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ABSTRACT

Chauffeured car service based on mobile applications like
Uber or Didi suffers from supply-demand disequilibrium,
which can be alleviated by proper prediction on the dis-
tribution of passenger demand. In this paper, we propose
a Zero-Grid Ensemble SpatioTemporal model (ZEST) to
predict passenger demand with four predictors: a temporal
predictor and a spatial predictor to model the influences of
local and spatial factors separately, an ensemble predictor
to combine the results of former two predictors comprehen-
sively and a Zero-Grid predictor to predict zero demand ar-
eas specifically since any cruising within these areas costs ex-
tra waste on energy and time of driver. We demonstrate the
performance of ZEST on actual operational data from ride-
hailing applications with more than 6 million order records
and 500 million GPS points. Experimental results indicate
our model outperforms 5 other baseline models by over 10%
both in MAE and sMAPE on the three-month datasets.
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1. INTRODUCTION

Chauffeured car service based on ride-hailing applications
like Uber and Didi serves as an important transportation
to provide passengers with convenient and professional ser-
vices. However, in metropolises like Beijing or New York,
it is common to see passengers seeking for taxicabs roadside
either in downtown or in suburbs while some taxi drivers are
cruising idly on the street.

This contradiction reveals the supply-demand disequilib-
rium with the following two scenarios: Scenario 1, demand
exceeds supply, where passengers’ needs would not be met
in a timely response. As is shown in the Figure 1(a), 90%
passengers who withdrew their requests canceled their or-
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ders in the first 10 minutes and specifically, 80% canceled in
their first 5 minutes. Scenario 2, supply exceeds demand,
where drivers would spend overly long time in seeking for
passengers. Figure 1(b) indicates that over 20% chauffeured
drivers spend over 2 hours seeking for their next customers
while only 40% drivers can pick up their next passengers
within 30 minutes. In particular, areas that are highly pos-
sible of having zero demand in the next time period should
be more concerned because any cruising within may be a
waste in energy and time. Besides, after knowing some ar-
eas are very likely to be zero-demand area, the drivers can
avoid driving to those areas, while dispatching centers of car
companies can dispatch their cars and set their prices ahead
of time dynamically, which can successively alleviates the
disequilibrium of both Scenario-1 and Scenario-2 areas.

........

(a) Waiting time (min) (b) Cruising time (min)
Figure 1: Distribution of passengers’ waiting time
before canceling order and drivers’ cruising time in
Beijing during September 2015

To solve the problem of disequilibrium, an overall pre-
diction for passenger demand provides a global distribution
of passengers, upon which we can dispatch in supply and
adjust prices dynamically in advance. Although there are
plenty of methods for prediction like Linear Regression and
Multiple Additive Regression Tree, particularly, the pattern
of demand for road transportation can be modeled as Pois-
son Process [5]. Li et al. [4] and Moreira-Matias et al. [6]
both took advantage of Auto-Regression Moving Average
method in time series analysis, which predicted the number
of passengers in certain region based on historical pick-up
data. However, aforementioned studies have assumed that
the quantity of demanding passengers is equal to the pick-
up counts recorded by taxi. But in countries where roadside
taxi hailing is permissible, there are still plenty of people
who manage but fail to take taxis.

Thus, there is a bias between the pick-up records and pas-
senger demand. Zhang et al. [7] noticed this bias and ob-



served online hidden context to infer the passenger demand.
Instead of inferring the unpicked-up passengers, Jiang et al.
[3] utilized the order data generated by demanding passen-
gers through ride-hailing applications, which properly set-
tled the bias since passengers in demand can only make re-
quests through mobile applications. Therefore, the demand
of passengers can be considered equal to the amount of or-
ders recorded by applications. But the model they utilized
was based on Linear Regression, which oversimplified the
temporal and spatial influences. Moreover, as their model
is based on regression, they cannot provide information on
the possibility of areas having zero demand in the next time
period.

In this manner, this paper focuses on the prediction of
passengers in demand of chauffeured car service and how
possible one region will have zero demand in certain periods.
The major contributions of this paper can be summarized
as follows: a) Based on the local data, a simple yet novel
parameter named FluctuationRate is proposed in the tem-
poral predictor to filter out irrelevant historical records; b)
the influences of neighborhoods are modeled using different
kinds of datasets, while most of the existing researches are
based on onefold data; c¢) a specified model named Zero-Grid
Predictor is presented to predicted areas with zero demand,
along with an ensemble predictor combining the results of
temporal and spatial model. The integration keeps the ad-
vantages of temporal and spatial model and provides the
possibility of zero demand area, which is not covered by
many state-of-art prediction models on passenger demand.
Evaluations on real operational datasets with over 6 million
order records and 500 million GPS points show that com-
pared to ground truth, our model achieves 0.68 in MAE and
12.6% in sMAPE on average, which outperforms other five
baseline models.

2. METHODOLOGY

In this section, we clarify some definitions and present
the prediction model, including the framework and detailed
design of each component.

2.1 Preliminary

Definition 1: Time Period, Hour of Day and Day of
Week. We divide one day into several time periods while
in experiment, the length of one period is 60 minutes and
one day is divided into 24 periods. For example, when the
length of each time period is one hour, “2015-06-01 16:03:22”
at Monday’s hour of day (HOD) and day of week (DOW)
will be 16 and 0 accordingly.

Definition 2: Grid, Row, Col. We divide one city into
mutually disjoint grids, where each point in the records can
be mapped into one grid by locating the index of row number
row and column number col. In experiments, the distance
from one grid to another is approximately equal to the driv-
ing distance within 10 minutes in the city.

Definition 3: Order. Given the time period ¢ and grid
r, the amount of order records requested from passengers
within ¢ and r are denoted as Order; .

Definition 4: Zero-Grid. When a grid r has zero order
in time period t, i.e Order; = 0, we call r is a Zero-Grid.
From the perspective of saving energy and time, Zero-Grids
should be given close attention in dispatching to meet the
need of demanded areas.

2.2 Framework of Model

As is shown in Figure 2, the construction of our model is
mainly based on the offline learning on historical data, online
data preprocessing and online prediction. For order data and
GPS data stream, we firstly partition and aggregate them
into certain grids and time periods as Order. Then in the
offline learning process, preprocessed data is separately fed
into predictors to re-train our models every week. Upon
the model, online predictions can be generated with prepro-
cessed input data.
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Figure 2: Framework of the prediction model

As is shown in Figure 2, our prediction model includes a
temporal predictor (T'P), a spatial predictor (SP), an en-
semble predictor (EP) that combines former two predictors
and a Zero-Grid predictor (Z P) which provides the possibil-
ities of a grid r being a Zero Grid. When a grid has a high
possibility of having zero demand in the next time period,
the final prediction will be zero.

2.3 Temporal Predictor

Intuitively, given a region, its demand at certain period
could be roughly deduced from demand at comparable peri-
ods, like same time of the day or same day of the week. How-
ever, the passenger demand is sometimes irregularly variant
at same time of the day and may lead to bias if all historical
periods are taken into prediction.
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Figure 3: Passenger demand near Renmin Univer-
sity of Wednesdays in June 2015

Figure 3 gives an example of the passenger demand in
Renmin Univerisity area at Wednesdays in July where the
passenger demand did fluctuate in different days. When
we were predicting for the passenger demand in 16:00 of
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(a) Order; of average Order;  (b) FR; of average FR;

Figure 4: Correlations of Orders and FRs

July 24th, the prediction value was =~ 30 using all
historical data. If we found out that patterns in July 3rd
and 10th are more similar with 24th than 17th based on the
change of demands, we would get the inference of LQB =15
using more relevant data, which is closer to the actual value
(16 in this case).

Therefore, we define a parameter FluctuationRate to re-
flect the similarities between demand fluctuation in different
time periods. Given grid r at time i, FluctuationRate is de-
fined as Equation 1:
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where At is the length of time slots. In the following
sections of this paper, we abbreviate FluctuationRate; as
FR;. As is shown in Figure 4, the correlations between
FR; and the average value of F'R; is more apparent than
the correlations between Order; and the average Order; for
every j, where i —4 < j < i.

In temporal predictor, F'R is employed to filter out less re-
lated period in past three months. The inputs of the TP are :
a) the order number of grid r of last time slot tcyr, Order{cw;
b) the set of historical Order] in last three months; c) the
set of historical FR] in last three months; and d) the simi-
larity error € where we say F'R;, and FRj aresimilar when
|FR; — FRi |<e.

The details of the algorithm are presented as follows: Firstly,

we calculate the parameter F'R; . for current time tcur.
Secondly, we select all the time slot ¢; whose F'R is similar
with F' R{CW. Then we select t;’s next time slot and its corre-
sponding F'R, upon which we can predict the order number
of grid r of next time slot tcyr41 through the average of F'Rs
and Ordery,,,. Note that unless the data after filtering is
null, a traditional time-varying poisson model will not be

used.

2.4 Spatial Predictor

Spatial predictor makes use of target grid’s neighborhood
data to predict its future demand, including passenger de-
mand and drop-off data, along with the vehicle data of the
target grid.

Intuitively, passenger demand is related to each other in
different regions as the passengers and vehicles are moving
around the city. Passengers may take public transportation
to the nearest subway or bus station and then orders chauf-
feured service to their destination. Therefore, it’s inferred
that passenger demand Order{ in grid r at time ¢ is related
with the drop-off passengers in r’s neighborhood before t,

Dropof f;;:eflj::‘” Besides, it’s also speculated that since
passengers who had left grid r just before ¢ was unlikely to
show up again in r at ¢, passenger demand Order;j is related
with the demand in r before ¢, Order{beforﬁ. What’s more,
drivers also have their own experience in pick-up points,
which could be referred by the number of vehicle (Cars)
in target region.

For a target grid to predict, we divide and aggregate its
neighborhood into uneven grids as is shown in Figure 5(a)
considering range-based influence, feature quality and di-
mension. For grids with larger size, the final value of each
feature will be an average value of corresponding features
regarding all included grids. Note that the overall neigh-
borhood area in Figure 5(a) contains 79 grids, which would
increase the feature dimension dramatically if there was no
aggregation.
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Figure 5: Framework of spatial predictor

As is shown in Figure 5(b), for a target grid to predict,
we use four types of features: time t. to predict; the number
of passenger demand in grid r;, Orders”; the number of
drop-off passengers, Dropof fs™; the number of vehicles,
Cars®. Firstly, passenger demand features are generated
from the demand data of target’s surrounding three-circle
areas (containing 24 grids) in past three time periods (1 hour
ago, 2 to 3 hours ago and 4 to 6 hours ago), one average value
per period and grid. Secondly, passenger drop-off features
are generated from the drop-off data of target’s surrounding
first circle with 8 grids in past three time periods (1 hour
ago, 2 to 3 hours ago and 4 to 6 hours ago). Thirdly, the
vehicle feature are generated from the quantity of vehicles
within target grid in past one hour.

After generating features, an artificial neural network is
trained to model the correlations in demands at different
grids where the number of layers and the number of nodes
in hidden layers are related with the input data.

2.5 Ensemble Predictor

In ensemble predictor, we aggregate the result of temporal
predictor and spatial predictor. Although the idea of mod-
eling temporally and spatially is intuitive yet widely used in
spatiotemporal prediction [1] [8] [9], it is still flexible when
confronted with different objectives. Note that the tempo-
ral predictor makes use of local data and spatial predictor
mainly make use of its neighborhood data, which are non-
repetitive and can provide not only local but relatively over-
all information in predicting target grid’s passenger demand.

In practice, we train Gradient Boosting Decision Trees
(GBDT) to combine the results of different predictors. To
train such trees, we transform the time into two features:



HOD and DOW, along with the location of grids and other
two features: the results of temporal and spatial predictor.

2.6 Zero-Grid Predictor

Based on historical records, a zero-grid predictor can pro-
vide possibilities of zero-demand areas for drivers and chauf-
feured car services. Before training ZP, we select features
correlated to the zero demand including location, time pe-
riod and this grid’s historical records. For a given grid r
at time t to predict, features are generated from r’s average
demand of past one and two hours and past demand at the
same DOW and HOD of past one and two weeks. Besides,
we use r’s relative position (row and col) in a city, along
with the time t’'s DOW and HOD. Specifically, consider-
ing that the location features row and col are non-linearly
related, a Gradient Boosting Classifier is trained to predict
the possibility of Zero Grid. Upon a zero-grid predictor,
we utilize the ensemble predictor to infer regions where the
demand has a low possibility of being zero.

3. EXPERIMENT

In this section, we introduce the datasets, baselines and
results of our experiment.

3.1 Datasets

In this paper, we generate three kind of data, including the
demand and drop-off data and the vehicle data through two
benchmark datasets: the order dataset collected from mobile
phone applications and GPS dataset collected from onboard
GPS devices in real operating cars. These real operational
datasets are sampled and provided by one of China’s largest
car rental and car-hailing service providers. The details are
summarized in Table 1.

Table 1: Summary of datasets

Data Domain Entities
Source
Ord Orders with estimated 6,792,756
rder on-board location orders
Orders with actual drop-off 4,206,832
location drop-offs
GPS GPS points of cars 512,658,480
GPS points
Urban Area in 6th Ring Road of 30x24 grids
Size Beijing, 64x67 km

3.2 Baselines

In experiments, we compare our model with 5 different
baselines methods in total. In each experiment, the com-
parison of model performance is under the same temporal
and spatial conditions for fair. The first three methods are
classical and widely used techniques for prediction while the
next two methods have been applied to passenger demand
prediction in most recent studies:

Classical Poisson Process (T'VP_C) was firstly pro-
posed in [2] and the model assumes that the demand of
passengers obeys a Non-homogeneous Poisson process with
a time-dependent arriving rate function A(t).

Weighted Time-Varying Poisson Process (T'VP_W)
is a model modified from TV P_C, which adds weights for
latest demand pattern [6].

Multiple Additive Regression Tree (MART_C) is a
widely-used machine learning technique for regression prob-
lems, which produces a prediction model and improves the
quality of each base learner.

Classical Linear Regression (LR_C') is an approach
for modeling the relationship between target variable and
independent variables, which has been applied in studies in
demand prediction [3].

Auto-Regression Moving Average (ARM A) provides
a description of a stationary stochastic process in terms of
two polynomials in the statistical analysis of time series,
one for the auto-regression and the second for the moving
average [6].

3.3 Ground Truth and Metrics

Since the actual value of orders (including the canceled
ones) in grid 7 at time ¢, a; can directly reflect the passenger
demands, we take it as ground truth. In the predicting
process, we compare the result of prediction p; with the
actual value a; in the following metrics:

Regression Metrics. In the evaluation of regression
problem, the MAE and sMAPE are utilized to reflect the
accuracy of prediction on the number of passenger demand.

T
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Classification Metrics. The measures precision (prec)
and recall (rec) defined as Equation 4 are popular metrics
used to evaluate the quality of a classification system:

tp
——.,rec = 4
tp+ fn tp+ fp @)

where tp is the number of true positive predictions, fn
is the number of false negative predictions and fp is the
number of false positive predictions.

prec =

3.4 Experimental Results
3.4.1 Results of Temporal Predictor

For temporal predictor, we reveal the effectiveness of us-
ing FluctuationRate as a filter on the selection of historical
data. All the methods in comparison are conducted on the
dataset of Beijing in July, August and September, 2015. And
the results of MAE and sMAPE are an overall average for
every month.

As is shown in Figure 6, while the MAEs of the three
models are about the same, after adding FluctuationRate
(T_FR), the performance on the metrics of sSMAPE is greatly
improved than traditional Poisson Process (TVP_C) and
Weighted Time-Varying Poisson Process Model (TVP_W).

3.4.2  Results of Spatial Predictor

As we mentioned in Section 2.4, feature dimensions would
be much higher without aggregation and might have great
impact on the training of model. Thus, we firstly verify



Table 2: Results of spatial predictors with different features

Feature Types Orders’ Time Range Orders’ Distance Range Dropoffs’ Distance Range
F:+F, | Fi+F,
Frr, | T o 1h 3h 6h lc 2 3c lc 2 3c
+Fy +Eg+F.
MAE 3.1637 | 1.3664 | 1.0339 1.2309 | 1.0972 | 1.0861 || 1.1827 | 1.1031 | 1.0331 || 1.9564 | 1.8140 | 1.0339
sMAPE | 0.2334 | 0.2329 | 0.2316 0.2428 | 0.2312 | 0.2308 || 0.2611 | 0.2371 | 0.2313 || 0.2394 | 0.2343 | 0.2316

July August September . July August September

(a) MAE (b) SMAPE

Figure 6: Results of temporal predictor

the significance of division and aggregation, upon which we
clarify the effectiveness of the features that we use in the
spatial predictor in every month.

Effects of Division and Aggregation In this experi-
ment, features are extracted from the order and GPS datasets
of Beijing in July, August and September, 2015. Then we
feed the original and aggregated features into ANN_NonAgg
and ANN_Agg respectively. Results in the Figure 7 show
that the process of division and aggregation has remarkably
improved the performance of learning by over 50% in both
MAE and sMAPE for all three months.

25 10

W ANN_NonAgg 1 ANN_Agg

2.0 0.8

05 0.2

00 July August September 00 July August September

(a) MAE (b) SMAPE

Figure 7: Results of models with and without ag-
gregation

Effects of Different Features. In this experiment,
stochastic continuous data in two weeks between June and
September 2015 are chosen as training data, and the models
are validated on the data of the next week accordingly.

Comparison between feature types. Results in Table 2 il-
lustrate that the increase in relevant feature types we select
leads to the improvements on both MAP and sMAPE, where
F; stands for time, F, for Orders, Fy for dropof fs and F.
for Cars.

Range selection for OrdersZ;. As is shown in Table 2, by
extending the time period of passenger demand from 1 hour
before t; (1h) to 3 hour (3h) and 6 hour (6h) step by step,
there is a reduction in both MAE and sMAPE. So does with
the expanding of grids inside the first circle (1c¢), the second
(2¢) and the third circle (3c).

Range selection for Dropoffs:;f. The results in Table 2
indicate that adding time periods into features increases the
performances of the prediction step by step (Ic, 3¢, 6c).
Hence, it’s helpful to feed the drop-offs in past 1 hour in
surrounding three circle regions into the spatial predictor.

3.4.3 Results of Ensemble Predictor

Table 3 presents that the performance is reached in pre-
diction when combining TP and SP into EP (called EST).
In Table 3, the ensemble predictor not only outperforms the
individual TP and SP by over 15% in MAE and over 6%
in sMAPE, but also has a lower MAP and sMAPE than
feeding all the features into baseline methods (LR_C and
MART_C). This is mainly because ensemble predictor keeps
the advantages of temporal predictor and spatial predictior
which utilizes both local and global information through lin-
ear and non-linear models.

Table 3: Results of ensemble predictors

All Samples Zero Samples

Model
MAE sMAPE MAE sMAPE
TP 0.8591 0.1407 0.1601 0.6082
SP 1.0339 0.2316 0.1687 0.2611
LR C 1.2927 0.1445 6.3438 1.0000
MART_C 0.8081 0.1394 8.9117 1.0000
EST 0.7037 | 0.1321 0.0012 1.0000

Specifically, the sMAPEs for samples whose actual de-
mand is zero provided by LR_C, MART_C and TP + SP
are all 1.0000, which indicates the ineffectiveness of these
predictors for zero samples. Therefore, a Zero-Grid Predic-
tor is necessary for performance improvements.

3.4.4 Results of Zero-Grid Predictor

As mentioned in Section 2.6, we train a Zero-Grid Predic-
tor (ZP) to provide information for driver chauffeured car
service. The performances of ZP on different months when
possibility threshold of positive is 0.5, where prec and rec
of prediction are nearly 93% and 75% on average and the
AUC of ZP reaches 95.8%.

3.4.5 Overall Results

The comparison between different methods are shown in
Figure 8 adding ARM A_8 and the combination of our Zero-
Grid Ensemble SpatioTemporal model (ZEST). ARMA_8
is an ARMA model taking past eight hours as a moving av-
erage. The results in Figure 8 show that ZEST outperforms
ARMA_8, LR_C and MART_C by over 10% in the predic-
tion for every month. What’s more, the integration of ZP
also improves the overall performances of EP+TP+SP.
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Figure 8: Overall results of predictors
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Figure 9: Results of ZEST against ground truth

Specifically, several areas are displayed as examples of our
model’s results against the ground truth from September
10 to September 18 in Beijing in Figure 9. Figure 9(a) il-
lustrates the prediction in Yizhuang Area, one of Beijing’s
biggest residential areas, and Figure 9(b) shows the pre-
diction in Sanlitun Area, Beijing’s business and entertain-
ment district. It can be conveyed that Yizhuang suffers from
morning rush-hour in a small extent while Sanlitun suffers
from evening and late-night peaks, where in general, our
model catches these peaks and deals with off-peaks prop-
erly, especially the time periods with zero demand. Besides,
Figure 9(c) shows the performances of ZEST in Beijing’s
traffic zones, where our model can accurately forecast the
demand in these districts.

4. CONCLUSION

In this paper, we develop a hybrid model in predicting
the passenger demand which makes use of different kinds of
datasets from chauffeured cars. The effectiveness of Fluc-
tuationRate is confirmed to select similar historical records
in temporal prediction. Then we model the influences of
neighborhood regions to the target region through features
like demands, drop-offs and vehicle numbers in a spatial pre-

dictor and then combine the temporal and spatial predictor
all together. What’s more, to improve the working efficiency
for chauffeured car drivers and alleviate supply-demand im-
balance, we train a Zero-Grid predictor to predict the possi-
bility of an area being a zero demand area. The integration
of Zero-Grid predictor, ensemble predictor, spatial predictor
and temporal predictor outperforms five baseline methods.
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