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Explaining GNNs
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Intuition: An explanation on a graph from
GNN is the subgraph that can mix up with

Algorithm 1 Graph Mixup Algorithm

random connections 7, explanation model g.
Output: Graph G(mix)
1: Randomly sample a graph Gy, = (Ap, Xp) from G
Generate mask matrix M, = g(Gy) A (mix) _ [
Generate mask matrix M, = g(Gp)

AM,

Mixup edge mask M (M%) with Eq. (11) sy M = l T

Mixup node features X (mix) — [ Xa; X ]
return G(mix) = (x(mix) pr(mix) o g (mix))

Input: Graph G, = (Xg, Ag), a set of graphs G, the number of

Sample n random connections between G, and Gy, as A, 1
Mixup adjacency matrix A(™X) with Eq. (10)

Ap — AM,
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Al A,

M, ]

could reduce the distance between the
@Ianation and original graphs.

Nice Property: the proposed mixup approach
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Graph Information Bottleneck (GIB) ObJectlves
in a nut shell :

What was right and

what was wrong?

Mutual information I(G*,Y) = H(Y) — H(Y|G")
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Diverging Distributions between Y and f(G™)
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wPrevious GIB Objective

Proposed generalized GIB objective
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I S3 = H(Y|G",G*)
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(b) Our Generalized GIB Objective
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When S, = 0,
53 — 52

argmmI(G G*) + aH(Y|G*,G?) s.t.

I(GR,Y|G*) = 0

Nice property: The generalized GIB
objective is equivalent to vanilla GIB

Figure 2: Illustration of GIB and our proposed new objec-
tive. (a) Previous vanilla GIB objective aims to minimize
I(G*,Y) and H(Y|G"), with a smaller overlap between G* and
G. (b) Our generalized GIB objective has the same objective
as vanilla GIB, with a larger lap between G and G* + G2, re-
sulting in less distribution shifting issue.
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Mix explanation aligns well with original graph

y All these four improvements
Table 1. Explanation faithfulness in terms of AUC-ROC on edges. 3%0.0 Stlt[cr)]nqtlyt_ccsrrella’ged ]EO each. other
BA-Shapes BA-Community Tree-Circles Tree-Grid BA-2motifs MUTAG \-;-vrl]e ismap:.z\l,(;amzlrﬂ?;zi?ecvee.d by
GRAD 0.882 0.750 0.905 0.612 0.717 0.783 00| "REa ™ MixunExplainer in exolanations
ATT 0.815 0.739 0.824 0.667 0.667 0.765 £ s x accufacypown to the Euccessful
SubgraphX 0.548 0.473 0.617 0.516 0.610 0.529 " 1o alleviation of the distribution
MetaGNN 0.851 0.688 0.523 0.628 0.500 0.680 I L [ Y shifting issue.
RG-Explainer 0.985 0.919 0.787 0.927 0.657 0.873 3 =
GNNExplainer | 0.884.0.002 0.6824.0.004 0.68310.0090 0.3794+0.001 0.660+0.006 0.539+0.002 83 0 / ' Q\@ '
+ MixUp 0.890+0.004 0.788+0.006 0.690+0.014 0.501+0.003 0.869+0.004 0.61210.043 04y A
(improvement) 0.60% 15.5% 1.02% 32.2% 31.7% 13.5% . _
PGExplainer | 0.999.+0.001 0.829+0 040 0.762+0.014 0.679+0008 0.679+0043 0.843+0 084 %O.O_ J @ _ Esl]. Yin% et al, (ISNNte.pra:cner: h
+MixUp | 0.999+0.000  0.955:+0.017  0.774x0.004 0.71240.000 0.9201+0.031  0.871+0.079 1 AN NeutlPS 2030,
(improvement) 0.00% 15.2% 1.57% 4.86% 35.5% 3.32% ACOS,-ne Atucidean AGNNExplainer  \PGExplainer 2]. Luo, et al., Parameterized explainer
for graph neural network. NeurlPS 2020.
* Be careful if you are using GNNExplainer or PGExplainer! You might encounter distribution shifting issue [3].gMi§o et al., Interpretable and

Conclusion

between f(G) and f(G™).

generalizable graph learning via
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An explanation of a GNN’s prediction on an original graph is the subgraph that can mix up with any random Z;zcz_as - ARENHON MEEnanism

graphs and does not change GNN’s prediction.
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