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Motivations: out-of-equilibrium, transport 
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Heavy ion collisions: Quark gluon plasma is a liquid !
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Motivations: out-of-equilibrium, transport 
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Quark gluon plasma is a liquid
what is the viscosity, conductivity …?



Motivations
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Phenomenology of normal state transport in high-Tc cuprates 5

0 0.05 0.1 0.15 0.2 0.25 0.3

T
(K

)

Hole doping x

! ~ T
2

! ~ T + T
2

or

T
FL

?

T
coh

?

! ~ T

!(T)
S-shaped

T*

d-wave SC

! ~ T
n

(1 < n < 2)
A
F
M

upturns
in !(T)

Figure 2. Phase diagram of (hole-doped) cuprates mapped out in terms of the
temperature and doping evolution of the in-plane resistivity ρab(T ). The solid lines
are the phase boundaries between the normal state and the superconducting or
antiferromagnetic ground state. The dashed lines indicate (ill-defined) crossovers in
ρab(T ) behavior. The meanings of the labels T ∗, Tcoh and TFL are explained in the
text.

cuprates (p > 0.15). The correct Fermiology of weakly doped cuprates, on the other

hand, is still to be resolved; whilst no-one disputes the existence of a (pseudo)gap in

the normal state excitation spectrum, its manifestation on the (remnant) FS and its

evolution with temperature and doping remain highly controversial [27, 28]. In light of

this, I will focus here more on the highly doped regions of the phase diagram, though I

shall return to discuss the situation in underdoped cuprates at the end.

3. In-plane resistivity

The in-plane resistivity ρab(T ) of hole-doped HTC shows a very systematic evolution

with doping that is summarized in Fig. 2, where a schematic phase diagram of p-type

cuprates is reproduced together with the doping and temperature evolution of ρab(T ).

(Electron-doped cuprates will be dealt with at the end of this section). The solid
lines are the phase boundaries between the normal state and the superconducting or

antiferromagnetic ground state, whilst the dashed lines indicate (ill-defined) crossovers

in ρab(T ) behavior, each of which, may or may not be associated with a fundamental

change in the nature of the electronic states. Optimal doping is indicated by the vertical

dotted line corresponding to the pinnacle of the superconducting dome and the areas to

[N.E. Hussey, ’08 ]

first-principles studies of strongly interacting systems 



Quantum Chromo Dynamics (QCD)
We know how quarks and gluons interact

Why not just compute the phase diagram, viscosity,
equation of state, etc…? 
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Quantum fluctuations

animation: Derek Leinweber, University of Adelaide 

we are interested in expectation values 
⟨n⟩ ⇔ equation of state

⟨J(t)J(0)⟩ ⇔ conductivity ⟨Tab(t)Tcd(0)⟩ ⇔ viscosity

examples:
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Non-relativistic quantum mechanics is formulated here in a different way. It is, however,
mathematically equivalent to the familiar formulation. In quantum mechanics the probability
of an event which can happen in several different ways is the absolute square of a sum of
complex contributions, one from each alternative way. The probability that a particle will be
found to have a path x(t) lying somewhere within a region of space time is the square of a sum
of contributions, one from each path in the region. The contribution from a single path is
postulated to be an exponential whose (imaginary) phase is the classical action (in units of h)
for the path in question. The total contribution from all paths reaching x, t from the past is the
wave function P(x, t). This is shown to satisfy Schroedinger's equation. The relation to matrix
and operator algebra is discussed. Applications are indicated, in particular to eliminate the
coordinates of the field oscillators from the equations of quantum electrodynamics.

I. INTRODUCTION

; 'I is a curious historical fact that modern
& - quantum mechanics began with two quite
di8'erent mathematical formulations: the differ-
ential equation of Schroedinger, and the matrix
algebra of Heisenberg. The two, apparently dis-
similar approaches, were proved to be mathe-
matically equivalent. These two points of view
were, destined to complement one another and
to be ultimately synthesized in Dirac's trans-
formation theory.

This paper will describe what is essentially a
third formulation of non-relativistic quantum
theory. This formulation was suggested by some
of Dirac's' ' remarks concerning the relation of

classical action' to quantum mechanics. A proba-
bility amplitude is associated with an entire
motion of a particle as a function of time, rather
than simply with a position of the particle at a
particular time.

The formulation is mathematically equivalent
to the more usual formulations. There are,
therefore, no fundamentally new results. How-
ever, there is a pleasure in recognizing old things
from a new point of view. Also, there are prob-
lems for which the new point of view offers a
distinct advantage. For example, if two systems
A and 8 interact, the coordinates of one of the
systems, say 8, may be eliminated from the
equations describing the motion of A. The inter-

' P. A. M. Dirac, The Principles of Quantum 3Eeohanics
(The Clarendon Press, Oxford, 1935), second edition,
Section 33; also, Physik. Zeits. Sowjetunion 3, 64 (1933).' P. A. M. Dirac, Rev. Mod. Phys. 1'7, 195 (1945).

3 Throughout this paper the term "action" will be used
for the time integral of the Lagrangian along a path.
%'hen this path is the one actually taken by a particle,
moving classically, the integral should more properly be
called Hamilton's 6rst principle function.

367

x(t) space is the square of a sum
of contributions, one from each path in the region. The contribution from a single path is
postulated to be an exponential whose (imaginary) phase is the classical action (in units of h)
for the path in question. The total contribution from all paths reaching x, t from the past is the
wave function P(x, t). This is shown to satisfy Schroedinger's equation. The relation to matrix

ⅇⅈS[x (t)]

x(t)
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Fields

The QFT  path integral 

⟨𝒪⟩ = ∫ [dϕ]eiS[ϕ]𝒪[ϕ]

all fields
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domain of PI: space of all fields

ϕ
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Lattice

• Discrete space-time
• Imaginary time

e−iĤt → e−Ĥτ

thermal physics!

Main features:
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A crash course on Lattice Field Theory 

• Discrete space-time
• Imaginary time

e−iĤt → e−Ĥτ

thermal physics!

Main features:

⟨𝒪⟩ = ∫ 𝒪[ϕ] = Tr[e−Ĥ/T�̂�]e−S[ϕ]dϕ1…dϕN
finite positive

e−S[ϕ]•importance of the field configuration 𝜙:
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Importance sampling (“Monte-Carlo”  method)
e−S[ϕ]importance of the field configuration 𝜙:

???
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.space of all fields 

pick out the important (small action) configurations

path integral ~ statistical average with P(ϕ) ∝ e−S[ϕ]

⟨𝒪⟩ ≈
1
𝒩

𝒩

∑
a=1

𝒪[ϕa]
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Lattice QCD

lattice importance sampling
(Monte-Carlo)

!18



The sign problem
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In a variety of  problems of interest S is complex

• Most theories with finite density

• Hubbard model away from half filling

• Dynamical problems  (transport, out-of-equilibrium physics…)

• QCD with nonzero 𝞱 angle

.

.

.

e−S[ϕ] is not a probability distribution



The sign problem
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-4 -2 2 4
x

-3.5x10191

3.5x10191
Re[ⅇ-S ]

∫
∞

−∞
e−(x+42i)2dx = 2 π



The sign problem

finite density
out-of-equlibrium

∝ e−SR[ϕ]importance ∝ e−SR[ϕ] “reweighting”

⟨𝒪⟩ =
⟨𝒪e−iSI[ϕ]⟩SR

⟨e−iSI[ϕ]⟩SR

⟨e−iSI[ϕ]⟩SR
∝ e−volume/T need exponentially large resources 

!21



The sign problemAdiabatic continuity and analyticity for YM?  Is it possible?

low � T

QGP
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Ways around the sign problem

low � T

QGP

!23

• Imaginary chemical potential

• Taylor series in

• Dual variables

•Fermion bags

• Complex Langevin

• Canonical partition function 
.
.
.

μ



A complex way around the sign problem
∫

∞

−∞
e−(x+42i)2dx = 2 π

horrific sign problem

-4 -2 2 4
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A complex way around sign problem

horrific sign problem

better
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∫𝒞
e−(z+42i)2dz = 2 π
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A complex way around the sign problem
∫𝒞

e−(z+42i)2dz = 2 π

horrific sign problem

better

much better
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The main idea: deform the QFT path integral domain to a 
better one in complex field space where the sign 

problem is mild.

Review article : ”Complex paths around the sign problem” 
[Alexandru, GB, Bedaque, Warrington] 

coming soon…

[also work by Cristoforetti, Di Renzo et al, Fujii et al., Tanizaki et al.,… ] 

Mathematical origins:  Picard-Lefschetz theory 
[Pham, Fedoryuk, Witten, ….] 
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Good deformations

:
N

. t

:
#

.

.

complex field space

original domain

deformed domain

• path integral on ℳ = path integral on
• sign problem on ℳ << sign problem on

ℝN

ℝN

(“allowed”)

(“good”)
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Good deformations

:
N

. t

:
#

.

.

ϕ(0)

ϕ(Tflow)

• path integral on ℳ = path integral on
• sign problem on ℳ << sign problem on

ℝN

ℝN

(“allowed”)

(“good”)

dϕ(τ)
dτ

=
∂S[ϕ]

∂ϕ

follow an equation of motion, ``holomorphic gradient flow”
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Strategy
deformation 

discretization 

importance sampling

!30

Dynamics

Finite density



Real time dynamics

⟨𝒪(t)𝒪(0)⟩ =
1
Z ∫ [dϕ]e i

ℏ S[ϕ]𝒪(t)𝒪(0)

e
i
ℏ S[ϕ] leads to quantum interference

…and the ultimate sign problem

⟨e−iSI[ϕ]⟩SR
= 0

transport (viscosity, conductivity), 
out-of equilibrium physics… 
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Real time dynamics - 1+1d QFT
interacting Bose gas: ℒ =

1
2

(∂ϕ)2 −
1
2

m2ϕ2 −
λ
4!

ϕ4

free theory 𝝀=0

● Re[C] ● Im[C]

● ● ●
●

●
●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

free theory

0.0 0.5 1.0 1.5 2.0
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t

C
p=
0(
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0.0 0.5 1.0 1.5 2.0

-4

-2

0

2

4

t

C
p=
2
π
L(
t)

Cp(t) = ⟨ϕ(t, p)ϕ(0,p)⟩β

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501]
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weak coupling 𝝀=0.1

● Re[C] ● Im[C]

● ● ●
●

●
●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ● ●

● ● ●
●

●
●

●
●

●
●

●

● ● ● ● ● ● ● ● ● ● ●

1st order perturbation
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[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501]
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[see also follow-up by Mou, Saffin, Tranberg, ‘18]



Real time dynamics -Hybrid Monte Carlo
Case Study : 0+1 d anharmonic oscillator ℒ =

1
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in progress
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[also (finite density) Fujii, Honda, Kato, Kikukawa, Komatsu, Sano, JHEP 10 (2013) 147 01]



Real time dynamics -Hybrid Monte Carlo
Case Study : 0+1 d anharmonic oscillator ℒ =
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in progress
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Many body physics - 2d Thirring model
g2

chain of interacting fermions

S = ∫ d2xψ̄a (γμ∂μ + m + μγ0) ψa +
g2

2Nf
(ψaγμψa)(ψbγμψb)

→
Nf

2g2 ∫ d2xAμAμ + tr log(∂ + A + μγ0 + m)/ /

•a prototype of QCD

•a 2d cousin of the Hubbard model 
asymptotically free, sign problem at finite density

[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502 ]
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Many body physics - 2d Thirring model
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sign problem equation of state

[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502 ]
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Many body physics - 2d Thirring model

ℝN
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[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502 ]
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Many body physics - 2d Thirring model

ℝN
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Many body physics - 2d Thirring model
Equation of state: low temperature limit 

T/mf�0.38

T/mf�0.19

T/mf�0.13

T/mf�0.09

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

�/mf

�n
�/m

f

particularly bad sign problem: ⟨e−iSI[ϕ]⟩SR
∝ e−volume/T

[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502 ]
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Many body physics - 2d Thirring model
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[Alexandru, GB, Bedaque, Ridgway, Warrington, Phys. Rev. D95, 014502 ]
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Gauge theories - 2d QED
baryon

2-1 -1

QED with 3 ``quarks” with charges q=2,-1,-1

S =
3

∑
a=1

∫ d2x [F2 + ψ̄ a (γμ(∂μ − gqaAμ) + m − μγ0) ψ a]
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Gauge theories - heavy dense QCD

[Zambello, Di Renzo, Phys. Rev. D95, 014502 ]

n: density
L: Polyakov loop

• In the limit  mq → ∞ effective theory of  Polyakov loops
• Still has a sign problem for            but easier to simulate μ ≠ 0

• Exploratory study on a few-site lattice with  
ℳ  ~ ∑ ``Lefschetz thimbles”  (fixed points of flow+fluctuations) 
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Many body physics - Hubbard model

[Ulybyshev, Winterowd, Zafeiropoulos PRD 101 (1), 014508]
!48

2d Hubbard model away from half filling on a Honeycomb lattice

19

FIG. 25. (a) Comparison of the sign problem in conventional
HMC with real Hubbard fields and in HMC as a function of
µ. (b) Comparison of the sign problem in BSS-QMC and in
HMC as a function of temperature at µ = . Results are
shown for a 2 ⇥ 2 lattice with U = 2.0, N⌧ = 256. ↵ = 0.8
for all HMC points.

hK̂i hŜ(1)
x Ŝ(1)

y i
ED 19.5781 -0.14624

BSS-QMC 19.587±0.002 -0.1466±0.0008

HMC, ↵ = 1.0 19.65±0.31 -0.112±0.0069

HMC, ↵ = 0.8 19.52±0.17 -0.142±0.0062

TABLE I. Comparison of observables for exact diagonaliza-
tion, BSS-QMC (ALF) and two variants of HMC with gra-
dient flow for a 2 ⇥ 2 lattice with N⌧ = 256, U = 2.0 and
µ = .

typically consists of O(102) steps. Thus, the calculation
of the Jacobian plays only a subdominant role in com-
putational e↵orts. The overall scaling of the method is
C1ÑMDÑGFN4

s
N2

⌧
+C2N3

s
N3

⌧
, where the first term cor-

responds to the HMC procedure used to generate field
configurations and the second term accounts for the cal-
culation of det J at the end of the trajectory. Here ÑMD

refers to the number of steps in a MD trajectory which
is typically O(102), ÑGF refers to the number of steps in
the integrator for GF equations which is typically O(101),
and C1 and C2 denote volume-independent constants. In
what follows, we will refer to this algorithm as HMC-
GF. Several examples of configurations of the �̃ fields,
generated with this algorithm, are show in Fig. 24.

The Jacobian is left for the final reweighting, and thus
the observables are computed using the following expres-
sion

hOi =
hOei Im(�S+ln det J)+Re(ln det J)

i

hei Im(�S+ln det J)+Re(ln det J)i
, (36)

where the residual fluctuations of ImS are also taken into
account. The brackets hi denote the averaging over con-
figurations generated with HMC-GF. We also take into
account symmetries of the action in order to further im-
prove the ergodicity of our set of field configurations, gen-
erated with HMC-GF

S(�x,⌧ ,�x,⌧ ) = S̄(��̄x,⌧ ,��̄x,⌧ ),

S(�x,⌧ ,�x,⌧ ) = S(�x,⌧ ,��x,⌧ ). (37)

The following metrics are used to estimate the severity
of the sign problem: hcos(ImS)i and hcos(Im ln det J)i

hcos ImSi hcos arg Ji h⌃Gi
BSS-QMC 0.2363±0.0032 0.2363±0.0032

HMC,↵=1.0 0.9627±0.0038 0.427±0.014 0.351±0.015

HMC,↵=0.8 0.797±0.022 0.915±0.008 0.644±0.028

TABLE II. Comparison of the sign problem for BSS-QMC
(ALF) and two variants of HMC with gradient flow for a 2⇥2
lattice with N⌧ = 256, U = 2.0 and µ = .

for configurations and the Jacobian respectively, and the
joint sign h⌃Gi = hcos(Im(�S + ln det J))i. The first
metric characterizes the part of the residual sign prob-
lem which stems from the fact that the sequence of shifts
(35) does not follow thimble exactly. The second metric
characterizes the part of the residual sign problem which
stems from the fluctuations of complex measure during
integration over curved manifold in complex space. The
last metric characterizes the entire residual sign prob-
lem. We also estimate the strength of the fluctuations
of the Jacobian by computing DJ , the dispersion of
Re(ln det J).
The following choice is made for the parameters of the

simulations: 2 ⇥ 2 lattice (Ns = 8), N⌧ = 256, U = 2,
µ = , � = 20. This lattice is small enough to make
a comparison with finite-temperature ED possible, but
large enough to host non-trivial saddle points at large
↵ (see Fig. 18(c)). Their form is only slightly di↵erent
from the ones appearing at larger lattice sizes. These
saddles also experience decay along the Re� direction
at ↵ ⇡ 0.8, similar to the 6 ⇥ 6 and 12 ⇥ 12 lattices
studied above. Thus we can say that such a small lat-
tice can in fact model the properties of the saddle points
even at thermodynamic limit. On the other hand, we
find that N⌧ = 256 is large enough to probe both the
low-temperature regime as well as the continuum limit
in Euclidean time simultaneously. We further note that
the state-of-the-art QMC algorithm for condensed mat-
ter systems, BSS-QMC, taken from the ALF package [51],
experiences exponential decay of the average sign at these
parameters, even in the optimal regime where the dis-
crete auxiliary field is coupled to spin. It is thus appar-
ent that the sign problem is already strong in this regime.
We have also probed two di↵erent values of ↵: ↵ = 1.0,
so that only the charge-coupled field �x,⌧ participates in
the integral, and ↵ = 0.8 in order to probe the “opti-
mal regime”, where only the vacuum saddle point was
detected.
Our results for the computed observables are displayed

in the Tab. I while the study of the sign problem is sum-
marized in Tab. II. We compute the kinetic energy, h K̂ i,
and the nearest-neighbor correlation function for the first

component of spin h Ŝ(1)
x Ŝ(1)

y i. Results at ↵ = 1.0 sub-
stantially deviate from ED, while at ↵ = 0.8 the results of
HMC calculation are in agreement with ED. This seems
to imply that at ↵ = 1.0 ergodicity issues indeed ap-
pear as there are several relevant thimbles and thus GF
collides with zeros of the determinant. Unfortunately,

average sign
conventional MC

deformation ~  ∑ “thimbles”

11

(1a) (1b)

(1c)

(2a)

(3a)

 (2b)

(2c)

(2d)

(3b)

(3c)

FIG. 9. Representative field configurations at saddle points for mostly charge-coupled auxiliary field at half filling(↵ = 0.9,
6 ⇥ 6 lattice with N⌧ = 512 at U = 5.0 and � = 20.0, corresponds to the red histogram in Fig. 4). The �-field is always
equal to zero, while the modulus of the �-field is shown as the width of a blob at a given spatial lattice site and time step in
Euclidean time. For clarity, we only draw world lines if |�| > ✏, with ✏ some suitably small threshold. In order to make the
position of the world lines clear with respect to the spatial lattice, we also draw their projections on the ⌧ = 0 plane. The
vacuum field configuration corresponds to all fields equal to zero. This saddle corresponds to the bar at lowest action in the
red histogram of Fig. 4. (1a) The lowest non-trivial saddle point corresponds to the bar at S ⇡ �1891 in the histogram 4b.
This field configuration is clearly localized, and serves as an elementary quantum to construct further saddle points with higher
actions. (2a,3a) Two saddle points which correspond to the third bar in the red histogram of Fig. 4 (located at S ⇡ �1884,
the bar can not be seen due to the scale). Plots (1b, 1c) show the evolution with ⌧ of the equal-time fermionic propagator
g(x, y, ⌧) for the one-blob saddle point shown in (1a). One of the endpoints x is located at the center of the blob (marked with
blue square in the projection onto ⌧ = 0 plane). The two other endpoints y are marked with a violet and a red triangle in the
projection. They correspond to the plots (1b) and (1c) (drawn in the same colors as the corresponding triangles). The same
rule is applied to the plots (2b,2c,2d) and (3b,3c): they demonstrate the properties of equal-time fermionic propagators with
respect to the saddle points shown in (2a) and the blue histogram of Fig. 4, respectively.

fixed point of flow = saddle point of S[𝜙]



Other deformations: “Learnifolds”

[Alexandru, Bedaque, Lamm, Lawrence  Phys.Rev.D 96 (2017) 9, 094505]

ϕ Imϕ̃:
N

. t

:
#

.

.

ℒ

ϕ

ϕ̃

Machine learning, training set: points on ℳ
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Sign optimized manifolds 

[Mori et al. ’17-’19, Alexandru et al. ‘18, Bursa et al. ’18, Kashiwa et al. ‘19, Detmold et al. ‘20]

⟨e−iSI⟩λ =
∫

ℳλ
d[ϕ]e−S

∫
ℳλ

d[ϕ]e−SR
maximize the average phase:

within a family of manifolds           minimize the sign problem   ℳλ:
N

. t

:
#

.

.

ℳλ
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