor has the
capability of manipulating the input to that network arbitrarily
(i.e., observation). In this practical scenario, using existing
techniques, it is usually difficult to train an adversarial agent
effectively and efficiently because the algorithms applied to
this problem either make strong assumptions or lack the abil-
ity to exploit the weakness of the target agent. In this work,
we carefully extend a state-of-the-art reinforcement learning
algorithm to guide the training of the adversarial agent in
the two-agent competitive game setting. The empirical evi-
dence demonstrates that an adversarial agent can be trained
effectively and efficiently, exhibiting a stronger capability in
exploiting the weakness of the opponent agent than those
trained with existing techniques. With all these discoveries
and analyses, we safely conclude that attacking reinforce-
ment learning could be achieved in a practical scenario and
demonstrated in an effective and efficient fashion.

Acknowledgments

We would like to thank our shepherd Lujo Bauer and the
anonymous reviewers for their helpful feedback. This project
was supported in part by NSF grant CNS-1718459, by ONR
grant N00014-20-1-2008, by the Amazon Research Award.

References
[1] Julius Adebayo, Justin Gilmer, Michael Muelly, Ian Goodfellow,

Moritz Hardt, and Been Kim. Sanity checks for saliency maps. In
Proc. of NeurIPS, 2018.

[2] Martin Arjovsky, Soumith Chintala, et al. Wasserstein generative
adversarial networks. In Proc. of ICML, 2017.

[3] Trapit Bansal, Jakub Pachocki, Szymon Sidor, Ilya Sutskever, and Igor
Mordatch. Emergent complexity via multi-agent competition. In Proc.
of ICLR, 2018.

[4] Vahid Behzadan and Arslan Munir. Vulnerability of deep reinforcement
learning to policy induction attacks. In Proc. of MLDM, 2017.

[5] Vahid Behzadan and Arslan Munir. Whatever does not kill
deep reinforcement learning, makes it stronger. arXiv preprint
arXiv:1712.09344, 2017.

[6] Vahid Behzadan and Arslan Munir. Mitigation of policy manipulation
attacks on deep q-networks with parameter-space noise. In Proc. of
SAFECOMP, 2018.

[7] Nicholas Carlini and David Wagner. Towards evaluating the robustness
of neural networks. In Proc. of S&P, 2017.

[8] Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Tar-
geted backdoor attacks on deep learning systems using data poisoning.
arXiv preprint arXiv:1712.05526, 2017.

[9] Piotr Dabkowski and Yarin Gal. Real time image saliency for black
box classifiers. In Proc. of NeurIPS, 2017.

[10] Adam Gleave, Michael Dennis, Neel Kant, Cody Wild, et al. Adversar-
ial policies: Attacking deep reinforcement learning. In Proc. of ICLR,
2020.

[11] Ian J Goodfellow, Jonathon Shlens, et al. Explaining and harnessing
adversarial examples. In Proc. of ICLR, 2015.

[12] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance
reduction techniques for gradient estimates in reinforcement learning.
Journal of Machine Learning Research, 2004.

[13] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets:
Identifying vulnerabilities in the machine learning model supply chain.
In Proc. of NeurIPS Workshop, 2017.

[14] Arthur Guez, David Silver, and Peter Dayan. Efficient bayes-adaptive
reinforcement learning using sample-based search. In Proc. of NeurIPS,
2012.

[15] Aaron Havens, Zhanhong Jiang, and Soumik Sarkar. Online robust
policy learning in the presence of unknown adversaries. In Proc. of
NeurIPS, 2018.

[16] Nicolas Heess, Srinivasan Sriram, Jay Lemmon, Josh Merel, Greg
Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, SM Eslami, Martin Ried-
miller, et al. Emergence of locomotion behaviours in rich environments.
In Proc. of NeurIPS, 2017.

[17] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina
Precup, and David Meger. Deep reinforcement learning that matters.
In Proc. of AAAI, 2018.

[18] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter
Abbeel. Adversarial attacks on neural network policies. In Proc. of
ICLR workshop, 2017.

[19] Yonghong Huang and Shih-han Wang. Adversarial manipulation of
reinforcement learning policies in autonomous agents. In Proc. of
IJCNN, 2018.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint:1412.6980, 2014.

[21] Panagiota Kiourti, Kacper Wardega, Susmit Jha, and Wenchao Li.
Trojdrl: Trojan attacks on deep reinforcement learning agents. arXiv
preprint arXiv:1903.06638, 2019.

[22] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Proc.
of NeurIPS, 2000.

[23] Jernej Kos and Dawn Song. Delving into adversarial attacks on deep
policies. In Proc. of ICLR Workshop, 2017.

[24] Solomon Kullback. Information theory and statistics. Courier Corpo-
ration, 1997.

[25] Yen-Chen Lin, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, et al.
Tactics of adversarial attack on deep reinforcement learning agents. In
Proc. of IJCAI, 2017.

[26] Yen-Chen Lin, Ming-Yu Liu, Min Sun, and Jia-Bin Huang. Detecting
adversarial attacks on neural network policies with visual foresight.
arXiv preprint arXiv:1710.00814, 2017.

[27] Yingqi Liu, Shiqing Ma, Yousra Aafer, Wen-Chuan Lee, Juan Zhai,
Weihang Wang, and Xiangyu Zhang. Trojaning attack on neural
networks. In Proc. of NDSS, 2018.

[28] Ajay Mandlekar, Yuke Zhu, Animesh Garg, et al. Adversarially
robust policy learning: Active construction of physically-plausible
perturbations. In Proc. of IROS, 2017.

[29] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex
Graves, Timothy Lillicrap, Tim Harley, David Silver, and Koray
Kavukcuoglu. Asynchronous methods for deep reinforcement learning.
In Proc. of ICML, 2016.

[30] Volodymyr Mnih, Koray Kavukcuoglu, et al. Playing atari with deep
reinforcement learning. In Proc. of NeurIPS Deep Learning Workshop,
2013.

[31] Volodymyr Mnih, Koray Kavukcuoglu, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

[32] OpenAI. Openai at the international 2017. https://openai.com/
the-international/, 2017.

[33] OpenAI. Roboschool: open-source software for robot simulation.
https://openai.com/blog/roboschool/, 2017.

[34] OpenAI. Openai five. https://openai.com/blog/openai-five/,
2018.

[35] OpenAI. Emergent tool use from multi-agent interaction. https:
//openai.com/blog/emergent-tool-use/, 2019.

[36] Nicolas Papernot, Patrick McDaniel, Somesh Jha, et al. The limitations
of deep learning in adversarial settings. In Proc. of Euro S&P, 2016.

[37] Anay Pattanaik, Zhenyi Tang, Shuijing Liu, Gautham Bommannan,
and Girish Chowdhary. Robust deep reinforcement learning with
adversarial attacks. In Proc. of AAMAS, 2018.

[38] Tabish Rashid, Mikayel Samvelyan, et al. Qmix: Monotonic value
function factorisation for deep multi-agent reinforcement learning. In
Proc. of ICML, 2018.

[39] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should
i trust you?: Explaining the predictions of any classifier. In Proc. of
KDD, 2016.

[40] Alessio Russo and Alexandre Proutiere. Optimal attacks on reinforce-
ment learning policies. arXiv preprint arXiv:1907.13548, 2019.

[41] John Schulman, Sergey Levine, et al. Trust region policy optimization.
In Proc. of ICML, 2015.

https://openai.com/the-international/
https://openai.com/the-international/
https://openai.com/blog/roboschool/
https://openai.com/blog/openai-five/
https://openai.com/blog/emergent-tool-use/
https://openai.com/blog/emergent-tool-use/

[42] John Schulman, Philipp Moritz, et al. High-dimensional continuous
control using generalized advantage estimation. In Proc. of ICLR,
2016.

[43] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[44] Lloyd S Shapley. Stochastic games. Proc. of the national academy of
sciences, 1953.

[45] David Silver, Aja Huang, et al. Mastering the game of go with deep
neural networks and tree search. nature, 2016.

[46] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classification models and
saliency maps. In Proc. of ICLR, 2013.

[47] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin
Wattenberg. Smoothgrad: removing noise by adding noise. arXiv
preprint arXiv:1706.03825, 2017.

[48] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribu-
tion for deep networks. In Proc. of ICML, 2017.

[49] Christian Szegedy, Wojciech Zaremba, et al. Intriguing properties of
neural networks. In Proc. of ICLR, 2015.

[50] Emanuel Todorov, Tom Erez, et al. Mujoco: A physics engine for
model-based control. In Proc. of ICIRS, 2012.

[51] Florian Tramèr, Alexey Kurakin, et al. Ensemble adversarial training:
Attacks and defenses. In Proc. of ICLR, 2018.

[52] Florian Tramèr, Fan Zhang, et al. Stealing machine learning models
via prediction apis. In Proc. of USENIX Security Symposium, 2016.

[53] Hado Van Hasselt, Arthur Guez, and other. Deep reinforcement learn-
ing with double q-learning. In Proc. of AAAI, 2016.

[54] Chaowei Xiao, Xinlei Pan, et al. Characterizing attacks on deep
reinforcement learning. arXiv:1907.09470, 2019.

[55] Tianbing Xu, Qiang Liu, Liang Zhao, and Jian Peng. Learning to
explore via meta-policy gradient. In Proc. of ICML, 2018.

[56] Zhaoyuan Yang, Naresh Iyer, Johan Reimann, and Nurali Virani. De-
sign of intentional backdoors in sequential models. arXiv preprint
arXiv:1902.09972, 2019.

[57] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. Multi-agent rein-
forcement learning: A selective overview of theories and algorithms.
arXiv preprint arXiv:1911.10635, 2019.

[58] Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, and Pieter
Abbeel. Learning deep neural network policies with continuous mem-
ory states. In Proc. of ICRA, 2016.

[59] Yiren Zhao, Ilia Shumailov, et al. Blackbox attacks on reinforcement
learning agents using approximated temporal information. arXiv
preprint arXiv:1909.02918, 2019.

Appendix

Victim policies. The network architecture of the victim pol-
icy in the MuJuCo game and the roboschool Pong game are:
MLP-380-128-128-17 [3] and MLP-13-64-64-2, respectively.

Hyper-parameters of the baseline. The baseline has two
sets of hyper-parameters: the adversarial policy/value network
architecture, and the hyperparameters of the PPO algorithm.
For the MuJoCo game, we directly used the default choices
in [10]. For the roboschool Pong game, we set the adversarial
policy network and its value function as MLP-13-64-64-2

 0 1.0 2.0 3.0 4.0

100

60

30
Time steps (1e6)

W
in

ni
ng

 ra
te

 (%
) Our

Figure 9: Comparison of our attack and the attack with l2.

and MLP-13-64-64-1, and use the same set of PPO hyper-
parameters with the MoJuCo game.

Hyper-parameters of our method. Here, we specify the
hyper-parameters that are not varied in the sensitivity test.
First, we applied the choices of [10] for those inherent
from [10] (i.e., policy/value network architectures and the
PPO hyper-parameters). In addition, our attack has four hyper-
parameters: H, F , εs, and εa. We set εs/εa as widely used
empirical values [7] and H/F similar to the policy network
architectures. Specifically, for the MuJoCo game, we set
εs = 1, εa = 0.05, H: MLP-414-40-64-380, and F : MLP-380-
64-64-17. For the roboschool Pong game, we set εs = 0.01,
εa = 0.05, H: MLP-17-40-16-13, and F : MLP-13-64-64-2.

Effectiveness of l2 norm on the Pong game. In Figure 6d,
we show the solution developed on l2 norm is worse than
those developed on l1, l∞, and our baseline. We argue that this
is because l2 norm is not suitable for high-dimensional input.
In order to validate this, we run the similar experiment on
Robotschool Pong game. Different from the MuJoCo game,
here, the agent takes a low-dimensional input (13 features).
In Figure 9, we depict that, for the Pong game, the solution
developed on the l2 norm is just as good as our final solution
which utilizes l1. This well confirms our argument. That is,
the l2 norm is not suitable for a situation where the input high
dimensionality inputs, and l1 or l∞ is a better fit.

100

50

0
Time steps (1e7)

W
in

ni
ng

 ra
te

 (%
)

 1 2 3

 0 0.5 1.0 1.5 2.0

 4

(a) MuJoCo.

100

60

30
Time steps (1e6)

W
in

ni
ng

 ra
te

 (%
)

 1 2 3

 0 1.0 2.0 3.0 4.0

 4

(b) Roboschool Pong.
Figure 10: The performance of our attack with different η.

Additional parameter sensitivity test. In our experiments,
we set equal weight to the action difference term and the
observation difference term in Eqn. (9). Here, we vary the
relative weight between two terms and observe its influence
upon our attack performance. Specifically, we introduce a
weight η to the observation different term (i.e., −η‖ô(t+1)

v −
o(t+1)

v ‖1+‖â(t+1)
v −a(t+1)

v ‖1) and train adversarial agent with
η = [1,2,3,4]. Figure 10 shows the winning rate of the ad-
versarial agent on two selected games. The results show that
subtly varying η imposes only a negligible influence upon the
performance of the adversarial agents trained by our attack.

	Introduction
	Problem Statement and Assumption
	Background of Reinforcement Learning
	Modeling an RL Problem
	Resolving an RL problem

	Technical Overview
	Basic idea of the proposed attack
	More details

	Technical Detail
	Problem definition
	Expected reward maximization
	 Action deviation maximization
	Hyperparameter adjustment

	Evaluation
	Experiment setup
	Experiment design
	Experiment result

	Related Work
	Discussion and Future Work
	Conclusion

