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Abstract. Due to the increasing popularity of location-based services, a massive
volume of human mobility records have been generated. At the same time, the
growing spatial context data provides us rich semantic information. Associating
the mobility records with relevant surrounding contexts, known as the location
annotation, enables us to understand the semantics of the mobility records and
helps further tasks like advertising. However, the location annotation problem
is challenging due to the ambiguity of surrounding contexts and the sparsity of
personal data. To solve this problem, we propose a Context-Aware location anno-
tation method through User Grouping (CAUG) to annotate locations with venues.
This method leverages user grouping and venue categories to alleviate the data
sparsity issue and annotates locations according to multi-view information (spa-
tial, temporal and contextual) of multiple granularities. Through extensive ex-
periments on a real-world dataset, we demonstrate that our method significantly
outperforms other baseline methods.

1 Introduction

In recent years, location-based services have been widely used in our daily lives and
generated a massive volume of human mobility records (e.g., transportation records)
and online spatial context data (e.g., venue database). The combination of mobility
records with relevant contexts helps reveal the semantic of user movement and is known
as the semantic annotation of mobility records [1]. In this paper, we use venue dataset
as the context and consider the problem of mapping a user’s location to a venue he
might actually visit. The work can have important applications, such as user profiling,
recommendation, and advertisement targeting. For example, as shown in Fig. 1, if we
know a person often moves from a university to entertainment venues at night, and go
back very late, we could infer this person is a sparky college student, and recommend
some recreational activities to him. Besides, smart city applications can benefit from
such semantic understandings of the raw transportation data.

However, it is hard to associate right venues with mobility records. The challenges
are mainly two folds: (1) Both recorded locations and surrounding contexts are ambigu-
ous. For a given mobility record of a user, the observed location could have noises, and
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Fig. 1. An example of location annotation problem

there may be many possible venues around. As Fig. 1 shows, the number of POIs in
some areas of Beijing can reach 500 (according to the data from AutoNavi*). (2) The
user data maybe sparse. Though the total number of mobility records is large, each user
may only have a limited number of personal data. According to the data from UCAR?,
less than 10% users have their trips recorded over 3 times within one month. In addition,
most POIs only have a few visit records except some popular ones.

For the annotation problem, some previous work mainly considers the distance be-
tween the context location and the location of a user [2—4], while others further consider
personal preference [5,6]. However, modeling personal preference straightforwardly re-
quires adequate records for each individual user, which conflicts with the data sparsity.
Furthermore, these methods do not consider the influence of contextual mobility records
(e.g., former and later records of a given record). For example, a person who has just
visit a restaurant is less likely to visit a restaurant again in a short time.

To tackle these problems, we propose a Context-Aware location annotation method
through User Grouping, named CAUG. In this method, the correlation between mobility
contextual records is captured by contextual features. And the data sparsity issue is
mainly compensated by considering information of user groups, which is based on our
intuition that users who share similar mobility patterns are likely to visit similar venues
under the same condition. To summarize, we make the following contributions:

1. We propose an iterative grouping method to group users based on the similarity of
their mobility patterns, which are captured by a Hidden Markov Model (HMM) [7].
The user-grouping method alleviates the data sparsity to a great extent.

2. We apply a ranking model to annotate locations, with a strategy that integrates
multi-view (spatial, temporal and contextual) information extracted from users and
POIs’ historical information at different granularities. The comprehensive consid-
eration guarantees the effectiveness of annotation.

3. We evaluate our method with a 14-month real-world dataset from a car-hailing com-
pany. Experimental results show our method can produce effective user groups and
contextual features. Meanwhile, this method outperforms other baseline methods.

* A map service provider. https://en.wikipedia.org/wiki/AutoNavi.

5 A chauffeured car service provider in China. https://www.crunchbase.com/organization/ucar.



Table 1. Summary of notations

Notation Terms Description
Point-of-Interest  |p(id, name,l, c), where p.l is a location defined by longitude
p (POI) and latitude, and p.c represents categories of POI
B st nd
. Categories of POI c(c1, ca, 032(,1 where c.c1, c.c2 and c.cs are p's 1% class, 2
class and 3" class categories, respectively
g Grid g(row, col), an indexed grid (780 x 780 meters) in a city
Period of a Day | A pre-clustered time period of a day, including morning, noon,
tp . .
(POD) afternoon, evening and late night
Spatio-temporal Area|s(g, tp), denoting a grid g at time period ¢tp
z User Activity z(v.c, tp), where v.c is a venue category and tp is a time period
. Ston-Point z{u,l,t,p), denoting a geographic location x.l where a user z.u
P actually picked up or droped off at time .t around a POI z.p
S e S e M
, Travel Record r{x®, x°), wher.e r.z° and r.x® are Fhe start stop-point and
the end stop-point of a user, respectively
T Tajectory A sequence of stop-points of a user

2 Preliminary

This section describes some basic terms used in this paper. The notations are summa-
rized in Table 1.

We use transportation data from UCAR for our study, including a mass of travel
records. When using UCAR’s online car-hailing service to book a trip, a user can search
based on address or based on the name of the POI and then selects a POI for pick-up and
a POI for drop-off. After the trip finished, it will be recorded as a travel record which
consists of a start stop-point and an end stop-point. It should be noted a POI selected
by a user can be either a venue or an indistinct place. A venue refers to a place like a
restaurant or a cinema where people conduct specific activities, while an indistinct place
is a place like a crossroad or a public parking lot which is hardly the final intention of
a user. In order to make users’ trips more semantic, those stop-points whose POlIs are
indistinct places are to be annotated with venues users might actually visit.

A trajectory represents a sequence of stop-points with contextual relations. There-
fore, we actually concatenate a set of travel records back to a trajectory if the end
stop-point of the previous trip and the start stop-point of the next trip has similar time
or location. The notion of trajectory enables our model to consider contextual correla-
tion not only between a start stop-point and an end stop-point, but also between travel
records. Specifically, given a sequence of stop-points T' = x{x{z525...x5 x5, of a user
u, a time gap threshold A; > 0 and a distance threshold A; > 0, a subsequence
T = xjxfa], x5, ..x] x5, is a trajectory of T' if T" satisfies: (a) V1 < j < K,
rit — x5 gt < Agor d(xjfl.l,x‘;-.l) < Ay, where d(l,,1,) stands for the distance
between location [, and l;; and (b) there are no longer sub-sequences in 7" that contains
T’ and satisfies condition (a). Also, for a given stop-point z in T”, its former and later
points are denoted as % and 7, respectively.

Problem 1 (Location Annotation) Given a trajectory T’ of a user u, for each stop-
point x in T' whose POI x.p is an indistinct place or unknown, a location annotation
method provides a list of venues u might visits.
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Fig. 2. An overview of CAUG
3 Method

In this section, we first introduce the overview of our Context-Aware location annota-
tion method through User Grouping (CAUG). Then we present a user-grouping method
based on HMM, followed by a feature extraction method and venue ranking models.

3.1 Overview of CAUG

The overall framework of CAUG is shown in Fig. 2, mainly including user grouping,
feature extracting and venue ranking. When extracting features from historical records,
we organize records into multiple granularities (represented by colored broken lines).

First, from the perspective of users, we observe the personal records are usually too
sparse to do the personalized annotation and the overall records are too inconsistent as
different users usually have totally different mobility patterns. Thus, we are motivated to
find a middle-level granularity called user group to compensate, based on our intuition
that users who share similar mobility patterns may have similar visit tendencies under
the same condition (e.g., a group of colleagues may live in the same housing area and
often go to a specific bar near their homes after work). In this way, we organize user
travel records into three levels, i.e., personal level, group level and overall level.

Second, from the perspective of venues, we observe though most venues are seldom
visited, similar venues have similar visited tendencies. Therefore, we consider not only
the visit history of venues themselves but also that of the venue categories. We adopt a
classification method of venue categories defined by AutoNavi and organize a specific
venue into four classes. For example, a specific Starbucks coffee shop belongs to the
shop itself (4*" class), Starbucks (3% class), cafe (2"¢ class) and catering services (15
class). Note that the venue category can vary with different classification methods based
on different POI datasets. Combining the above two kinds of granularities, i.e., three
levels of user records and four classes of venues, we finally get 3 x 4 = 12 granularities.

For a stop-point in a trajectory of a user, CAUG first selects all venues within a dis-
tance as candidates. Then, for each candidate venue, CAUG extracts a series of spatial,
temporal, spatio-temporal and contextual features for each of the twelve granularities.
Finally, CAUG returns a ranked list of Top-k venues through a ranking model.



3.2 User Grouping

When people move from one place to another place, their activities are in nature se-
quential and have mobility patterns. The mobility patterns of users could be captured
by HMM, which is a general class of graphical model, describing the process of gen-
erating an unobservable state sequence from a hidden Markov chain and generating the
observed sequence from the state sequence. The HMM method is widely used to model
the mobility of users [4, 8]. Hence, we also use it for learning representations of users’
mobility patterns and further use it in an iterative grouping.

HMM Formulating. We assume there are K activities Z = {z1, 29, ..., 2K } (i-e.,
hidden states) and M spatio-temporal areas S = {sq, S, ..., Sar} (i-e., observations).
As a user movement process is shown in Fig. 3, each observation s,, in the observed
sequence S1S9...Sy corresponds to a state z, € Z, and the state seqeunce z122...2N
follows a transition regulation. Therefore, we consider three factors when formulating
the HMM: (1) the probabilities of activities users begin, (2) the probabilities of transi-
tion between activities, and (3) the probabilities of users appearing at one area given the
activity they are doing. More formally, the HMM is parameterized by A\ = (m, A, B),
where m = (7;) is a K-dimensional vector which defines the initial distribution over the
K activities, A = [a;;] k x k is a matrix that defines the transition probabilities among
the K activities, and B = [b;;] k x a is a matrix which defines the emission probabilities
of M spatio-temporal areas over the K activities.

User Activities a e e 6
Spatio-temporal
areas

Fig. 3. The illustration of the HMM

Parameter Inference. Given R trajectories, we first generate a observed sequence and a
corresponding state sequence for each trajectory by the following ways: (1) map stop-
points in the trajectory to spatio-temporal areas, and consider the sequence of spatio-
temporal areas as the observed sequence, (2) map stop-points in the trajectory to ac-
tivities, and consider the activity sequence as the state sequence. However, because a
proportion of stop-points’ POIs may be indistinct places, their corresponding activities
are unclear (represented by grey circles in Fig. 3). In this case, the parameters of the
model are estimated in the following way:

Ri+a
= =1, K 1
TR fKa' M
A
ai; = K”i,i: L., K;j=1,...K )
> opet Air + Ka
Bij +Oé
i , 2itp = 85.tp )
bij = Yooy Bim + Mo =1, K j=1,.,M (3
0 ,Zitp # 85.1p



where R; is the number of state sequences that begin with activity z; and R is the
number of state sequences whose first state is explicit. A;; is the frequency of transfer-
ring from state ¢ at time ¢ to state j at time ¢ + 1, which is counted according to state
sequences, skipping indistinct activities among them. B;; is the frequency of appearing
in spatio-temporal area s; when doing activity z;. M*® is the number of grids. The « is
the smoothing parameter of the additive smoothing®.

Iterative Grouping. Given a set of users U = {u1, us,...,up} and their trajectories,
we first initialize their groups. Then, we employ an iterative refinement framework to
further group users based on their mobility patterns. During each iteration, we generate
a better representation of each group’s mobility pattern and then assign every user to a
more appropriate group. The major steps are described as follows:

Step 1: Initialization. In this step, instead of assigning every user to a group ran-
domly, we vectorize every user and use clustering algorithms like k-means to prelimi-
narily cluster users according to their mobility patterns, so as to reduce the time cost in
the subsequent iteration. Specifically, we first train an HMM H,, = (m,, Ay, B,,) for
each user u by the aforementioned learning method, whose parameters reflect the mo-
bility pattern. Then, we simply reshape (7, A,, B,,) to an E-dimensional vector, where
E = K x (1+ K + M). After vectorizing all users, we stack all vectors to be a matrix
Ipxg. Since E is a very large integer, we leverage PCA to reduce the dimensionality
and then apply k-means to get the initial user groups ¢ = {g1, g2, ..., gc} where G
is a user-defined group number. Next, for each g € ¢, we train an HMM H, which
represents the mobility pattern of group g. Finally, we get an initial HMM ensemble
2O = {H{" | g € p}.

Step 2: Grouping. For each user u, let us denote the set of u’s trajectories as J,,, in
which the j-th trajectory is 7. Based on the latest HMM ensemble &) we assign u
to a new group g**! by a way of voting, considering all trajectories in .J,. Users belong
to g make up a new set Si 1 = {u [ Vj,v,(g) > vu(g;),1 < j < G}

The voting value that u gives to g is:

| Ju |
valg) = ST g; ) )
j=1“u
where p(TJ | g; #1) is the probability of observing T7 given group g’s group-level
HMM Hét) and can be computed by the Forward Scoring algorithm of HMM, and
Zj = Zlel p(T7 | gs; M) is the normalization term.

Step 3: Updating. For each g in ¢, we utilize the trajectories belong to group g to
train an HMM H, ,St+1) by the aforementioned learning method. Thus, we generate a
new ensemble of HMMs $(t+1) —= {Hét“) | g € ¢}

Step 4: Iteration. After updating the ensemble of HMMs, we go back to step 2 for
further iterations. The algorithm will stop when the number of reassigned users is lower
than a preset value (e.g., 1% of total user number D).

At last, users with the similar mobility are grouped, upon which we get group-level
features along with personal-level and overall-level features.

® https://en.wikipedia.org/wiki/Additive_smoothing



3.3 Feature Extraction

In this section, we introduce features from the point of views of multiple granularities
and multiple views. Given a stop-point x belongs to a trajectory 7" of a user u. We
searched out venues V' = {v1, vg, ..., v, } that are within distance d from location .l as
candidates. For each candidate venue v;, we extract a series of features, mainly based
on travel history of different granularities.

Multi-granularity Features. As mentioned in Sect. 3.1, we leverage multi-granularity
features to alleviate the data sparsity issue. The kinds of feature granularities can be
divided into multi-user and multi-venue granularities. For multi-user granularities, we
generate features for a given user u from the travel history of all users, « himself and
the group g he belongs to. And for multi-venue granularities, we generate features for
a given venue v from visit history of v itself (X,) and v’s category (X, .) which can
be further sub-divided into X, c.c,, Xy.c.c, and X, ¢ ... The symbol X, stands for the
set of stop-points where each stop-point z’s POI x.p is the same as the given venue v,
and similarly X, .., stands for the set of stop-points where each stop-point 2’s POI
category x.p.c.c; is the same as the given venue category v.c.c;.

By combining these two kinds of granularities, we can extract history-related fea-
tures from the user u’s visit history to v and v.c, his group’s visit history to v and v.c
and all users’ visit history to v and v.c, respectively.

Multi-view Features. Given a stop-point x and a candidate venue v, we mainly con-
sider four types of features: the spatial relationship - Fi(x, v), the temporal relationship
- Fy(z,v), the spatio-temporal relationship - Fy;(z,v) and the contextual relationship
- F.(z,T',v), where T” is the trajectory x belongs to. In the following, we only intro-
duce features generated from X, due to the limitation of space. Note that the feature
generated from X, . is similar.

(1) Spatial features of F(x, v) reflect visit preference related to geographic factors,
including 2 parts:

— Revised distance dist,,(x,v). We observe distance d(v.l, z.l) sometimes mislead
annotation. For example, if a user gets off a vehicle at the roadside (x.l) and get into
a large supermarket v represented geographically by only one point v.l, d(v.l, z.l)
may be bigger than distances from x./ to many other venues. Thus, we extract
typical stop-points (e.g., colored circles in Fig. 1) of venues by applying Affinity
Propagation Clustering to historical stop-points of venues. Then we consider the
distance between x.l and the closest typical stop-point as the distance feature.

— Spatial conditional frequency freqq(z, X,) = {zn € Xo|d(z.l,zp.l) < AL}
the number of historical stop-points in X, around x.l. Spatial adjacent points may
have similar visit preference.

(2) Temporal features of Fy(x,v) consist of 6 temporal conditional frequencies,
which reflect different visit preference under different temporal conditions. We first
define a temporal condition set A = {A1, A2, ..., Ag }. Given time ¢’ of a historical stop-
point and ¢ of an unannotated stop-point, A contains: 1) POD(t') = POD(t), where



POD(t) maps time ¢ to a time period tp; 2) ¢’ is in the weekend if ¢ is in the weekend,
otherwise ¢’ is in the weekday; 3) DOW (t') = DOW (t), where DOW (t) maps time
t to day of week; 4) ¢/ and ¢ are on the same day, which reflects the situation (e.g., a
sales promotion) on that day of venue v; 5) t’ is within 30 days before and after ¢, which
reflects recent situations of venue v; and 6) ¢’ is within 90 days before and after ¢, which
reflects long-term situations of venue v. Then, for each condition \(¢#',t) € A, we geta
conditional frequency freq(X,,z,\) = [{xn € Xy|\(zn.t,2.t)}| as a feature, which
stands for the number of historical stop-points in X, satisfying temporal condition .

(3) Spatio-temporal features of Fgi(x,v).

— Spatio-temporal conditional frequency fregs:(z, X, )=[{zn € X, | d(z.l,xp.l) <
AL NI(z.t, xp.t) < A} the number of historical stop-points in X, which satisfy
both spatial and temporal constraints, where I(¢,¢') computes the time interval
between ¢ and ¢’ in the span of 24 hours.

(4) Contextual features of F.(x,T’,v). The relevance between z and v is related to
the trajectory 7T”. For example, if 2’s former point % and another stop-point £ have
similar characters (e.g., spatial adjacent or corresponding to the same POI category),
x and zj, are likely to visit the same venue if they are spatial adjacent (e.g., a tran-
sition from housing areas to a specific company followed by a group of colleagues).
Contextual features contains 2 parts:

— User activity inferred by group-level HMM. Instead of using Viterbi Algorithm
directly, we consider the activities already known in trajectory T".

— Contextual conditional frequencies. We first define a contextual condition set {2 =
{w1,wa,ws}. Given two stop-points = and z’, 2 contains: 1) d(z.l,2'.l) < Al;
2) z.p = x’.p, which is the POI limit; and 3) z.p.c = z’.p.c, which is the POI
category limit. Then, for each w(x,2’) € {2, we get a frequency feature about
former points freq(X,,z,w) = [{zn € X,|w(Zn, )} and a frequency feature
about later points freq(X,,z,w) = |{z, € X,|w(Zf, Z)}| . both of which stand
for the number of historical stop-points in X, satisfying contextual condition w.

3.4 Venue Ranking

Our method has three variants to rank venues by relevance:

— CAUG-LR. For a stop-point, this method uses Logistic Regression [9] to do binary
classification for every candidate venue. Then venues are ranked by probabilities.

— CAUG-GBTree. Tt uses XGBoost [10] to replace Logistic Regression, measuring
the performance in tree based model.

— CAUG-Rank. It uses a learning-to-rank algorithm named LambdaMart to give ranked
lists, which is a boosted tree version of LambdaRank based on RankNet [11].

4 Experimental Study

In this section, we introduce the datasets in experiments, methods for comparison, met-
rics for evaluation and performance of methods.



Table 2. Summary of datasets

Data Source | Domain Entities Description

Sample over 600 thousand travel records whose stop
. Orders | 9,835,247 |points are labeled with venues from 6807 stable users

Transporation . .
Users 885,246 |(with at least 40 orders) and 3017 cold users (with no

more than 40 orders) for following experiments

POI Overall 169,612 |(Include 18 first class categories, 245 second class
Venues 72,604 |categories and 819 third class categories
4.1 Setup

Datasets. In the work, we use a real operational transportation dataset collected by
UCAR within 6" Ring Road of Beijing during Jun. 1, 2015 to Aug. 31, 2016. Also, we
make use of the POI dataset of AutoNavi for annotation and use the first-class category
to make up the activity. The details are summarized in Table 2.

Algorithms. We implement three variants of our method, i.e. CAUG-LR, CAUG-GBTree
and CAUG-Rank, which use the same features proposed in this paper. We also imple-
ment 2 straightforward methods (i.e., Dist and DistR) and 3 distinct methods (i.e., MRF,
DistHMM and LSRank) as baselines:

— Dist. It directly matches the closest venue to each stop-point.

— DistR. This method uses the revised distance dist,.,, to match the closest venue.

— MRF. A method based on Markov random field model [5], considering the distance
factor, spatial and temporal regularity of human mobility.

— DistHMM. A method based on HMM [4], considering the distance and the his-
torical consecutive transitions between POIs. Note that if there is no venue within
500m for a stop-point in the user’s states, we will use the Dist model to annotate.

— LSRank. A learning-to-rank-based local search framework [6]. It uses features in-
cluding the popularity of venues, distance between stop point and venues, temporal
preference to venues and personal preference to venues.

Metrics. We use Normalized Discounted Cumulative Gain (NDCG) to measure whether
the ground truth venue appears in the output ranked list weighted by the position. For
each annotation, NDCG), = Zle %, where rel; € {0,1}, is the binary rele-
vance of the result at position ¢. The higher the ground truth venue is ranked in our list,
the higher the NDCG score will be, and a value of 0 indicates the ground truth is not
in the Top-k ranked list. In this paper, N DCGQF is the mean of the N DC'G}, for each

annotation and N DC'G @1 is the same as the Top-1 accuracy.

4.2 Results

In this section, we first use CAUG-Rank to evaluate the performance given different
feature views, different granularities and different percentages of labeled data. Then we
compare the effectiveness of our method with other baselines. Based on the actual situ-
ation of our dataset, the percentage of the labeled data is set to 55% for an experiment
of the cold-start user and 85% for feature and comparison experiments.

7 https://en.wikipedia.org/wiki/Discounted_cumulative_gain.
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Fig. 4. Experiment Results

The Impact of Feature Views. To evaluate the impact of different feature views on our
methods, we test the effectiveness of our method on one view at a time and gradually
combine them all together. The result in Fig. 4(a) shows temporal features are more
effective than spatial features (0.88 versus 0.68 in NDCG@1). By combining temporal,
spatial and spatio-temporal features, the NDCG @1 reaches over 0.92. Furthermore, the
integration of contextual features further enhances the performance apparently, demon-
strating it improves annotation in a different aspect with spatio-temporal factors.

The Impact of Feature Granularities. To evaluate the effectiveness of group and
venue-category granularities, we start with features of both the overall and personal
granularities without considering venue categories, then we add group and venue-category
granularities. As Fig. 4(b) shows, when we only use overall and personal granularities,
the NDCG@1 only reaches 0.88. By introducing the group and venue-category granu-
larities, the NDCG @1 rises to about 0.97, which verifies the sparsity issue is alleviated.
And we can find the group granularity is more effective than the venue-category granu-
larities (0.96 versus 0.91). To further observe the impacts of group and venue-category
granularities, the following two sub-experiments were conducted:

— Impact on travel regularity. We first define travel regularity by a 2-dimensional vec-
tor (Lorder, Lpor), where Loyqer represents the level of order quantity and Lpor is
the level of POI quantity. Intuitively, users who have visited various venues (L po
is high) in his few number of travel records (L,,4er 1S low) are less regular in their
mobilities. The result in Fig. 4(c) shows adding group granularity (G) to the model
which just use overall and personal records (A+P) improves the performance, es-
pecially for those irregularly-traveling users.

— Impact on visited frequency. We test venues with different visited frequency. As
shown in Fig. 4(e), popular venues have higher annotation accuracies. By adding
venue-category granularity (V) to the model which just uses overall and personal
records (A+P), the performance improves, especially for novel and cold venues.



Table 3. Experiment results of different methods
Methods | Dist |DistR| MRF |DistHMM |LSRank| CAUG-LR |CAUG-GBTree| CAUG-Rank
NDCG@1|0.105(0.381|0.438| 0.428 0.820 0.960 0.973 0.975
NDCG@5|0.222{0.562| / / 0.913 0.985 0.990 0.991

The Impact of Labeled Data Percentage. As shown in Fig. 4(d), the performance
does not drop notably until the percentage of labeled data diminish to under 10%. This
result provides an interesting message: for those who annotate locations manually, they
could only annotate a small proportion of the records and leave the work to CAUG.

Comparison with other Methods. To evaluate the performances of different models,
we compared 8 models. The result in Table 3 shows the performance of our method out-
performs all others. NDCG@1 of Dist, DistR, MRF, DistHMM are under 0.50 because
they oversimplify the factors influencing annotation. Since LSRank doesn’t consider
contextual information and multi-granularity, its NDCG@1 only reaches 0.80. CAUG-
LR, CAUG-GBTree, and CAUG-Rank all annotate accurately (over 0.95), which re-
veals the effectiveness of our features. Besides, we compare DistR and our model for
cold users without enough historical data. The result in Fig. 4(f) shows as the number of
personal records grows, the overall NDCG gradually improves. Specifically, for a new
user who only has one travel record, the NDCG@1 of DistR only reaches 0.10, while
our model is above 0.50 owing to the contextual information and multi-granularity fea-
tures enrich the information for modeling user preference.

5 Related Work

Researchers proposed numerous methods [2, 5, 8, 12, 13] for semantic annotation of
mobility records according to their specific tasks or data.

Studies on traditional mobility data like GPS traces [2,4] mainly consider the dis-
tance between the context location and the location of the user. Without considering the
history of individual’s movement, they cannot provide personalized annotation. Spin-
santi et al. [14] add some manually defined semantic rules to calculate the possibility
of a person visiting a POI. However, rules cannot be well-rounded. Yan et al. [4, 15]
take transition relation of human movements into account and propose a method using
HMM to annotate trajectories. Nevertheless, they ignored the temporal influences and
only annotate locations with categories of POI other than specific POIs.

Due to the development of mobile Internet, massive geo-tagged social media (GeoSM)
data combining texts with locations are generated. Wu et al. [3] and Zhang et al. [8] uti-
lize noisy and sparse GeoSM data to discover proper activities or text tags of locations.
Since sources of annotations are texts over the space, methods proposed by them can-
not be applied to our problem. Some researchers utilize check-in data to study location
annotation in [5, 6, 12, 16], which is similar to our work. However, because check-in
records are usually not continual, both of them neglect mobility transitions.

Moreover, location annotation is similar to the problem of recommending a POI to
a user at one location [17, 18]. Nevertheless, POI recommendation aims to rank those
potentially interesting but previously unvisited venues higher, while location annotation
does not follow this principle.



6 Conclusion

In this paper, we have proposed CAUG, an effective method to provide personalized
location annotation through spatial, temporal and contextual factors, which can be gen-
eralized to many kinds of mobility data (e.g., locations collected by mobile apps). By
constructing the sequence of locations, we take advantage of the transition relations
among contextual mobility records to help annotate. We use HMM to model the users’
mobility and group users based on their mobility patterns. With the help of user groups
and venue categories, we effectively alleviate the issue of data sparsity. Experiments on
a real-world dataset show that CAUG outperforms other 5 baseline models.

In the future, possible improvements can be reached through integrating more travel,
contextual and user information. Besides, the grouping step is currently time-consuming
and simply solved by parallel computing, which should be improved.
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