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Abstract—Understanding city-wide traffic problems may ben-
efit many downstream applications, such as city planning and
public transportation development. One key step to understand
traffic is to reveal how many people travel from one location to
another during one period (we call TOD, short for temporal
origin-destination). With TOD, we can rebuild the city-wide
traffic by simulating the volume and speed on each road segment.

Frequently used mobility data, e.g., GPS trajectories, surveil-
lance cameras, can only cover a subset of vehicles or selected
regions of the city. Hence, we propose to use pervasive speed
data to recover TOD, and use other mobility data as auxiliary
data. To the best of our knowledge, we are the first to work on this
challenging problem. It is highly challenging because the speed
is generated from a complex process from TOD, and there exists
multiple TOD distributions that may generate similar city-wide
road speed observations. We propose a new method that models
the complex process via separate modules and takes auxiliary
data to eliminate infeasible solutions. Extensive experiments on
synthetic and real datasets have shown the superior performance
of our model over baselines.

Index Terms—Mobility data, origin-destination estimation, ur-
ban computing

I. INTRODUCTION

Traffic has been playing an essential role in urban city
development, with impacts on many aspects of human life,
e.g., commuting, shopping, and entertainment. Smooth and
fast-moving traffic can effectively enable the city development
in a larger region and people can enjoy the various venues
around. In contrast, traffic congestion may lead to high eco-
nomic loss. Therefore, urban cities are in urgent need of smart
traffic policies and planning. Unfortunately, we can not directly
develop these policies in the real world, due to its potential
real cost (i.e., traffic jams).

To support and test city-wide traffic policy making, many
efforts have been made [1], [2] in traffic simulations. For
instance, these simulators usually take as input the trip counts
of vehicles traveling from one location to another. Then, the
simulator will simulate people’s driving behavior (e.g., how
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Fig. 1. Spatial coverage of camera, trajectory, and speed data. Speed data has
city-level coverage, while volume and TOD inferred from camera or trajectory
data has low coverage.

people choose their routes, and how fast people can drive)
according to some transportation models and assumptions.
However, these involve two key issues. First, the trip counts
data are not always available. Second, the pre-assumed trans-
portation models and assumptions are not always true. For
example, most micro-level simulations assume people will
drive according to a pre-defined car-following model (e.g.,
accelerate as much as possible). However, in the real world,
the traveling speed people can reach on a road segment
might highly depend on the traffic volume. Macro-level traffic
simulations may try to model the mapping between TOD,
volume and speed, by assuming a linear mapping matrix [3]-
[6].

To comprehensively understand how city-wide traffic oper-
ates, we briefly introduce the formation process of city-wide
traffic as follows. (1) During a certain time interval, we can use
a 2-D matrix F} to represent people’s travel intent, where %, j-
th element of F} represents the trip counts from origin region
1 to destination region j. (2) Then, people will head to their
destinations according to their preferred routes. This causes the
volume on each road segment to form. (3) Given the attributes



of the road (e.g., number of lanes, speed limit), the volume
on one road segment will determine the real-time speed of
the vehicles running on this segment. In short, this process
can be summarized as the impacting chain of the following
three key quantities: temporal distribution of origin-destination
(TOD) — volume — speed. OD(origin-destination) and TOD
are different concepts, where OD is the combination of origin
and destination pairs and TOD is the temporal distribution on
OD pairs.

Thus, in this paper, we try to answer the following two key
questions in building a real traffic simulation.

1) Recover the TOD distribution from various traffic data
input.
2) Model the TOD — volume — speed chain.

More generally, we call this process rebuilding city-wide
traffic. Note that, although researchers may have different
opinions on how the city-wide traffic operates, here we just
propose a possible generation process. It is easy to add more
modules into this framework in order to incorporate other
levels of observations (other than TOD, volume, and speed).

Thanks to the development of sensors and mobile devices,
an increasing amount of mobility data are being collected, e.g.,
GPS trajectories, surveillance camera records, and mobile apps
location records. However, the camera data usually only covers
some central regions of the city, while the GPS trajectories
may only be available on some cars, like taxis (as shown in
Figure 1). Hence, it is difficult to directly convert these raw
data to city-wide TOD or volume observations. In addition,
it is difficult to acquire complete and sufficient TOD data
because TOD data is usually collected by survey and needs
a lot of human effort. This prevents the prediction method
using historical TOD information from success. Fortunately,
the average speed on a road segment can be easily probed
by a few vehicles. Therefore, current navigation software
like Google Maps can provide pervasive speed observations
around the city, which can be used to help recover the TOD.
Regrettably, map server companies including Google Maps do
not care about people’s real TOD, since they only need speed
information to estimate travel time and recommend route.

Therefore, in this paper, we try to answer the previously
mentioned two questions using the city-wide speed data as
the major input, while traffic data in other levels (e.g., volume)
can be used as auxiliary inputs.

To the best of our knowledge, this problem has never been
investigated thoroughly in the literature. Early studies [7],
[8] have tried to infer TOD from census data. However,
the unrealistic simplified assumption (TOD is proportional
to the population and inverse of the distance) and the static
population count can not infer the dynamic TOD. Some other
studies [6], [9] propose a linear mapping matrix between
road segment volume and TOD. These models fail easily
considering that different competing traffic on different roads
will delay each other (the linear mapping matrix will not hold).
Further, the volume data they used is usually not available
for the city level. In addition, our problem is also different
from the well-investigated traffic prediction problems, since

these studies [10], [11] utilize historical traffic to predict future
traffic, while we do not assume any TOD data is given for our
problem. These studies do not reveal how the traffic operates
and hence can not help rebuild the traffic system (i.e., building
traffic simulation). This limits their application to predictions
with known patterns, e.g., they can not answer how the traffic
will change if the environment changes (e.g., a new bridge
is built or road constructions are going on). We show in the
experiments how our framework can simulate the traffic even
the environment changes.

Rebuilding city-wide traffic impacting chain is challenging
due to the following three reasons. First, speed observations
are the result of a complicated process. Generally, this process
can be described in the previously mentioned three stages:
TOD — volume — speed. This complicated affecting chain
makes this problem difficult to model. Second, the available
traffic data have different coverage and describe different
quantities. The GPS trajectories and camera data will put
constraints on the TOD of certain groups of vehicles and the
volume of certain road segments. How to combine them in
a unified framework is a challenging problem. Third, there
exists multiple solutions of TOD distribution that may lead to
a similar city-wide speed observation. For instance, the high
volume on major roads might be caused by travelers from sev-
eral nearby communities. If the travelers from one community
rise a bit while the travelers from one other decrease a bit,
the volume or speed observation may stay almost unchanged.
These may correspond to multiple possible TOD distributions,
while only one of them matches the groundtruth.

In view of the aforementioned challenges, we propose a
framework called OVS (Origin-destination-Volume-Speed). It
contains three modules to model the generation of TOD,
volume, and speed respectively. Further, through this modular
model design, OVS can incorporate the data from different
levels (TOD level, volume level, or speed level) together.
Specifically, though using speed as the major input, OVS can
take auxiliary data (e.g., camera volume data, census data) to
constrain the recovered solution (TOD, volume, and speed).
Though spatially sparse or temporally static, these auxiliary
data will effectively help to filter the unreasonable solutions
and produce the most feasible one.

Our contribution can be summarized as below.

o« We are the first to solve the problem of recovering city-
wide TOD from pervasive speed data. We do not assume
any TOD data is given. This problem can help us rebuild
city-wide traffic (TOD — volume — speed).

o We propose a modular framework containing three modules:
TOD generation, TOD-volume mapping, and volume-speed
mapping. Our framework can also take other auxiliary data
as input to eliminate infeasible solutions.

o Experiments on synthetic and real-world datasets have
shown that OVS is significantly better than baseline meth-
ods. Case study results of OVS also match well with the
real-world experiences.



II. RELATED WORK

Building a real traffic simulator essentially requires accurate
estimations of OD trip counts, volume, and speed [12]-[14].
There are two major groups of methods in solving these
estimations, transportation methods, and data-driven methods.

Transportation Methods. Transportation methods usually
simulate the traffic in the order that the causation relation
forms: TOD - Volume - Speed. In order to infer the 70D
trip counts, people have used search algorithms to search the
TOD that satisfies the volume observation on the road links,
e.g., genetic algorithm [15]-[17]. In addition, some studies
propose the Gravity model [7], [8] which assumes OD flows
are positively correlated to the product of the population of the
origin and destination region and negatively correlated with the
distance between two regions [18]. For TOD-volume modeling,
traditional methods usually assume a linear assignment matrix
mapping the TOD to the road link volume, and utilize statis-
tical methods to estimate this assignment matrix. The often-
used statistic methods include generalized least square [5], [6],
maximum likelihood estimation [19], and bayesian models [9],
[20]. Recently, some other methods further consider routing
strategy [9], [21] and dynamic transition between consequent
road link volumes [22], [23]. In addition, researchers have pro-
posed several models to describe the mapping between volume
and speed, e.g., fundamental diagram [24], [25]. Generally,
when the volume reaches or surpasses the capacity of the road,
speed will decrease as volume increases.

However, none of these methods have integrated the three
generation steps together. Besides, their strong assumption
(e.g., linear assign matrix between TOD and volume, TOD
being proportional to population) might not hold in the real
world. Therefore, we propose a data-driven pipeline to do these
three tasks together.

Data-driven Methods. Recently, data-driven methods have
been used to tackle the traffic prediction problem. People
usually assume historical traffic is known. Problem-wise,
people have worked on predicting TOD [10], [11], [26],
volume [27], [28] and speed [29]. Method-wise, people have
developed different methods, including ARIMA [28], non-
parametric methods [28], graph neural nets [10], [11] and
RNN [30]. However, all of these methods are doing spatial-
temporal prediction using historical traffic data, rather than
modeling the process of how traffic comes into being (TOD-
volume-speed). Therefore, these methods do not apply to our
problem. Our problem is much more challenging and requires
a deep understanding of the generating model of observed link
volumes and speed from the root cause of OD flows.

III. PRELIMINARY

The problem scope is within a city which is divided into K
regions and M links of road segments connecting the regions.
We rebuild the traffic system through three stages: TOD —
Volume—Speed, as shown in Figure 2. Note that TOD is on
the region level, while Volume and Speed are on the road level.
Specifically, TOD reflects the trip count from every origin
region to destination region, while Volume and Speed reflect
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Fig. 2. Illustration of TOD, route, link and its corresponding volume and
speed at time ¢.

TABLE I
SUMMARY OF NOTATIONS

Notation ~ Meaning

l; j-th link (road segment)

vjt, qj,¢  average speed and volume of link [; at time ¢
r R region r, complete set of regions R

o,d origin, destination

1% average speed of the whole city

F 3-D time-origin-destination tensor

g 2-D time-origin-destination tensor (OD given)
T total time span length

the volume and speed on each road. We define some basic
concepts in our problem as follows.

« Time interval. The total time span is divided into 7" time
intervals with a certain length (e.g., 10 minutes). We use ¢
to represent the ¢-th time interval.

o Link. Each direction of one road segment is defined as a
link [. Average speed v, and volume g;, within the ¢-th
time interval are defined to measure the congestion level
on link /;. In addition, we use V to represent the speed
observation of the whole city, over the whole time interval
T.

o Region. The whole city is divided into a set of smaller
regions R = {r} according to the information on Open-
StreetMap . A region 7 can be as small as one block.

e« OD and TOD. A trip is defined as a movement from an
origin o € R to a destination d € R. Then, the trips in a
city can be represented as a 3-D tensor JF, with each cell
Flt,0,d] = crepresenting that, at time ¢, the trip count from
origin o to destination d is c. F can also be rewritten as a
2-D tensor G, where G[i,t] = ¢, and i is the index for OD
pairs.

« Routing. Traveling from o to d, people may follow different
routes, with each represented as a sequence of road links.

e OD i contains link /;. We call OD i contains link /; if link
l; is in one of the routes of OD i.

https://www.openstreetmap.org/
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Fig. 3. Framework of OVS.

We formulate the problem as following.

Problem 1: Given N origin-destination (o,d) pairs, the
real-time speed observation V' on road links, the goal is to
recover the time-origin-destination (TOD) tensor G and the
mapping function V = h(G), so that the reconstruction error
is minimized, i.e., minimize ||V — V||,

Note that, though we use the link speed as the only basic
input, we can also add other auxiliary input, such as sparse
TOD tensor, volume tensor, census data, and POI data. Either
partial view (corresponding to certain regions, link, or trip) or
full observation can be used as auxiliary inputs.

IV. METHOD

A. Model Overview

In this section, we propose a method called OVS (Origin-
destination-Volume-Speed) to reconstruct the traffic system.
Our model framework is shown in Figure 3. There are three
components in our model, TOD Generation, TOD-Volume
Mapping, and Volume-Speed Mapping. (1) The TOD Gener-
ation module generates a vector of TOD for one specific OD
pair from random seeds. (2) Then, the TOD-Volume Mapping
module will model how different TOD interact with each other
and determine the link volumes. It takes TOD as input and
outputs link volumes. (3) The Volume-Speed Mapping will
take the link volume as input and output link speed. We define
the main loss based on the gap between the final output link
speed and the observed groundtruth link speed. (4) In addition,
other data (e.g., GPS, LEHD, camera data and roadnet data)
are converted into partial representations of TOD, volume or
speed. They are compared against the predicted quantities
(TOD, volume and speed) to construct the auxiliary loss. By
minimizing a combination of the main loss and auxiliary loss,
the model will be able to propagate the loss back to every
module to optimize the parameters. We will introduce each
module in the following sections.

N
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Fig. 4. The mapping relation between routes and link volume. The volume
q2 is affected by route; and routes. However, this influence might be delayed
due to the volume in the upstream links (i.e., g1 and g3 correspondingly).

B. TOD Generation

Following the convention in the literature [9], [20], we as-
sume the TOD are generated from Gaussian priors. Following
the tradition in deep belief networks (DBN) [31], we use
sigmoid function as the activation function. Mathematically,
for TOD i, we can compute the trip count g¢¢ as following
from a Gaussian sample input z;. WS and W3¢ are weight
matrices and b¢? and b3? are bias vectors.

hod = Sigmoid(WS%z; + b%%) (1)
g%l = Sigmoid(W%dhfd + bgd) )

C. TOD-Volume Mapping

The second component in our model is trying to describe
how TOD generates link volume.

According to the routing policy 7 of people, one OD 7 may
correspond to several routes. Mathematically, we can estimate
the trip count on route k, p,, from the trip count on OD ¢,

g9 by
py = Sigmoid(W ;5" g% + b 5. 3)

For the simplicity of illustration, for the following sections,
we assume that people will choose the shortest or fastest route
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Fig. 5. The dynamic attention network in the TOD-Volume mapping network.

based on real-time traffic conditions. Therefore, one OD will
only correspond to one route, and they will share the index 1.

1) Dynamic Attention Network Maps Route Trip Count to
Link Volume: The mapping relationship between link volume
and route trip count is shown in Figure 4. Note that, route;
and routes both contains link /5. Hence, the volume g2 of
link /o at time ¢ can be affected by the trip counts in route;
and route in current and previous time steps, i.e., P1 ¢, P1,4—1,
.y D2.t> P2.t—1, ... This is because the time it take for vehicles
to arrive at /5 from its origin via route; depends on the traffic
congestion condition of the upstream links of [y in route;,
e.g., l;. If traffic runs smoothly on /1, then g2 ; may be only
affected by the route trip count a few time intervals back, e.g.,
p1,¢. If 11 is congested, g2 ; may be related to the route traffic
further in the past, e.g., p1 +—3.

Here, we propose to use a 2D attention network struc-
ture (among temporal dimension and among different routes)
(shown in Figure 5) to model how route trip count generates
the link volume.

Mathematically, we can model the volume g;; as

t
gt = Z ot . p, = Z Z%(',Jét)]?i,r “4)
ieNS”) ieN( T=1
where N Jm is the set of all routes that contain link /;. az(-J 't
is a vector and the 7-th element of it is the coefficient on the
route trip count p; at 7-th time step.

Additionally, it is also related to po (routes) departed at
time step 2,3 because there is heavier traffic on this route,
so the traffic is delayed.this sentence need to be organize the
structure. In short, the intensity of attention that each link
volume should pay on the routes is highly dynamic and should
be a function of the traffic situation of several time frames
before the current time step. The number of time frames to
look back is a hyperparameter.

According to the previous example, the intensity of attention
that each link volume should pay on the routes is highly
dynamic and should be a function of the traffic situation of
several time frames before the current time. In next section,
we will introduce how to calculate the dynamic attention cx.

2) Attention Calculation: We learn an embedding from the
whole road network to calculate aEJ ’t)., as shown in the right
bounding box of Figure 5. To avoid notation cluttering, we
omit the index ¢, 5 and ¢ in the attention layer.

Based on the intuition that the volume at time ¢ can only be
impacted by several time intervals ahead of ¢, e.g., t,t —1,¢ —
2, ..., it is intuitive to apply 1-D convolution on the route trip
count representation p,.

hi = Conv(p,,) %)
e®) = Conv(h?) (6)

The convolution layers are configured with 1x3 filters, and
stride of 1. Sigmoid activation is applied.
Further, the representations e*) are aggregated to obtain an
overall representation of the system.
N
e= Z e® @)
k=1
Then, we add a fully-connected layer, followed by Softmax
layer to get the attention

a= Softmax(thltteatt + bflltt) ®

where W™ is a weigh matrix and b"" is a bias vector.
By putting back the index 4, j and ¢, we have obtained the

attention o EJ b,

D. Volume-Speed Mapping

For the volume to speed mapping, we use LSTM layers to
capture the relationship. Specifically, we have

1 = LSTM(q;) €))
s — LSTM(R?) (10)
v; = FC(h3) (1)

Please note that the LSTM layers and fully connected layers
(FC) are shared within all the different links.
As shown in Figure 3, the main loss is defined as

M T
~ 2
lmain = ZZ l[vj,e — Djell

j=1t=1

12)



TABLE II
CATEGORIES OF AUXILIARY DATA.

TABLE III
DATASET INFORMATION.

| Static | Dynamic Dataset | Intersections | # roads | # Trajectories
TOD POI, census (LEHD) taxi trajectory Hangzhou 46 63 9,656
Volume | road network (# lanes) surveillance camera Porto 70 100 2,576
Speed speed limit road work, pedestrian Manhattan 100 180 1,242,408
State College | 14 16 -
where 0; ; is the observed speed on link j at time ¢.
B. Datasets

E. Auxiliary Loss

In addition to the speed data, other categories of data may
also help infer the traffic, e.g., census data, camera data and
road conditions. These data can be categorized as in Table II
according to the quantities they may help to infer (TOD,
volume and speed) and whether they are dynamic or static.
Though they might be sparse in space (e.g., we may only have
surveillance camera data for 10 intersections in a city), they
can be used as auxiliary data to construct auxiliary loss. For in-
stance, LEHD (Longitudinal Employer-Household Dynamics)
data describes the number of people that live in one census
unit and work in another unit, and therefore can constraint

the TOD in one day as I}, = Zf\il HZZ:l git — fi(zx;) 2,
where ; is the auxiliary feature for OD 4, f1() is a function
that converts feature x; to trip counts for OD i. For instance,
for LEHD data, f;(x;) will represent the summation of all the
people transiting following OD i.

Thus, the final overall loss function can be defined as

U= lngin +Wg - lg+wq - lg+w,y - I (13)
where lg, [, and [, are all weighted summation of the auxiliary
loss introduced by the data in Table II. We will not enumerate
all the forms how these loss functions are defined.

In addition, adding these auxiliary loss will help eliminate
the unreasonable solutions. We will show this in the experi-
ment part.

V. EXPERIMENT

A. Research Questions to be Validated

In this paper, we conduct experiments on both synthetic and
real-world data to answer the following research questions:

¢« RQ1: Compared with baseline methods, how does our
proposed method OVS perform in rebuilding the city-wide
traffic (recovering TOD)?

« RQ2: Can we integrate other data sources to solve the
multiple solution issue?

« RQ3: Can we avoid the influence of environment factors?

« RQ4: Can we provide an explanation of TOD tensors learnt
from the real-world speed data?

We use both synthetic data and real-world data to con-
duct experiments. We use a microscopic traffic simulator
CityFlow [2] which can simulate the behavior of each vehicle
and traffic signal. The simulator takes TOD tensors as its input,
simulates the movement of vehicles in single-vehicle level, and
outputs the volume and speed tensors on each road.

Synthetic data. We use a road network with 3x3 intersec-
tions. The experiment is done on a 2-hour period with each
time interval as 10 minutes. We generate five different TOD
patterns as follows.

« Random: TOD tensor are generated with random values
range from 1 to 20 vehicles/min.

o Increasing: Values in TOD tensor have an initial value of 5
vehicles/min, and will increase by 2 every 10 minutes. An
extra random noise is added.

o Decreasing: Values in TOD tensor have an initial value of
20 vehicles/min, and will decrease by 2 every 10 minutes.
An extra random noise is added.

o Gaussian: values in TOD tensor follow a Gaussian distribu-
tion with mean as 10 vehicles/min and variance as 4.

« Poisson: values in TOD tensor follow a Poisson distribution
with rate \ as 3.

Real-world data. The statistics of the four real datasets
Hangzhou, Porto, Manhattan, and State College are shown
in Table III, and the coverage of the three datasets are
illustrated in Figure 6. For Hangzhou, Porto and Manhattan,
we collect the taxi trajectory data, scale them with city-specific
factor (# all vehicles / # taxi) to represent the trajectories of
all vehicles, and get the corresponding TOD tensors. Then,
we input them into the simulator to get the speed tensors,
which are used as the groundtruth observation. The goal of our
methods is to recover the TOD tensors given the groundtruth
speed tensors. We further collect the speed data from Google
Maps in two cities to conduct case study. The first city
Hangzhou is a big commercial city while the second city State
College is a college town. As for the roadnet of each dataset,
we collect them from OpenStreetMap , which is a well-know
open map server. Admittedly, there are many map servers other
than Google Map and OpenStreetMap. As long as they can
provide the network structure of roads and intersections, and
corresponding speed data on each road, we can use any map
server in our experiments.

https://www.openstreetmap.org/



TABLE IV
SUMMARY OF NETWORK STRUCTURES. FC STANDS FOR FULLY CONNECTED LAYERS. N,g STANDS FOR THE NUMBER OF OD PAIRS. Ny, IS THE
NUMBER OF ROAD LINKS. Ng4tq IS THE NUMBER OF DATA SAMPLES. ROUTE-e REPRESENTS ONE OF THE FOUR BRANCHES IN THE RIGHT PART NETWORK
IN FIGURE 5. e-o« REPRESENTS THE UPPER RIGHT PART OF THE NETWORK IN FIGURE 5, WHICH USES EMBEDDING e TO CALCULATE ATTENTION .

Network TOD Generation TOD-Volume Volume-Speed
OD-Route Route-e e-o
Input (Noa, T) (Noa. T) (Noa, T) (Nod, T) (Niink, T)
Hidden layers FC(16), FC(16) FC(16) Convig3, Convygs FC(16) LSTM(128), LSTM(128), FC(32)
Activation Sigmoid, Sigmoid Sigmoid ReLU, ReLU ReLU Sigmoid, Sigmoid, Sigmoid
Output (Nog, T) (Nog. T) (Nog, T) (Nog, T) (Niink: T)
N e &3

(b) Porto

(a) Hangzhou

(c) Manhattan

Fig. 6. The areas of the three real datasets.

TABLE V
SUMMARY OF HYPERPARAMETERS

Hyperparameters ‘ Value

Batch size 64
Learning rate 0.001
Dropout rate 0.3

Epoch Number 10000

C. Implementation

In this section, we will list the network structure and hy-
perparameters in the implementation of our proposed method
OVS. The network structure and size of our model are shown
in Table IV. As we mentioned in Section IV, our model
contains three parts: TOD Generation, TOD-Volume Mapping,
and Volume-Speed Mapping. Given random noise input, TOD
Generation will output TOD tensors by two fully connected
layers. The role of TOD-Volume Mapping is to turn TOD
tensors to the volume tensors on road links. Specifically, there
are three sub-module in TOD-Volume Mapping: OD-Route,
Route-e, and e-a. OD-Route uses one fully connected layer
to generate route from every given OD pair. Route-e uses two
convolution layers to analyze the influences on every road links
of every OD pair. e-a contains one fully connected layer and
one softmax layer to get the corresponding attention values.
Volume-Speed Mapping is used to predict speed from the
volume on every road link, by two LSTM layers and one fully
connected layer. Some of the key hyperparameters are shown
in Table V.

D. Data Preprocess

In our experiments, we first process the data before training
our model. For each dataset, we can acquire its real TOD

Generated

. Random | Generated Simulation Volume
OD Pairs __Simulation |

Pattern ' TOD Tensors
Generated
Speed
Groundtrut|

‘W}M ~ Volume
_Tensors Cromdeah
. Speed

Fig. 7. Our data preprocess procedures. (1) In the training stage, we use
the OD pairs of the real TOD tensors to randomly generate more TOD
tensors. Then, we run simulation given the generated TOD tensors, to get
the generated volume, speed respectively. (2) In the testing stage, we run
simulation given the groundtruth TOD tensors, to get the groundtruth volume,
speed respectively. For details, please see the following subsection.

tensors and the OD pairs of them. The choice of OD pairs
is based on domain knowledge and widely accepted. In the
training stage, based on the OD pairs, we randomly generate
sufficient TOD tensors. The generation of TOD tensors follows
the five different TOD patterns described before, with every
20% of TOD tensors have a specific pattern. We then put
the generated TOD tensors into our traffic simulator to get
corresponding volume and speed tensors. Now, we have the
generated TOD, volume, and speed tensors that in line with
the transportation of the roadnet. In the testing stage, we
put the real TOD tensors into the simulator, and get the
corresponding volume and speed tensors, which is regarded as
the groundtruth volume and speed tensors. Figure 7 illustrates
our data preprocess. We conduct this generation because the
current available real-world TOD and speed data are usually
not matched (i.e., the speed data is describing the average
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and speed to train the Volume-Speed Mapping and

TOD-Volume Mapping. In the testing process, we first fine-tune our TOD Generation to fit the groundtruth speed data. Then, the results of the well-trained
TOD Generation will be the recovered TOD tensors, which are used to evaluate the performance. We also use the volume and speed tensors as metrics. For

illustrative purposes, we do not add auxiliary loss here.

speed of all the vehicles on the road, while the TOD only
captures the taxi). Therefore, we use the scaled taxi TOD data
to generate the groundtruth volume and speed, and hide them
in the testing.

E. Pipeline

In this section, we will introduce the training and testing

pipeline of our model. First, we train our proposed method
OVS with two steps:
1) Feed the generated volume tensors to the neural network
of the Volume-Speed Mapping, then use generated speed
tensors to calculate loss and optimize the neural networks.
Fix the network parameters of the Volume-Speed Mapping,
feed the generated TOD tensors to the neural network
of the TOD-Volume Mapping, let the result of the TOD-
Volume Mapping pass the Volume-Speed Mapping, then
use generated speed tensors again to calculate loss and
optimize the neural network of the TOD-Volume Mapping.
By the two-step training process, we can get well trained
TOD-Volume Mapping and Volume-Speed Mapping. Note that
we only use the main loss to update the parameters, which is
the hardest case since we do not use any extra data or auxiliary
loss. Most importantly, we do not use any real TOD data
in our training process. Instead, our method only requires
sufficient generated data to train.

In the testing process, we fix the network parameters of
TOD-Volume Mapping and Volume-Speed Mapping. Then, we
feed random seeds to our TOD Generation, and let the results
of the TOD Generation pass the TOD-Volume Mapping and
Volume-Speed Mapping. Then, we use the groundtruth speed
tensors to calculate loss and optimize the parameters of the
TOD Generation. After we get a well trained TOD Generation,
the results of the TOD Generation will be the recovered TOD
tensor we want. Here, real TOD data is only used to calculate
metrics for evaluation. The testing process is actually to fine-
tune our TOD Generation module to fit the observed speed
data.

Above all, we finally succeed in using only real speed data
to recover TOD tensors. The training and testing pipelines are
illustrated in Figure 8.

2)

F. Compared Methods

o Gravity: It is believed that the trip number from one region
to another is determined by the census data [7], [8].
Mathematically, the total trip number from region ¢ to j is

calculated as g; ; = k%52, where p;, p; is the population
of region ¢ and 7, and d;; is the distance between region %
and j. k is tuned by grid search, and kept same across time
intervals.

o Genetic algorithm [32] searches TOD trip counts that match
speed observation best. This method iteratively picks the
best several candidates and mutate until convergence.

o Generalized least square (GLS) [3]-[6]: These methods
assumes a linear assignment matrix that maps TOD to link
volume. A neural net is stacked behind to predict the speed.

« EM [19], [33]: This method will iteratively update the
distribution of TOD and the distribution of the influence
from TOD to corresponding road segments speed, and
maximize the probability of the observed speed data.

e« NN [34]: This method uses a neural network to predict
the TOD, given the speed data on each road segment. This
network contains two fully connected layers.

o LSTM [35]: This method regards speed data and TOD as
sequential data. It uses two LSTM layers to predict TOD
sequences based on speed sequences.

We admit that there are some traffic prediction methods
that are better designed than the aforementioned baselines.
However, the key idea of all traffic prediction methods is to
do prediction by utilizing historical data, such as predicting
today’s traffic based on yesterday’s traffic. Therefore, these
methods can not work in our problem settings since we do
not use historical data.

In addition, our goal is to illustrate the effectiveness of
each module of our framework. Therefore, for each module,
we use relatively simple models. Readers are encouraged to
try to replace the models in the different modules in order
for performance boosting. However, comparing each of the
module with their corresponding baselines is off our goal.



TABLE VI
PERFORMANCE COMPARISON W.R.T RMSE (THE LOWER THE BETTER) IN REAL DATASETS. OVS ACHIEVES THE BEST PERFORMANCE. THE LAST ROW
“IMPROVE” SHOWS THE RELATIVE IMPROVEMENT OVER THE BEST BASELINE.

Hangzhou Porto Manbhattan
TOD vol speed | TOD vol speed | TOD vol speed
Gravity 29.87 32.57 1.76 21.45 25.37 1.30 20.99 30.44 2.99
Genetic 23.65 25.89 1.28 35.67 35.01 3.04 36.16 31.54 2.81
GLS 27.65 30.50 1.50 19.38 23.74 1.35 38.18 29.57 2.46
EM 25.45 29.23 1.61 18.31 16.78 2.41 29.14 37.85 3.74
NN 31.28 39.98 1.85 18.98 26.90 2.04 20.62 22.98 2.18
LSTM 26.76 30.16 1.56 15.88 17.03 1.59 16.17 20.52 2.09
OVS 9.98 12.14 0.56 10.39 13.07 1.14 11.23 14.22 1.89
Improve  57.81% 53.09% 55.85% | 34.56%  22.14% 12.52% | 30.55% 30.72%  9.46%
TABLE VII
RUNNING TIME (IN SECOND) IN REAL DATASETS.
10000
Dataset ‘ Hangzhou  Porto Manhattan 5
2 80001
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We feed the recovered TOD tensors into the simulator and = 20007
get the volume and speed tensors. We compute the RMSE (root ol
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where g, ¢, v and g, ¢, © are the predicted and groundtruth
TOD, volume and speed correspondingly. The groundtruth
TOD are acquired from the dataset, while the groundtruth
volume and speed are the result from the traffic simulator given
the groundtruth TOD.

H. Performance Comparison (RQI)

We compare OVS with baselines on both synthetic data and
real data (results shown in Table VIII and VI respectively).

We come up with the following observations.(1) Our method
OVS is consistently better than other baseline methods. In
most of the cases, it is significantly better (more than 30%
relative improvement). This is because our learning pipeline
captures the generation mechanism of TOD-volume-speed. (2)
Gravity performs quite well, probably because Gravity can
learn the relation between OD count and population. However,
Gravity can not model how the TOD varies over time. The
performance of LSTM is also acceptable due to its ability in
modeling the temporal change of TOD. However, without the

# intersections

Fig. 9. Running time in synthetic dataset w.r.t. number of intersections. Five
data points are with 10, 50, 100, 500 and 1000 intersections.

carefully designed network like in OVS, both baseline methods
(LSTM and Gravity) can not map speed to TOD accurately.

The ablation studies of OVS is shown in Table IX. In
this experiment, we replace each module in OVS with the
fully-connected neural network, e.g., “OVS — TOD” denotes
the TOD Generation module in OVS is replaced by fully
connected layers. We can observe all modules are working
better than fully-connected layers in predicting TOD and vol.
Since the speed is provided in testing, the speed error is a
fitting error, so the slightly higher fitting error on speed of
OVS is not a critical drawback.

We further investigate the scalability of our method. Note
that, we are showing the training time for our method. The
prediction process can be done in real time, because it only
needs one fitting of the whole model and takes less than 0.1
second.

In Table VII, we report the running time of our method OVS
on three real datasets. The running time is acceptable among
all the datasets.

In Figure 9, we show the running time in synthetic environ-
ment with 10, 50, 100, 500 and 1000 intersections correspond-
ingly. We can observe that the running time approximately
scale linear with the number of intersections.

1. Adding Extra Data Sources (RQ2)

In this experiment, we show how extra data can be in-
corporated to constrain the solution and filter unreasonable



TABLE VIII
PERFORMANCE COMPARISON W.R.T RMSE (THE LOWER THE BETTER) IN SYNTHETIC DATASETS. OVS ACHIEVES THE BEST PERFORMANCE. THE LAST
ROW “IMPROVE” SHOWS THE RELATIVE IMPROVEMENT OVER THE BEST BASELINE.

Random Increasing Decreasing Gaussian Poisson

TOD vol speed | TOD vol speed | TOD vol speed | TOD vol speed | TOD vol speed
Gravity  27.26 29.41 1.82 27.31 29.00 1.71 27.38 29.25 1.77 21.27 34.13 1.07 26.95 29.14 1.59
Genetic  36.48 35.99 1.93 38.14 38.87 1.88 33.61 35.81 1.75 39.08 57.26 1.70 38.81 43.40 1.88
GLS 28.92 32.21 1.97 29.01 32.09 1.82 28.54 31.46 1.86 22.66 33.15 1.43 28.34 31.94 1.70
EM 38.96 40.82 2.58 39.75 42.00 2.48 40.76 42.38 2.68 27.53 36.08 1.77 43.42 45.74 2.30
NN 39.97 46.34 2.65 28.44 31.46 1.80 28.45 31.38 1.86 38.62 45.56 2.36 40.42 47.11 2.61
LSTM 28.51 31.92 1.95 28.45 31.44 1.80 28.47 31.39 1.86 16.81 27.53 1.24 28.12 31.61 1.70
OVS 7.83 9.17 0.68 16.87 15.53 0.85 19.11 21.35 1.29 11.81 19.52 1.03 19.72 23.55 1.17
Improve 713% 688% 62.6% | 382% 46.4% 503% | 302% 27.0% 263% | 29.7% 29.1% 3.7% 26.8% 192%  26.4%

TABLE IX J. Consider Other Traffic Factors (RQ3)

ABLATION STUDY: “TOD”, “TOD2V” AND “V2S” DENOTES TOD
GENERATION, TOD-VOLUME MAPPING, AND VOLUME-SPEED MAPPING

RESPECTIVELY.
Method | TOD  vol speed
OVS 7.83 9.17 0.68
OVS — TOD 9.76 10.16  0.69
OVS — TOD2V | 11.33 1278 0.62
OVS — V2§ 11.67 1549 0.59

solutions. We use the roadnet data and generated speed data in
Manhattan to conduct two sets of experiments for comparison:
(1) with census data as a constraint (2) without census data
as a constraint. Here, using census data as a constraint means
there will be an auxiliary loss in TOD Generation, as the left-
bottom corner of Figure 3 shows. We plot two recovered ODs
in two different residential regions with a similar population
(census results for both regions are normalized to 100), as
Figure 10 shows.

We can see that when we use OVS directly, the sums of two
recovered OD counts are a lot different, which is contradicted
to the fact that the populations in the regions of these two
ODs are similar. However, with the help of census data, OVS
can recover TOD tensors with similar total counts, and also
remains a similar distribution. Therefore, extra data sources,
such as census data can help our model to be more reasonable.

30 mmm w/ census data (sum: 103) B w/ census data (sum: 104)
w/o census data (sum: 169) w/o census data (sum: 67)
- -
c c 20
3 =
8% g
a alo
o | ‘ | ° Wil
O..ll ITF oLl III .
0 10 20 0 10 20

Time Time
(a) Recovered TOD: Regionl (b)Recovered TOD: Region2

Fig. 10. Two different TOD tensors recovered in two ways: one is directly
using OVS, the other is using OVS with census data as a constraint. The
desired full-day sum of TOD is 100. It shows that adding census data as a
constraint does push the recovered TOD close to the desired sum.

As we all know, the road condition in cities often has
some planned changes, such as road constructions. Under these
circumstances, TOD tensor will not change drastically, since
people still need to travel in the city for work or entertainment.
However, the volume-speed mappings on influenced roads will
be significantly different from those on other roads. Therefore,
given the speed data generated by the same TOD in two
scenarios (one is the regular scenario, the other is with road
work), the method is expected to recover the same TOD in
these two scenarios.

In our experiments, we use two traffic simulators to generate
speed data: simulator 1 is the regular simulator while simulator
2 has irregular volume-speed mappings on some roads. The
difference between the two simulators is the hypothesis that
some roads are under maintenance, occurring traffic accidents,
or other special cases. We can see the results in Figure 11.
OVS predicts similar TOD tensors in two simulators, while
the predictions of LSTM are different between the two sim-
ulators. These experiments illustrate that OVS can avoid the
interference of road work factors and recover the correct TOD.

s simulator 1 60
E 75 simulator 2 /\ “E K
350 ’,"\/ ‘ 340 v ,
o7\ A ‘ o
[a] a
o 25 \/ / o 20 s simulator 1
0 simulator 2
0 10 20 0 0 10 20
Time Time
(a) OVS (b) LSTM
Fig. 11. Comparison of road work factor’s influence to recovered TOD

tensors. We can see that OVS remains a similar prediction while LSTM is
largely affected, after adding road work factor.

K. Case Study of Learned TOD (RQ4)

We collect real-world road network data in a big city in
China and a university town in the USA, where the speed data
of the road segments using Gaode Maps and Google Maps.
We run a microscopic traffic simulation on the real-world road
network by simulator CityFlow. We take the real-world speed
data as input to estimate the TOD in the real world.
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Fig. 12. Case study #1 in Hangzhou, China. (a): We use a roadnet in
Hangzhou to conduct experiments, of which we notice two regions: residential
region A and commercial region B. (b): We recover the TOD tensor by OVS,
and we analyze the OD counts of (A — B) and (B — A) on a Sunday.

We show two case studies here. The first case reflects
people’s weekend commute between a residential region and
a commercial region. The other case study shows the TOD on
Saturday morning before a football game event.

1) Case 1.: In this case, we use the pretrained model in
Hangzhou roadnet from Table VI, and let it recover TOD
tensors from real-speed data on 01/06/2019, which is a Sunday.
We show the performance of different models on fitting the
observed speed (result shown in the first column of Table X.
Our method gets the lowest RMSE. Note that we can not
show quantitative evaluation for volume and TOD because of
lacking ground truth data on those variables.

We focus on two typical regions in Hangzhou roadnet:
residential region A and commercial region B. We take a
close look at the recovered OD counts between these two
regions, as Figure 12 shows. We can see that the trips from
residential region A to commercial region B have two peaks:
one is around 10 am and the other is around 6 pm, which is
corresponding to people’s shopping habits on a Sunday. The
trips from commercial region B to residential region A has one
peak from 8 pm to 1 am, which is reasonable since people are
used to going home late on weekends.

2) Case 2.: In this case, people drive to the stadium area
on a Saturday morning before a football game. We first show
the performance of different models on fitting the observed
speed. We can see the result in the second column of Table
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Fig. 13. Case study #2 on a football event: (a) shows three OD that indicates
people go to the stadium on football day; (b)(c)(d) illustrate the recovered
TOD tensors by our model, we can see that most people go to the stadium
at 9 am, which is approximately 2 hours before the game.

X. Our model still performs the best in this case.

In this case, the football game starts at noon. As Figure
13 shows, a higher TOD is transiting from north or south
residential area to the stadium at around 9 am, which matches
the schedule that people usually arrive 2 hours before the game
which starts at noon. Besides, many people in other cities will
come to the town for the football game. As a result, the number
of trips for first and third OD is much larger than the second
OD, because O; and Og are near the main exits of the highway
#99 and highway #322 and O, is only a local residential area.

VI. CONCLUSION

In this paper, we propose to solve the problem of revealing
underlying temporal origin-destination tensor from speed data.
This problem differs from the literature in the following two
folds. (1) This problem tries to recover the mechanism by
which TOD generates traffic situation, rather than doing TOD



TABLE X
PERFORMANCE OF DIFFERENT MODEL W.R.T RM SEpceq IN
REAL-WORLD SCENARIOS.

Method | Case 1  Case 2
Gravity 2.81 2.55
Genetic 1.48 1.52
GLS 1.21 2.37
EM 1.45 2.08
NN 1.76 1.98
LSTM 1.28 1.36
OVS (ours) | 0.58 0.32

prediction from historical TOD trip counts. (2) This problem
takes easy-to-get speed data as input (rather than volume data),
hence can apply to large-scale urban road networks.

We solve this problem by proposing a method called
OVS, in which we model the TOD generation, TOD-Volume
mapping, and Volume-Speed mapping in one unified model.
This model, especially the dynamic attention network design,
enables us to model the dynamic temporal and spatial de-
pendency between link volume and TOD trip counts. Exten-
sive experiments on synthetic datasets and real datasets are
conducted. In experiments, we have shown that our proposed
method OVS significantly improve the performance over the
baseline methods. We also show two case studies to illustrate
that the learned TOD patterns match with people’s mobility.

In the future, our work can be further extended by better
modeling the relation between routes and TOD, when people’s
routing strategy is considered, which is more challenging.
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