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Abstract— Traffic signal control is a complex and important
task that affects the daily lives of millions of people. Reinforce-
ment Learning (RL) has shown promising results in optimizing
traffic signal control, but transferring learned policies from sim-
ulation to the real world remains a challenge due to the domain
gap between the simulation and the complex real-life scenario.
In this paper, we utilize grounded action transformation to
mitigate the domain shifting problem and improve Sim2Real
transfer for RL-based traffic signal control. Grounded action
transformation leverages the dynamics between the simulation
and real-world actions to generate effective real-world actions.
We evaluate our method on a simulated traffic environment
and show that it significantly improves the performance of
the transferred RL policy in the real world. Our results
demonstrate the potential of grounded action transformation
as a promising technique for Sim2Real transfer in RL-based
traffic signal control.

I. INTRODUCTION

With the growing availability of traffic data and advance-
ments in deep reinforcement learning techniques, there is
a developing trend toward utilizing reinforcement learning
(RL) for traffic signal control (TSC). However, current
research on reinforcement learning-based TSC is limited
to simulators. Although simulation-based training is cost-
effective, it suffers from inherent discrepancies with real-
world settings due to the complex nature of real-life dynam-
ics. As a result, a critical challenge in implementing real-
life RL is finding ways to apply simulation-based training in
real-world scenarios.

In order to bridge the gap, much effort has been made.
Some researchers adopt domain randomization ideas, which
intend to cover the actual distribution of the real-world
data by randomizing the simulation multiple times. On the
other hand, through feature representation and transferring,
domain adaptation methods exploit the source domain data
to improve the model’s target domain performance, whose
data is practically scarce [1]. However, the above exploration
is mainly applied to the robotics domain, and few studies
have been conducted on the TSC area, even though it is also
suffering such a plight. We conducted a preliminary study on
a specific trained policy to demonstrate the gap it may have
when performing in the simulator and real-world settings, as
shown in Fig 1(a). Note that the reward here is calculated
as the total number of waiting vehicles. Solving the sim2real
problem in TSC is an inevitable way to the policy’s practical
deployment.
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Fig. 1. Preliminary study and our method’s Improvement

In this paper, we propose to use grounded action transfor-
mation (GAT-TSC) to bridge such a gap in the training pro-
cess, helping to calibrate the dynamics distribution shifting.
Furthermore, we quantify the model’s parameter uncertainty
and leverage it to dynamically adjust the action grounding
rate, contributing to the training efficiency and stability. The
improvement using GAT-TSC-DQN in an example is shown
in Fig 1(b). Please note that only two metrics, Throughput
and Average Travel Time are presented due to the page limit.

II. METHODS

To shrink the gap in the transition dynamics between the
simulator and the real world, we propose an uncertainty-
controlled grounded action transformation framework in-
spired by Grounded Simulation Learning (GSL) [2]. With
the help of the grounded action transformation step, the
difference in the effects of action between the simulator and
the real-world environment could be minimized. And the
uncertainty is used to leverage the potential risk of extending
differences by taking such a grounded action due to the
underfitting of models and simultaneously keeping learning
policy stable and finally converging.

a) Grounded action transformation: Grounded action
transformation (GAT) [6] is a special case under the frame-
work of the GSL algorithms to mitigate the difference be-
tween low-fidelity simulator environments and high-fidelity
ones. Given a real world dataset D = {τ1, τ2, ..., τ I}, where
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where d(·) is the distance between two dynamics, P is the
real-world transition dynamics and the Pϕ is the simulation
transition dynamics, sit and sit+1 ∈ S are current state and



next time state in state space, ait ∈ A is the action taken
at current time step belong to action space. The grounding
procedure is achieved by training an action transformation
function with supervised learning:
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low-fidelity simulator environment. In the policy improve-
ment step, we also introduce a hyperparameter α as a
dynamic grounding rate, to stabilize policy improvement and
make the training process finally converge.

b) Dynamic grounding rate by uncertainty: During
the action grounding phase, due to the imperfection of
the forward and inverse models, the grounded action is
prone to enlarge instead of shrinking the difference of states
between the simulation and real-life environment. A more
severe situation is the grounding action with low belief will
make this transformation behave like random exploration,
resulting in instability during training. To quantify belief
masses and uncertainty, we introduce a dynamically adjusted
hyperparameter α to dynamically determine taking grounded
action with a qualified uncertainty value during inference. In
the framework, the uncertainty of ur

t at time t after training
round r is quantified based on the Evidential Deep Learning
method [7]. If ur

t < ur, where ur is the average uncertainty
of all u during the training round r, the model conducts
action grounding. Based on α = ur, if the uncertainty at
round t: ut < ur, the model conducts action grounding.

III. EXPERIMENT AND RESULTS

a) Experimental Design: We treat SUMO [3] as the
real world and Cityflow [4] as the simulation. Specifically,
we modify SUMO’s environmental settings as the change of
the real world, and we train the TSC model by DQN [5] in
Cityflow. As shown in Table I, we modified the following
parameters in SUMO: acceleration, deceleration, emergency
deceleration, startup delay, and average container capacity
for vehicles, which provides three settings for the real world
(default, V1 and V2). The default setting in SUMO has the
same parameters as Cityflow. Our goal is to minimize the
test performance in the real world of our trained model both
in average travel time and the overall throughput.

TABLE I
EXPERIMENTAL SETTINGS ON REAL-WORLD CONFIG

Setting accel decel eDecel sDelay cCapacity

Default 2.6 4.5 9.0 0 0
V1 1 2.5 6 0.5 3
V2 1 2.5 6 0.75 1

b) Experimental results: Based on the listed real-world
settings above, we conduct experimental analysis: First, we
train an RL model in the Cityflow simulator by DQN algo-
rithm until it steadily converges after 200 Epochs, the metrics
average travel time ATT (in seconds) and throughput TP (in
number of vehicles) as reported under the column Simulator,
Second, we directly transfer the trained RL-models in two
settings in SUMO following the parameters in Table I. From
the column Real, we can see the gap between the simulator
and the real-world environment exists. We then apply our
method, GAT-TSC, which trains the GAT model on the top of
the DQN, to test in SUMO and report the results in the GAT-
Real column as shown in Table II, our method can shrink
the gap of the testing performance between the real-world
environment (SUMO) and the simulation (Cityflow).

TABLE II
THE RESULTS OF MODELS TRAINED IN CITYFLOW BUT TESTED IN THE

CITYFLOW (SIMULATOR), DIRECTLY TRANSFERRED TO SUMO (REAL),
AND TRANSFERRED WITH OUR METHOD TO SUMO (GAT-REAL).

Setting Simulator Real GAT-Real

ATT TP ATT (gap) TP (gap) ATT (gap) TP (gap)

V1 111.23 1978 158.93 (47.69) 1901 (77) 149.13 (37.88) 1926 (52)
V2 111.23 1978 177.27 (66.03) 1898 (80) 162.80 (51.56) 1926 (52)

IV. CONCLUSION

We first investigate the actual gap existing in the sim2real
Traffic Signal Control problems and propose a series of meth-
ods to reduce the gap including grounding action transforma-
tion, uncertainty quantification, and dynamically adjustable
grounding rate. Our results reveal the great potential in this
area for future exploration.
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