## Modeling Network-level Traffic Flow Transitions on Sparse Data

Xiaoliang Lei, Hao Mei, Bin Shi, Hua Wei, Assistant Professor, New Jersey Institute of Technology

#### NULT New Jersey Institute of Technology

### City Intelligence: Descriptive, Predictive, Prescriptive



### Prescriptive: Traffic Signal Control

https://traffic-signal-control.github.io/ https://darl-libsignal.github.io/

Tutorial@ITSC'20: <u>Deep Reinforcement Learning for Traffic Signal Control</u> Survey: <u>SIGKDD Explorations</u>, <u>Arxiv</u> LibSignal Toolkit - <u>https://darl-libsignal.github.io/</u>





#### **Single Intersection**

#### IntelliLight (KDD'18)

- First step on reinforcement learning based traffic signal control

#### LIT (SIGSPATIAL'20)

- Theoretical proof on the best reward and state design

#### FRAP (CIKM'19), DemoLight(CIKM'19), MetaLight (AAAI'20)

- Learning faster for single intersection

#### **Multiple Intersections**

#### PressLight (KDD'19)

- Theoretical proof on the best reward and state design for coordination

#### CoLight (CIKM'19)

- Network-level coordination (200 intersections)

#### ThousandLight (AAAI'20)

- Large-scale, citywide coordination (2000 intersections)

### City Intelligence: Descriptive, Predictive, Prescriptive



New lersev Institute



### Predictive: Traffic Flow Prediction

- Traffic Flow Prediction
- $[X_{t-T+1},\ldots,X_t] \xrightarrow{f} [X_{t+1},\ldots,X_{t+\tau}]$









Src: Yao, et al, 2018

Src: Uber

Src: NYC Open Data

Lei, et.al., Modeling Network-level Traffic Flow Transitions on Sparse Data, KDD 2022.



### A bunch of studies here...

#### Transitional models

• Statistical and machine learning models (ARIMA, kNN, SVR, etc.)

#### Deep learning model

- RNN and CNN model to encode spatial and temporal dependency
- GNN model:
  - Separately model the spatial and temporal dependency: STGCN, GraphWaveNet, DCRNN
  - Transformer models use attention modules in transformer





#### A step back:

Is current prediction enough for making prescriptions?

Question:

Can I use the traffic flow prediction model to help with:

- Controlling traffic signals?
- Routing for social good?





Lei, et.al., Modeling Network-level Traffic Flow Transitions on Sparse Data, KDD 2022.



#### A step back: Is current prediction enough for making prescriptions?

### Model

Modeling actions

#### Data

• Incomplete, sparse data



### Motivation: Modeling actions in state transition

• A single action affects future states





### A New Predictive Task: Modeling state transitions with actions



Transition wo. action



Transition with action

Predictive 1.0

Predictive 1.5



### Transition Models: Heuristics-driven vs. Data-driven



- Strong assumptions on the form ٠
- Rely little on the data

Rely on big data



#### A step back: Is current prediction enough for making prescriptions?

### Model

Modeling actions

#### Data

• Incomplete, sparse data



### Are we good with data-driven models?

- Ideally, we could have:
  - BIG data
    - As much data as we want
    - As detailed as possible



- In reality, we only have:
  - SMALL data:
    - Do not have direct observations [ICDE'20]
    - Do not have observations for certain timesteps [ECML-PKDD'20]
    - Do not have observations for certain places



### Incomplete data in the city





Wei, et.al, Learning to simulate on sparse trajectory data. ECML-PKDD 2020

![](_page_14_Picture_0.jpeg)

### Dealing with incomplete data: Imputation

- Imputation on the missing data:
  - Requires the transition from observed data
  - The transition model is exactly what we what to learn with full data (missing part + observed part)
- Imputation and transition model should be inherently one model

![](_page_14_Figure_6.jpeg)

![](_page_15_Picture_0.jpeg)

### Transition modeling with incomplete data: Problem formulation

• Traffic Flow Transition Modeling

• 
$$[\dot{\mathbf{X}}_{t-T+1}, \cdots, \dot{\mathbf{X}}_{t}; \mathcal{G}_{t-T+1}, \cdots, \mathcal{G}_{t}] \xrightarrow{f} [\mathbf{X}_{t+1}]$$

 $\dot{\mathbf{X}}_t = \mathbf{X}_t \odot \mathbf{M}$ 

Observability mask **M**: a static binary matrix  $\mathbf{M} \in \{0, 1\}^{N \times F}$ N is the number of road segments F is the length of state feature

 $\mathcal{G}_t = \{\mathcal{R}, \mathcal{A}_t\}$ 

Road network is a directed dynamic graph  $\mathcal{G}_t = \{\mathcal{R}, \mathcal{A}_t\}$  at time t, where  $\mathcal{R} = \{r^1, ..., r^N\}$  is a set of N road segments and  $\mathcal{A}_t \in \mathbb{R}^{N \times N}$  is the adjacency matrix indicating the connectivity between road segments at time t.

This is the traffic action (traffic signals)

### Summarizing Intuitions

- Modeling action
  - Dynamic graph
- Small data
  - Heuristic transition model from transportation
- Incomplete data
  - Imputation with prediction

![](_page_17_Picture_0.jpeg)

# DTIGNN: A Flexible Framework with <u>Dynamic graph, Transition function</u>, and <u>I</u>terative training

![](_page_17_Figure_2.jpeg)

(a) Framework

#### (b) Pipeline

Lei, et.al., Modeling Network-level Traffic Flow Transitions on

Sparse Data, KDD 2022.

Incorporating heuristics model: Transition-guided Spatial Temporal GNN

- Neural Transition Layer: Modeling transitions with transportation functions
  - Activated Proportion Matrix

 $oldsymbol{\Gamma}_t = \mathcal{A}_t \odot \mathbf{Att}$ 

$$\widehat{\mathbf{Z}}_{t+1} = \mathbf{\Gamma}_t^{\intercal} \dot{\mathbf{X}}_t = (\mathcal{A}_t \odot \mathbf{Att})^{\intercal} \dot{\mathbf{X}}_t$$

Theorem 4.1 (Connection with transition equations). The latent traffic volume calculated by above equals to the transition equations below from transportation.

 $\mathbf{x}_t^q[out] = \mathcal{A}_t^{q,u} \cdot \gamma^{q,u} \cdot \mathbf{x}_t^q[l] + \mathcal{A}_t^{q,w} \cdot \gamma^{q,w} \cdot \mathbf{x}_t^q[s] + \mathcal{A}_t^{q,v} \cdot \gamma^{q,v} \cdot \mathbf{x}_t^q[r] \ \mathbf{x}_{t+1}^q[in] = \mathcal{A}_t^{m,q} \cdot \gamma^{m,q} \cdot \mathbf{x}_t^m[l] + \mathcal{A}_t^{p,q} \cdot \gamma^{p,q} \cdot \mathbf{x}_t^p[r] + \mathcal{A}_t^{n,q} \cdot \gamma^{n,q} \cdot \mathbf{x}_t^n[s]$ 

![](_page_18_Picture_7.jpeg)

![](_page_18_Figure_8.jpeg)

#### Iterative Imputation for Prediction

![](_page_19_Picture_1.jpeg)

![](_page_19_Figure_2.jpeg)

 $\mathbf{X}_{t- au+1}' = \dot{\mathbf{X}}_{t- au+1} + \ddot{\mathbf{X}}_{t- au+1} = \mathbf{X}_{t- au+1} \odot \mathbf{M} + \widehat{\mathbf{X}}_{t- au+1} \odot (1-\mathbf{M})$ 

$$\min_{\theta} \mathcal{L}_{p}(\theta) = \frac{1}{T-1} \frac{1}{N} \sum_{i=1}^{T-1} \sum_{j=1}^{N} \| (\mathbf{x}_{T-i}^{j} - \widehat{\mathbf{x}}_{T-i}^{j}) \odot \mathbf{M}^{j} \|_{2}$$

$$+ \frac{1}{N} \sum_{j=1}^{N} \| (\mathbf{x}_{T+1}^{j} - \widehat{\mathbf{x}}_{T+1}^{j}) \odot \mathbf{M}^{j} \|_{2}$$

Imputation loss

#### **Prediction loss**

Lei, et.al., Modeling Network-level Traffic Flow Transitions on Sparse Data, KDD 2022.

![](_page_20_Picture_0.jpeg)

#### Datasets

#### • Both synthetic and real-world datasets

| Dataset                                  | $D_{4 \times 4}$ | $D_{HZ}$ | $D_{NY}$ |
|------------------------------------------|------------------|----------|----------|
| Duration(seconds)                        | 3600             | 3600     | 3600     |
| Time steps                               | 360              | 360      | 360      |
| # of intersections                       | 16               | 16       | 196      |
| # of road segments                       | 80               | 80       | 854      |
| <pre># of groundtruth states(full)</pre> | 23040            | 23040    | 282240   |
| % of unobserved intersections            | 12.5             | 12.5     | 10.4     |

![](_page_20_Figure_4.jpeg)

#### **Overall Performance**

![](_page_21_Picture_1.jpeg)

| Datasets | Metrics | SFM    | STGCN  | STSGCN | ASTGCN | ASTGNN | WaveNet | Ours<br>(ASTGNN) | Ours<br>(WaveNet) |
|----------|---------|--------|--------|--------|--------|--------|---------|------------------|-------------------|
| $D_{HZ}$ | MAE     | 1.2310 | 0.4909 | 0.6079 | 0.4458 | 0.4020 | 0.4556  | 0.3810           | 0.4071            |
|          | RMSE    | 1.5578 | 0.8756 | 0.9104 | 0.7425 | 0.7408 | 0.8668  | 0.6618           | 0.6883            |
|          | MAPE    | 1.1288 | 0.3135 | 0.3863 | 0.2953 | 0.2527 | 0.2987  | 0.2455           | 0.2599            |
| $D_{NY}$ | MAE     | 1.1385 | 0.2651 | 0.4476 | 0.3136 | 0.2437 | 0.2168  | 0.2437           | 0.2060            |
|          | RMSE    | 1.5227 | 1.1544 | 1.1235 | 1.0625 | 1.0704 | 1.1485  | 0.9493           | 1.1002            |
|          | MAPE    | 0.1638 | 0.1146 | 0.2358 | 0.1620 | 0.1272 | 0.0988  | 0.1283           | 0.0978            |

- SFM: A heuristic model from transportation for traffic flow transitions.
- STGCN: Utilizes graph convolution and 1D convolution.
- STSGCN: Utilizes multiple localized spatial-temporal graph.
- ASTGCN: Utilizes attention mechanisms to model spatial-temporal dynamics.
- ASTGNN: Based on ASTGCN, ASTGNN further uses a dynamic graph convolution module.
- WaveNet: Combines adaptive graph convolution with dilated casual convolution.

### City Intelligence: Descriptive, Predictive, Prescriptive

![](_page_22_Figure_1.jpeg)

New Jersey Institute of Technology

![](_page_23_Picture_0.jpeg)

#### Traffic Signal Control under Sparse Observations

2-

3-1.4

0.39 4-

![](_page_23_Figure_2.jpeg)

#### State Transition Modeling г 2.001 0.67 0.65 1.3 1.82 0.33 1.75

2.00 .08 1.75 1.50 1.50 0.56 0.53 1.33 1.23 2 -1.72 0.39 1.25 1.25 -1.001.00 0.43 0.53 1.62 0.38 3 -1.6 0.61 0.75 0.75 0.57 0.5 0.50 0.50 4-

(a) RMSE of baseline (left) and *DTIGNN* (right). The lower, the better.

![](_page_23_Figure_6.jpeg)

#### Traffic signal control based on prediction

(b) Queue length of MaxPressure using predictions from baseline (left) and DTIGNN (right). The lower, the better.

![](_page_24_Picture_0.jpeg)

### Takeaway

- Traffic prediction -> Modeling state transition (with action)
- Sparse data is a challenge for real-world application
- Our model DTIGNN is theoretically supported by transportation equations.
- When dealing with incomplete data, imputation with prediction in one model is better
  - Imputation loss + Prediction loss

![](_page_25_Picture_0.jpeg)

# Q&A

# Thank you

#### **Poster Position ID: 16** 6:00 pm to 7:30 pm tonight

Data & Code: <u>https://github.com/ShawLen/DTIGNN</u>

Website: https://web.njit.edu/~hw32/index.html

![](_page_25_Picture_6.jpeg)

![](_page_25_Picture_7.jpeg)

![](_page_25_Picture_8.jpeg)