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ABSTRACT

Traffic simulation is an important computational technique that
models the behavior and interactions of vehicles, pedestrians, and
infrastructure in a transportation system. Calibration, which in-
volves adjusting simulation parameters to match real-world data,
is a key challenge in traffic simulation. Traffic simulators involve
multiple models with hybrid hyperparameters, which could be ei-
ther categorical or continuous. In this paper, we present CHy?, an
approach that generates a set of hyperparameters for simulator cali-
bration using generative adversarial imitation learning. CHy? learns
to mimic expert behavior models by rewarding hyperparameters
that deceive a discriminator trained to classify policy-generated and
expert trajectories. Specifically, we propose a hybrid architecture
of actor-critic algorithms to handle the hybrid choices between hy-
perparameters. Experimental results show that CHy? outperforms
previous methods in calibrating traffic simulators.
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1 INTRODUCTION

Traffic simulation is a computational technique that models the be-
havior and interactions of vehicles, pedestrians, and infrastructure
in a transportation system. It has been widely used to analyze and
predict the performance of transportation systems, including traffic
congestion [16], travel time [7], and safety [5].

One of the main challenges in traffic simulation is calibration,
which involves adjusting simulation parameters to match real-
world data [3]. Traffic simulators typically include multiple models,
such as microscopic simulators [9, 17], which include car-following
models (representing vehicle acceleration and deceleration), lane-
changing models (representing vehicle movements between lanes),
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Figure 1: Proposed CHy?> Approach. Left: The overall frame-
work of CHy? includes three components: policy network,
critic network, and discriminator network. Right: The de-
tailed network architecture of the policy network in CHy?,
which has separate sub-networks for discrete actions and
continuous actions. Best viewed in color.

junction models (representing vehicle interactions at intersections),
and others, where each model could contain hybrid hyperparameters,
i.e,, the hyperparameters could be either categorical or continuous.
In this paper, we present CHy?, an approach that can calibrate
a set of hybrid hyperparameters for the simulator. Given a set
of real-world observations (also called expert trajectories), CHy?
learns to mimic the expert behavior models under the framework of
generative adversarial imitation learning (GAIL) [6], which learns a
policy that can perform expert-like hyperparameters by rewarding
the hyperparameters for deceiving a discriminator trained to clas-
sify between policy-generated and expert trajectories. Specifically,
for hybrid hyperparameters, we propose a hybrid architecture of
actor-critic algorithms for the policy network to deal with the hy-
brid choices between hyperparameters. It is based on the original
architecture of PPO algorithms [12] but contains multiple parallel
sub-policy networks instead of one to solve hyperparameter selec-
tion respectively and has one global critic network to update the
sub-policy networks. We show that CH)? outperforms previous
methods in simulating realistic trajectories and output hyperpa-
rameters more precisely for the microscopic traffic simulators.

2 RELATED WORK

Heuristic-driven Calibration This is the traditional and most
common method of calibration, where experts pre-define the form
of the model, and hyperparameters are adjusted until an acceptable
fit is achieved between the model outputs and observed data [1,
2, 10]. Although this method is simple and straightforward to im-
plement, it can be time-consuming and requires a high level of
expertise in model development and data analysis.

Data-driven Calibration Data-driven methods are widely used
for modeling complex systems, relying on statistical or machine
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learning techniques to learn relationships between inputs and out-
puts from available data [6, 13, 15]. They have the advantage of
being automated and requiring minimal user input, making them a
popular choice for many applications. However, these methods can
require large amounts of data. In situations where data is limited
or biased, data-driven methods may not capture the complexity of
the model accurately. Additionally, if existing simulators do not
support machine learning models as internal models, these methods
may not be applicable.

3 PRELIMINARY

In our problem, the hyperparameters before each round of simula-
tion are controlled by an agent. At each round ¢, agent i observes
from the environment as its state ol.tA Given the vehicle position,
the goal of the agent is to give the optimal action a (i.e., which
hyperparameters to set), so that the similarity between simulated
trajectories and real trajectories can be maximized.

Simulator Calibration as a Markov Decision Process. We can for-
mally model the simulator calibration task by a Markov Decision
Process (MDP), defined by a tuple T' =< S, P, A, R,y >, where
S, P, A, R,y are the sets of states, transition probability functions,
joint actions, reward functions and a discount factor respectively:

o S: At each time step ¢, agent observes the state s’ € S. Our state
includes the current hyperparameter settings and the ground truth
trajectories.
e A. An agent’s action set A is defined as a group of hyperpa-
rameters. In the traffic simulator, A is mostly pre-defined, i.e., the
candidate hyperparameters are set to be chosen from a finite set.
e P: At time step ¢, the agent takes an action al € A, which
induces a transition according to the state transition function:
P(s"*stal) : Sx A — S
o R: In a Markov Process, the reward an agent i obtains obtains
rewards r! at time ¢ by a reward function R(s,a’) : S x A — R.
Considering our problem definition, we do not know the similarity
between the simulated trajectories and observed trajectories, and
thus need to learn the reward function.
e y: Each agent i aims to maximize its total discounted reward
Gf = Zfz tyk_t rl.t from time step ¢t onwards, where the discount
factor y € [0, 1] controls the importance of immediate rewards
versus future rewards, and E is the length of an episode that controls
the total rounds of simulation. The termination of a simulation
round ¢ is conditioned on the reward r’ smaller than a threshold
€. if the current simulation fails to achieve above €, the simulation
with the current hyperparameter setting would terminate early.
The policy 7 of the agent has a corresponding policy function
that gives the action probabilities 7 (als) conditioned on the obser-
vation s, when acting according to that policy 7.

4 METHOD

4.1 Generative Adversarial Imitation Learning

In this paper, we follow the framework similar to GAIL [6] due
to its scalability to the multi-agent scenario and previous success
in learning human driver models [8]. GAIL formulates imitation
learning as the problem of learning policy to perform expert-like
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behavior by rewarding it for “deceiving” a classifier trained to dis-
criminate between policy-generated and expert state-action pairs.
For a neural network classifier Dy, parameterized by ¢, the GAIL
objective is given by maxy, ming L(, 0) where L(y/,0) is :

LY, 0) = E(s,a)~r€7fg log ‘Z)l//(s’ a) (1)

+ E(s,a)~r€‘72; log(1 - Dg&(s’ a)) — BH(rg)
where 7g and 7G are respectively the expert trajectories and the
generated trajectories from the interactions of policy 7y with the
simulation environment, H(7g) is an entropy regularization term.

e Learning y: When training Dy, Equation (1) can simply be
set as a sigmoid cross entropy where positive samples are from 7g
and negative samples are from 7. Then optimizing ¢ can be easily
done with gradient ascent.

o Learning 0: The simulator is an integration of physical rules,
control policies and randomness and thus its parameterization is
assumed to be unknown. Therefore, given 7 generated by 7y in
the simulator, Equation (1) is non-differentiable w.r.t 8. In order to
learn 7y, GAIL optimizes through reinforcement learning, with a
surrogate reward function formulated from Equation (1) as:

7(s',a;y) = —log(1 - Dw(st, a')) 2)
Here, 7(s’,a’;1/) can be perceived to be useful in driving 7y
into regions of the state-action space at time ¢ similar to those
explored by 7F. The optimization of @ is optimized via algorithms
with actor-critic style including TRPO [11] and PPO [12], which
usually have one actor network and one critic network, and the
critic network is used to compute the gradient of the parameters of
the actor network.

4.2 Policy Network for Hybrid Action Space

The hyperparameters in the simulator could be either discrete or
continuous. In microscopic traffic simulators, the hyperparameters
could be the parameters for Lane Changing Models (LCM), Car-
Following Models (CFM), and Junction Models (JM), where each
model has multiple choices with hybrid types. For example, the
CFM can be chosen from several candidate models as discrete hy-
perparameters and each candidate model for CFM has continuous
hyperparameters like minimum gap when standing, maximum ac-
celeration ability of vehicles, and maximum deceleration, etc.. This
makes the action space for the policy a class of discrete-continuous
hybrid action spaces.

To tackle the hybrid action space problem, we propose an archi-
tecture for hybrid action spaces (shown in Figure 1) that contains
two parallel actor networks (or even more for general hierarchi-
cal action spaces). The parallel actors perform discrete selection
and continuous selection separately: one discrete actor network
learns a stochastic policy 7g, to select the discrete action a and one
continuous actor network learns a stochastic policy g, to choose
the continuous parameters. The complete action to execute is the
selected action paired with the chosen continuous hyperparameter
ac and discrete hyperparameter a;. The two actor networks share
a state encoder to encode the state information.

There is a single critic network in the hybrid actor-critic archi-
tecture, which works as an estimator of the state-value function
V(s). In our architecture, the state-value function V (s) is used for
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computing a variance-reduced advantage function estimator A. We
follow the implementation in Equation (3), which runs the policy
for T rounds and computes the estimator A; using the collected
samples as where ¢ € [0, T] is the round index and E is much less
than the length of an episode:

At = —V(st)+rt+yr;+1 +---+yE_trt+1 (3)

With a critic network providing an estimation of the advantage
function, the hybrid actor-critic architecture is flexible in the choice
of the policy optimization method. The only requirement is that the
optimization method should have an actor-critic style and updates
stochastic policies with the advantage function provided by the
critic. Although the complete action to execute a is decided by
both of the actors, the discrete actor and the continuous actor are
updated separately by their respective update rules at each round.
The update rules for the discrete policy 7, and the continuous
policy 7y, network could follow policy gradient methods such as
TRPO [11] or PPO [12].

4.3 Training and Implementation

In this paper, the policy network consists of a trajectory encoder,
a hyperparameter encoder followed by a state encoder, and two
sub-networks. The trajectory encoder is parameterized by a Trans-
former [14] to encode the observed trajectories, other networks
including the hyperparameter encoder, state encoder, and sub-
networks, are implemented by two-layer fully connected networks
with 32 units for all the hidden layers. The policy network takes
the state s as input and outputs the distribution parameters for a
Normal distribution, and the action a will be sampled from this
distribution. The policy networks are optimized via TRPO [11]. We
aim to optimize the hyperparameters microscopic traffic simulator,
specifically three models in the simulator: Lane Changing Models
(LCM), Car-Following Models (CFM), and Junction Models (JM).
Their detailed hyperparameters can be found in Table 1 with the
full list described in the official documentation of SUMO !, and the
policy takes the state as input and outputs an action a (i.e., hyper-
parameters). For the discriminator network, each driving point is
embedded to a 10-dimensional latent space and fed into a two-layer
fully connected layer.

5 EXPERIMENTS
5.1 Experimental Settings

5.1.1 Datasets. The proposed framework is demonstrated and eval-
uated on the dataset from two different microscopic traffic simu-
lators focusing on the diagnostics of vehicle movements. We use
CityFlow [17] as the target simulator to be calibrated, and SUMO [9]
as the source simulator where we have the ground truth of sim-
ulator hyperparameters. We also use a real-world open-sourced
dataset from Los Angeles [18] to evaluate the differences between
generated trajectories and real-world observed trajectories.

5.1.2  Baselines. We compare our model with the following two
categories of methods: heuristic-driven methods and data-driven
methods.For Heuristic-driven methods, we use the default models
of simulator CityFlow [9] [17].

!Full hyperparameters can be found in https:/bit.ly/sumo-models.

SIGSIM-PADS °23, June 21-23, 2023, Orlando, FL, USA

Table 1: Hyperparameters considered in this paper. The com-
plete list can be found in the official documentation of SUMO.

Category Type Description
Which CFM? Discrete 7 candidates: Krauss, KraussOrigl, ...
Which LCM? Discrete 2 candidates: LC2013, SL2015
1h h
CFM-related  Continuous 3 . yperparameters, such as
minGap, accel, decel, ...
27 h h
LCM-related  Continuous - yperparameters, stenas
IcStrategic, lcCooperative, ...
. 12 hyperparameters, such as
JM-related Continuous

jmCrossingGap, impatience, ...

e Random Search (RS) [2]: The parameters are chosen when they
generate the most similar trajectories to expert demonstrations
after a finite number of trials of random selecting parameters.

o Tabu Search (TS) [10]: Tabu search chooses the neighbors of the
current set of parameters for each trial. If the new CFM generates
better trajectories, this set of parameters is kept in the Tabu list.

e Behavioral Cloning (BC) [13] is a traditional imitation learning
method. It directly learns the state-action mapping in a supervised
manner.

o Generative Adversarial Imitation Learning (GAIL) is a GAN-
like framework [6], with a generator controlling the policy of the
agent, and a discriminator containing a classifier for the agent
indicating how far the generated state sequences are from that of
the demonstrations.

5.1.3  Evaluation Metrics. Following existing studies [4, 8, 18], to
measure the error between learned policy against the expert policy,
we measure the position (ps) and the travel time (tm) of vehicles
between generated dense trajectories and expert dense trajecto-

ries, which are defined as: RMSEpos = + Zthl gz (1t - jl_t)z’
RMSEtime = ‘/% > di - cfi)z where T is the total simulation

time, M is the total number of vehicles, ll.t and ilt are the position of
i-th vehicle at time ¢ in the expert trajectories and in the generated
trajectories relatively, d; and d; are the travel time of vehicle i in
expert trajectories and generated trajectories respectively. If we
know the ground truth of hyperparameters, the inference accuracy
is evaluated by Acc@1 for discrete hyperparameters and the root
mean square error (RMSE) for continuous hyperparameters. Acc@1
(Accuracy at top-1) is a common evaluation metric used to mea-
sure the accuracy of predictions, calculated by dividing the number
of correct predictions in top-1 predictions by the total number of
predictions.

5.2 Results

In this section, the performance of the proposed method is an-
alyzed based on two evaluation criteria: inference accuracy and
computational cost.

5.2.1 Inference Accuracy. One of the primary objectives of sim-
ulator calibration is to make the output of the simulator close to
the observations. In traffic simulation, we consider the root mean
square error (RMSE) between the observed vehicle trajectory and
the simulated vehicle trajectory. Table 2 shows the simulation per-
formance of the baseline heuristic-driven and data-driven methods
and our proposed method (CH)?) in the dataset generated by SUMO
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Table 2: Performance w.r.t Relative Mean Squared Error
(RMSE) of time (in seconds) and position (in kilometers) on
SUMO dataset and real-world dataset in Los Angeles (LA).
The lower the better.

SUMO LA
time (s) pos (km) time (s) pos (km)

RS 4.4278 0.6154 4.3932 0.4696
TS 9.7713 0.4142 4.2928 0.8775
BC 6.7349 0.3254 5.5595 0.7299
GAIL 1.3611 0.0345 0.5297 0.0631
CHy2 1.1648 0.0347 0.4394  0.0578

and the real-world dataset in Los Angeles [15]. We can see that
CHy? achieves the best performance with smaller error under most
cases, indicating its effectiveness in simulating realistic trajectories.
It is worth mentioning that data-driven methods like GAIL do not
assume the form of the simulation models like heuristic-driven
methods and CHy? do, which replaces the inner models of simu-
lators completely with a machine learning model. It requires the
simulator to import machine learning models, but sadly most traffic
simulators do not support it now.

The primary objective of simulator calibration is to infer the
values of the model parameters. From the application perspective
of model-based diagnostics, this objective corresponds to inferring
the true underlying degradation parameters. Therefore, we com-
pare the estimated hyperparameters with the ground truth. Table 3
shows the inference performance of the baseline methods and CHy?
under the SUMO dataset where we know the groundtruth hyperpa-
rameters. With the lowest RMSE, the policy obtained with CHy?
shows the best overall performance in both datasets. The RS and
TS model yields worse overall performance, which highlights the
limitations of heuristic-given methods. It is worth mentioning that
unlike traditional data-driven methods, which replace the inner
models of simulators completely with a machine learning model
our framework does not replace the inner models but improves the
search for better hyperparameters. This makes our method more
flexible and more applicable to existing simulators.

Table 3: The inference accuracy w.r.t. Acc@1 and RMSE on the
hyperparameters under the dataset from SUMO. For Acc@1,
the higher the better; for RMSE, the lower the better.

Lane Changing Car-Following  Junction
Acc@1l RMSE Acc@l RMSE RMSE

RS 0.678 7.7936  0.1625  9.9117 5.2100
TS 0.6820  7.4297  0.2431  9.8905 4.9488
BC 0.7615  7.1506  0.2973  9.4845 5.0302
GAIL 0.8469 6.3103 0.3473  9.4046 4.3802
CHy2 0.8615 5.3763 0.5390 8.7899  3.9425

5.2.2  Computational Cost. One crucial aspect of the proposed
method is the ability to perform calibration in real-time which is a
crucial requirement for real applications. Therefore, we evaluate
the time required to perform inference of the model parameters at
deployment. Table 4 reports the average times required to calibrate
a single sample and the total training time with the five methods.
In terms of deployment computational cost, the proposed method
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Table 4: Average time required for inference of a single sam-
ple with heuristic-driven and data-driven approaches in sec-
onds for LA dataset.

Method RS TS BC GAIL  CHy?

Deployment time (s) 6 5.1 2.0le-2 2.10e-2 2.10e-2

is 300 times faster compared to the TS and RS. This deployment
speed is comparable to the BC and GAIL models as both methods
only require a forward pass over a deep neural network.

6 CONCLUSION

In this paper, we present CHy?, an approach that generates a set of
hyperparameters for simulator calibration using generative adver-
sarial imitation learning. With a hybrid architecture of actor-critic
algorithms, CHy? is able to handle the hybrid choices between hy-
perparameters. Preliminary results show that CHy? outperforms
previous methods in calibrating traffic simulators. In the future, we
will conduct more experiments on the robustness of our proposed
method under stochastic simulators and noisy data, and investigate
the scalability of the proposed method.
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