Is the Feynman path integral complex enough?

Gökçe Başar
University of North Carolina, Chapel Hill

04.22.2020
[with A. Alexandru, P. Bedaque, N. Warrington, G. Ridgway]

Motivations

first-principles studies of strongly interacting systems

Motivations

Motivations

first-principles studies of strongly interacting systems

Motivations: out-of-equilibrium, transport

Heavy ion collisions: Quark gluon plasma is a liquid!

Contacts: Karen McNulty Walsh, (631) 344-8350 or Peter Genzer, (631) 344-3174

RHIC Scientists Serve Up 'Perfect' Liquid

New state of matter more remarkable than predicted - raising many new questions

[^0]
Motivations: out-of-equilibrium, transport

Heavy ion collisions: Quark gluon plasma is a liquid!

Motivations: out-of-equilibrium, transport

Heavy ion collisions: Quark gluon plasma is a liquid!

Motivations: out-of-equilibrium, transport

Heavy ion collisions: Quark gluon plasma is a liquid!

NATIONAL
GEOGRAPHIC

Big Bang Poured Out "Liquid" Universe, Atom Smasher Hints

Motivations: out-of-equilibrium, transport

Quark gluon plasma is a liquid what is the viscosity, conductivity ...?

Big Bang Poured Out "Liquid" Universe, Atom Smasher Hints

Motivations

first-principles studies of strongly interacting systems

Quantum Chromo Dynamics (QCD)

We know how quarks and gluons interact

Why not just compute the phase diagram, viscosity, equation of state, etc...?

Quantum fluctuations

animation: Derek Leinweber, University of Adelaide
we are interested in expectation values
examples: $\langle n\rangle \Leftrightarrow$ equation of state
$\langle\mathbf{J}(t) \mathbf{J}(0)\rangle \Leftrightarrow$ conductivity

$$
\left\langle T^{a b}(t) T^{c d}(0)\right\rangle \Leftrightarrow \text { viscosity }
$$

Feynman path integral

Space-Time Approach to Non-Relativistic Quantum Mechanics

R. P. Feynman
of contributions, one from each path in the region. The contribution from a single path is postulated to be an exponential whose (imaginary) phase is the classical action (in units of \hbar) for the path in question. The total contribution from all paths reaching x, t from the past is the

The QFT path integral

Volume 20, Number 2
April, 1948

Space-Time Approach to Nen-Relativistic Quantum Mechanics
 R. P. Feynman
 Fields

of contributions, one from each path in the region. The contribution from a single field is postulated to be an exponential whose (imaginary) phase is the classical action (in units of \hbar) for the field in question. The total contribution from all paths reaching x, t from the past is the

$$
\langle\mathcal{O}\rangle=\int_{\text {all fields }}^{[d \phi] e^{i S[\phi]} \mathcal{O}[\phi]}
$$

A crash course on Lattice Field Theory

Lattice
 Spaee Tine Approach to Non-Relativistic Quantum Mectrinics Fields

of contributions, one from each path in the recion. The contribution from a single field is postulated to be an exponential whose real part is the classical action (in units of \hbar) for the field in question. The total contribution from all paths r_{1} with imaginary time is the

Main features:

- Discrete space-time
- Imaginary time

$$
\begin{aligned}
& e^{-i \hat{H} t} \rightarrow e^{-\hat{H} \tau} \\
& \text { thermal physics! }
\end{aligned}
$$

A crash course on Lattice Field Theory

Main features:

- Discrete space-time
- Imaginary time

thermal physics!

$$
\langle\mathcal{O}\rangle=\int d \phi_{1} \ldots d \phi_{N} e^{-S[\phi]} \mathcal{O}[\phi]=\operatorname{Tr}\left[e^{-\hat{H} / T} \hat{\mathcal{O}}\right]
$$

- importance of the field configuration $\phi: e^{-S[\phi]}$

Importance sampling ("Monte-Carlo" method)

importance of the field configuration $\phi: e^{-S[\phi]}$

pick out the important (small action) configurations path integral \sim statistical average with $\quad P(\phi) \propto e^{-S[\phi]}$

$$
\langle\mathcal{O}\rangle \approx \frac{1}{\mathcal{N}} \sum_{a=1}^{\mathcal{N}} \mathcal{O}\left[\phi_{a}\right]
$$

Lattice QCD

The sign problem

In a variety of problems of interest S is complex $e^{-S[\phi]}$ is not a probability distribution

- Most theories with finite density
- Hubbard model away from half filling
- Dynamical problems (transport, out-of-equilibrium physics...)
- QCD with nonzero θ angle

The sign problem

$$
\int_{-\infty}^{\infty} e^{-(x+2 x)^{2}} d x=2 \sqrt{\pi}
$$

The sign problem

importance $\propto e^{-S_{R}[\phi]} \quad$ "reweighting"

$$
\langle O\rangle=\frac{\left\langle O e^{-i S_{l}[\phi]}\right\rangle_{S_{R}}}{\left\langle e^{-i S_{l}[\phi]}\right\rangle_{S_{R}}}
$$

$\left\langle e^{-i S_{l}[\phi]}\right\rangle_{S_{R}} \propto e^{- \text {volume/T }} \longrightarrow$ need exponentially large resources

The sign problem

Ways around the sign problem

- Imaginary chemical potential
- Taylor series in μ
- Dual variables
- Fermion bags
- Complex Langevin
- Canonical partition function

A complex way around the sign problem

$$
\int_{-\infty}^{\infty} e^{-(x+42 i)^{2}} d x=2 \sqrt{\pi}
$$

A complex way around sign problem

$$
\int_{\mathscr{C}} e^{-(z+42 i)^{2}} d z=2 \sqrt{\pi}
$$

A complex way around the sign problem

$$
\int_{\mathscr{C}} e^{-(z+42 i)^{2}} d z=2 \sqrt{\pi}
$$

much better

The main idea: deform the QFT path integral domain to a better one in complex field space where the sign problem is mild.

Review article :"Complex paths around the sign problem"
[Alexandru, GB, Bedaque, Warrington]
coming soon...
[also work by Cristoforetti, Di Renzo et al, Fujii et al., Tanizaki et al.,...]

Mathematical origins: Picard-Lefschetz theory [Pham, Fedoryuk, Witten,]

Good deformations

\mathbb{C}^{N} complex field space

- path integral on $\mathscr{M}=$ path integral on \mathbb{R}^{N}
("allowed")
- sign problem on $\mathscr{M} \ll$ sign problem on \mathbb{R}^{N}

Good deformations

follow an equation of motion, "holomorphic gradient flow"

- path integral on $\mathscr{M}=$ path integral on \mathbb{R}^{N}
("allowed")
- sign problem on $\mathscr{M} \ll$ sign problem on $\mathbb{R}^{N} \quad$ ("good")

Strategy

> deformation

discretization

Real time dynamics

$$
\langle\mathcal{O}(t) \mathcal{O}(0)\rangle=\frac{1}{Z} \int[d \phi] e^{\frac{i}{\hbar} S[\phi]} \mathcal{O}(t) \mathcal{O}(0)
$$

transport (viscosity, conductivity), out-of equilibrium physics...
$e^{\frac{i}{\hbar} S[\phi]}$ leads to quantum interference
...and the ultimate sign problem

$$
\left\langle e^{-i S_{l}[\phi]}\right\rangle_{S_{R}}=0
$$

Real time dynamics - 1+1d QFT

interacting Bose gas: $\mathscr{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}$

$$
\text { free theory } \lambda=0
$$

$$
C_{p}(t)=\langle\phi(t, p) \phi(0, p)\rangle_{\beta}
$$

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501]

Real time dynamics - 1+1d QFT

interacting Bose gas: $\mathscr{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}$
weak coupling $\lambda=0.1$

$$
C_{p}(t)=\langle\phi(t, p) \phi(0, p)\rangle_{\beta}
$$

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501]

Real time dynamics - 1+1d QFT

interacting Bose gas: $\mathscr{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}$
weak coupling $\lambda=0.1$

$$
C_{p}(t)=\langle\phi(t, p) \phi(0, p)\rangle_{\beta}
$$

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501]

Real time dynamics - 1+1d QFT

interacting Bose gas: $\mathscr{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}$
strong coupling $\lambda=1$

$$
C_{p}(t)=\langle\phi(t, p) \phi(0, p)\rangle_{\beta}
$$

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501]

Real time dynamics - 1+1d QFT

interacting Bose gas: $\mathscr{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}$
strong coupling $\lambda=1$

$$
C_{p}(t)=\langle\phi(t, p) \phi(0, p)\rangle_{\beta}
$$

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501]

Real time dynamics - 1+1d QFT

interacting Bose gas: $\mathscr{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}$
strong coupling $\lambda=1$

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501] [see also follow-up by Mou, Saffin, Tranberg, '18]

Real time dynamics -Hybrid Monte Carlo

Case Study : 0+1 d anharmonic oscillator $\mathscr{L}=\frac{1}{2} \dot{\phi}^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}$

in progress
[also (finite density) Fujii, Honda, Kato, Kikukawa, Komatsu, Sano, JHEP 10 (2013) 147 01]

Real time dynamics -Hybrid Monte Carlo

Case Study : 0+1 d anharmonic oscillator $\mathscr{L}=\frac{1}{2} \dot{\phi}^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{\lambda}{4!} \phi^{4}$

$$
N_{t}=24, \quad N_{\beta}=4, \quad \lambda=24
$$

Many body physics - 2d Thirring model

chain of interacting fermions

$$
\begin{aligned}
S= & \int d^{2} x \bar{\psi}^{a}\left(\gamma^{\mu} \partial_{\mu}+m+\mu \gamma^{0}\right) \psi^{a}+\frac{g^{2}}{2 N_{f}}\left(\psi^{a} \gamma^{\mu} \psi^{a}\right)\left(\psi^{b} \gamma_{\mu} \psi^{b}\right) \\
& \rightarrow \frac{N_{f}}{2 g^{2}} \int d^{2} x A^{\mu} A_{\mu}+\operatorname{tr} \log \left(\not \subset+A+\mu \gamma_{0}+m\right)
\end{aligned}
$$

- a prototype of QCD
asymptotically free, sign problem at finite density
- a 2d cousin of the Hubbard model
[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502]

Many body physics - 2d Thirring model

[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502]

Many body physics - 2d Thirring model

[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502]

Many body physics - 2d Thirring model

[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502]

Many body physics - $2 d$ Thirring model

Equation of state: low temperature limit particularly bad sign problem: $\left\langle e^{-i S_{l}[\phi]}\right\rangle_{S_{R}} \propto e^{\text {-volumelT }}$

[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502]

Many body physics - 2d Thirring model

Equation of state
continuum limit

thermodynamic limit

[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502]

Gauge theories - 2d QED

QED with 3 "quarks" with charges $q=2,-1,-1$

$$
S=\sum_{a=1}^{3} \int d^{2} x\left[F^{2}+\bar{\psi}^{a}\left(\gamma^{\mu}\left(\partial_{\mu}-g q_{a} A_{\mu}\right)+m-\mu \gamma^{0}\right) \psi^{a}\right]
$$

sign problem

equation of state

Gauge theories - heavy dense QCD

- In the $\operatorname{limit} m_{q} \rightarrow \infty \rightarrow$ effective theory of Polyakov loops
- Still has a sign problem for $\mu \neq 0$ but easier to simulate
- Exploratory study on a few-site lattice with $\mathscr{M} \sim \sum$ "Lefschetz thimbles" (fixed points of flow+fluctuations)

[Zambello, Di Renzo, Phys. Rev. D95, 014502]

Many body physics - Hubbard model

2d Hubbard model away from half filling on a Honeycomb lattice

fixed point of flow $=$ saddle point of $S[\phi]$ conventional MC

[Ulybyshev,Winterowd, Zafeiropoulos PRD 101 (1), 014508]

Other deformations: "Learnifolds"

Machine learning, training set: points on \mathscr{I} output: $\mathscr{L} \approx \mathscr{M}$
\mathbb{C}^{N}

$\operatorname{Im} \tilde{\phi}$
[Alexandru, Bedaque, Lamm, Lawrence Phys.Rev.D 96 (2017) 9, 094505]

Sign optimized manifolds

within a family of manifolds \mathscr{M}_{λ} minimize the sign problem

$$
\text { maximize the average phase: }\left\langle e^{-i S_{I_{\lambda}}}\right\rangle_{\lambda}=\frac{\int_{\mathscr{M}_{\lambda}} d[\phi] e^{-S}}{\int_{\mathscr{M}_{\lambda}} d[\phi] e^{-S_{R}}}
$$

[Mori et al. '17-'19, Alexandru et al. '18, Bursa et al. '18, Kashiwa et al. '19, Detmold et al. '20]

[^0]: Monday, April 18, 2005

