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The QCD phase diagram
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Heavy-Ion Physics
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Neutron star mergers
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Neutron star mergers

Population of the QCD phase diagram by a typical merger event of two
neutron stars with 1.35 M� each, for t = 7.37 ms (left panel) and

t = 24.54 ms (right panel) after the merging.
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The extended QCD phase diagram
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QCD: The theory of strong interactions

• Gauge theory with the local symmetry group SU(Nc). (In the real
world Nc = 3).

• The fundamental fields are the quarks (matter fields) and gluons
gauge fields.

• Each one of the Nf quark fields belong to the fundamental
representation of the color group which is (Nc)–dimensional,
antiquark fields to the complex conjugate of the fundamental
representation, also (Nc)–dimensional and gluon fields to the
adjoint representation which is (N2

c − 1)–dimensional.

LQCD =

Nf∑
i=1

ψ
a
i

(
iγµ(∂µδ

ab + igsA
ab
µ )−miδ

ab
)
ψb
i −

1

4
Gα
µνG

µν
α ;

Gα
µν = ∂µA

α
ν − ∂νAαµ + gs f

αβσAβµA
σ
ν ; Aab

µ = Aσµ(τσ)ab

a, b run from 1 to Nc , α, β, σ run from 1 to N2
c − 1.
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Spontaneous chiral symmetry breaking

Goldstone bosons correspond to the directions where the potential
is flat
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Running coupling
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Running coupling

• Competition between color and flavor

αs(Q2) =
αs(µ̃2)[

1 + b1αs(µ̃2) ln
(
Q2

µ̃2

)]
b1 =

11Nc − 2Nf

12π

Nc = 3, Nf = 6 =⇒ b1 > 0

αs decreases with Q =
√
Q2
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ΛQCD

• When the exchanged momentum in a given process is small, the
coupling is so large that pertuerbative calculations become
meaningless. This is the so called non-perturbative regime

• Processes where perturbation theory can be applied are usually those
where the transferred momentum satisfies Q2 & 1 GeV2.

• To quantify this statement, notice that we can define a transferred
momentum value ΛQCD small enough such that the denominator
vanishes and thus the coupling blows up

1 + b1αs(µ̃2) ln(Λ2
QCD/µ̃

2) = 0, Λ2
QCD = µ̃2e

− 1
b1αs (µ̃)

• ΛQCD is a renormalization scheme dependent quantity. In the MS
scheme and for three active flavors, its value is of order
ΛQCD ∼ 200− 300 MeV.
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The phase diagram: QCD at finite T and µB .

• Two important parameters for QCD in equilibrium: The temperature
T and the baryon number density nB (or its conjugate variable
µB = 3µq).

Since the intrinsic scale of QCD is ΛQCD ∼ 200 MeV, one expects a
transition around T ∼ 200 MeV, nB ∼ Λ3

QCD ∼ 1 fm−3.

• Exploration of a wider range of the phase diagram with nB up to
several times the normal nuclear matter density n0 ∼ 0.16 fm−3 can
be carried out by the BES-RHIC and other facilities such as FAIR at
GSI, NICA at JINR, J-PARC at JAEA and KEK.

• In nature, the interior of compact stellar objects is the relevant system
where dense and low temperature QCD matter is realized.
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Phase transitions

What is a phase transition?

• Transformation of a given substance from one state of matter to
another.
• During the phase transition some quantities change, often in a

discontinuous manner.
• Changes result in variations of external conditions such as pressure,

temperature, etc.
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Phase transitions

When does a phase transition happen?

• In technical terms, they occur when the free energy is non-analytic
(one of its derivatives diverges) for some values of the
thermodynamical variables.

• They result from the interaction of a large number of particles and
in general it does not occur when the system is very small or has a
small number of particles.

• On the phase transition lines the free energies in both phases
coincide.

• Some times it is possible to change the state of a substance without
crossing a phase transition line. Under these conditions one talks
about a crossover transition.
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Phase transitions

Classification, according to behavior of free energy as a function of
a given thermodynamical variable (Ehrenfest). They are named

according to the derivative of lowest order that becomes
discontinuous during the transition

• First order: First derivative of free energy is discontinuous.
Example: boiling water. Discontinuity in the density, i.e. derivative
of free energy with respect to chemical potential.

• Second order: First derivative is continuous. Second derivative is
discontinuous. Example: Ferromagnetism. The magnetization, i.e.
the derivative of the free energy with respect to the external field is
continuous. The susceptibility, i.e. the derivative of the magnetization
with respect to the external field, is discontinuous.
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Ideal gas hadron thermodynamics

• Consider an ideal gas of identical neutral scalar particles of mass m0

contained in a box volume V. Assume Boltzmann statistics. The
partition function is given by

Z(T ,V ) =
∑
N

1

N!

 V

(2π)3

∫
d3p exp

−
√
p2 + m2

0

T


N

lnZ(T ,V ) =
VTm2

0

2π2
K2(mi/T )

ε(T ) = − 1

V

∂ lnZ(T ,V )

∂(1/T )

T�m0−→ 3

π2
T 4 energy density

n(T ) = − 1

V

∂ lnZ(T ,V )

∂(V )

T�m0−→ 1

π2
T 3 particle density

ω(T ) = ε(T )/n(T ) ' 3T average energy per particle
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Chiral transition and hadronization

• Hadron multiplicities established very close to the phase boundary.

Statistical model (Hadron Resonance Gas model)

nj =
gj

2π2

∫ ∞
0

p2dp
[
exp

{√
p2 + M2

j /Tch − µch

}
± 1
]−1

• From the hadron side, abundances due to multi-particle collisions
whose importance is enhanced due to high particle density in the
phase transition region. Collective phenomena play an important
role.

• Since the multi-particle scattering rates fall-off rapidly, the
experimentally determined chemical freeze-out is a good
measure of the phase transition temperature.
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Chiral transition and hadronization
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Is there a Critical End Point?

• Most of the effective models suggest the existence of a QCD critical
point (µCEP,TCEP) somewhere in the middle of the phase diagram
where the crossover line becomes a first order transition line.

• Signals are and will be looked for in current and future facilities.
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Critical point and critical phenomena
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Analysis tools: Fluctuations of conserved quantities

• A powerful tool to experimentally locate the CEP is the study of
event-by-event fluctuations in relativistic heavy-ion collisions

Fluctuations are sensitive to the early thermal properties of the
created medium. In particular, the possibility to detect non
Gaussian fluctuations in conserved charges is one of the

central topics in this field

• Let n(x) be the density of a given charge Q in the phase space
described by the set of variables x . These quantities are related by

Q =
∫
V dx n(x)

• where V is the total phase space volume available. When the
measurement of Q is performed over the volume V in a thermal
system, we speak of a thermal fluctuation
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Analysis tools: Fluctuations of conserved quantities

• For example, the variance of Q is given

〈δQ2〉V = 〈(Q − 〈Q〉V )2〉V =
∫
V dx1dx2〈δn(x1)δn(x2)〉

• The integrand on the right-hand side is called a correlation function,
whereas the left-hand side is called a (second order) fluctuation

We see that fluctuations are closely related to correlation
functions

In relativistic heavy-ion collisions, fluctuations are measured on
an event-by-event basis in which the number of some charge or

particle species is counted in each event
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Analysis tools: Fluctuations of conserved quantities

• For a probability distribution function P(x) of an stochastic variable
x , the moments are defined as

〈xn〉 =
∫
dx xnP(x)

• We can define the moment generating function G (θ) as

G (θ) =
∫
dx exθP(x)

• from where

〈xn〉 = dn

dθnG (θ)
∣∣
θ=0
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Analysis tools: Cumulant generating function

K (θ) = lnG (θ)

• The cumulants of P(x) are defined by

〈xn〉c =
dn

dθn
K (θ)

∣∣∣∣
θ=0

,

〈x〉c = 〈x〉,
〈x2〉c = 〈x2〉 − 〈x〉2 = 〈δx2〉,
〈x3〉c = 〈δx3〉,
〈x4〉c = 〈δx4〉 − 3〈δx2〉2.
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Analysis tools: Cumulant generating function

• The relation with thermodynamics comes through the partition
function Z, which is the fundamental object

The partition function is also the moment generating function
and therefore the cumulant generating function is given by

lnZ

• Cumulants are extensive quantities. Consider the number N of a
conserved quantity in a volume V in a grand canonical ensemble. It
can be shown that its cumulant of order n can be written as

〈Nn〉c,V = χnV

χn are called the generalized susceptibilities
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Analysis tools: Cumulant generating function

Cumulants higher than second order vanish for a Gaussian
probability distribution, non-Gaussian fluctuations are signaled by

non-vanishing higher order cumulants

Two important higher order moments are the skewness S and the
curtosis κ. The former measures the asymmetry of the distribution

function whereas the latter measures its sharpness
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Fluctuations of conserved quantities
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Analysis tools: Cumulant generating function

When the stochastic variable x is normalized to the square root of
the variance, σ, such that x → x̃ = x/σ, the skewness and the

kurtosis are given as the third and fourth-order cumulants

S = 〈x̃3〉c , κ = 〈x̃4〉c
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Analysis tool: Fluctuations of conserved quantities

• Experimentally it is easier to measure the central moments M:
M ijk

BQS = 〈(B − 〈B〉)i (Q − 〈Q〉)j(S − 〈S〉)k〉.
• On the other hand, derivatives of lnZ with respect to the chemical

potentials give the susceptibilities χ:

χijk
BQS =

∂ i+k+j(P/T 4)

∂i (µB/T )∂j(µQ/T )∂k(µS/T )
; P =

T

V
lnZ.

=⇒ χXY =
1

V
T 3M11

XY
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Analysis tools: Cumulant generating function

When fluctuations of conserved charges in relativistic heavy-ion
collisions are well described by hadron degrees of freedom in

equilibrium, their cumulants should be consistent with models that
describe these degrees of freedom, such as the Hadron Resonance

Gas (HRG) model

On the other hand, when fluctuations deviate from those in the
HRG model, they can be used as experimental signals of

non-hadron and/or non-thermal physics

Near the CEP, higher order cumulants behave anomalously, in
particular, they change sign in the vicinity of the critical point.

They are also sensitive to the increase of correlation lengths
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Fluctuations of conserved quantities
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Higher moments, larger sensitivity to correlation length ξ

• In HIC’s, the simplest measurements of fluctuations are
event-by-event variances in observables such as multiplicities or mean
transverse momenta of particles.

• At the CEP, these variances diverge approximately as ξ2. They
manifest as a non-monotonic behavior as the CEP is passed by
during a beam energy scan.

• In a realistic HIC, the divergence of ξ is tamed by the effects of
critical slow down (the phenomenon describing a finite and possibly
large relaxation time near criticality).

• However, higher, non-Gaussian moments of the fluctuations depend
much more sensitively on ξ.

• Important to look at the Kurtosis κ (proportional to the
fourth-order cumulant C4), which grows as ξ7.
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Fourth order fluctuations: Net proton
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Linear sigma model with quarks

L =
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 +

a2

2
(σ2 + ~π2)

− λ

4
(σ2 + ~π2)2 + iψ̄γµ∂µψ − g ψ̄(σ + iγ5~τ · ~π)ψ,

σ → σ + v

L =
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 − 1

2

(
3λv2 − a2

)
σ2

− 1

2

(
λv2 − a2

)
~π2

+
a2

2
v2 − λ

4
v4 + iψ̄γµ∂µψ − gv ψ̄ψ + LbI + LfI

LbI = −λ
4

[
(σ2 + (π0)2)2 + 4π+π−(σ2 + (π0)2 + π+π−)

]
,

LfI = −g ψ̄(σ + iγ5~τ · ~π)ψ
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Plasma screening in TFT: Ring diagrams
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Effective potential

V eff = V tree + V b + V f + V Ring

V tree(v) = −a2

2
v2 +

λ

4
v4

V b(v ,T ) = T
∑
n

∫
d3k

(2π)3
lnDb(ωn, ~k)1/2

V f(v ,T , µ) = −T
∑
n

∫
d3k

(2π)3
Tr[lnSf(ω̃n, ~k)−1]

V Ring(v ,T , µ) =
T

2

∑
n

∫
d3k

(2π)3
ln[1 + ΠbD(ωn, ~k)]

Πb ≡ Πσ = Ππ± = Ππ0

= λ
T 2

2
− NfNcg

2T
2

π2

[
Li2
(
−e−

µ
T

)
+ Li2

(
−e

µ
T

)]
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Effective potential

V eff(v) = −a2

2
v2 +

λ

4
v4

+
∑

b=π±,π0,σ

{
−T 4π2

90
+

T 2m2
b

24
−

T (m2
b + Πb)3/2

12π

−
m4

b

64π2

[
ln

(
µ̃2

(4πT )2

)
+ 2γE

]}
+ NcNf

{
m4

f

16π2

[
ln

(
µ̃2

T 2

)
− ψ0

(
1

2
+

iµ

2πT

)
− ψ0

(
1

2
− iµ

2πT

)
+ ψ0

(
3

2

)
− 2 (1 + ln(2π)) + γE

]
−

m2
f T

2

2π2

[
Li2
(
−e−

µ
T

)
+ Li2

(
−e

µ
T

)]
+

T 4

π2

[
Li4
(
−e−

µ
T

)
+ Li4

(
−e

µ
T

)]}
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Effective phase diagram
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Baryon number fluctuations in the LSMq

P(v) = exp
{
−ΩV eff(v)/T

}
μB=0, Tc=158 [MeV]

μ
B
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Baryon number fluctuations in the LSMq

P(v) = exp
{
−ΩV eff(v)/T

}
μB=300, Tc=150 [MeV ]
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Freeze-out line Randrup & Cleymans, PRC 74, 047901 (2006)
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Baryon number fluctuations in the LSMq

µB(
√
sNN) =

d

1 + e
√
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Summary

• Deviations from HRG behavior when using LSMq as an effective
QCD model up to ring diagrams contribution.

• Ring diagrams inclusion is equivalent to introducing screening effects
at finite T and µB .

• CEP signaled by divergence of κσ2

• CEP found at low T and high µB (NICA, HADES?)
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