Is the Feynman path integral complex enough?

Gökçe Başar University of North Carolina, Chapel Hill

04.22.2020

[with A. Alexandru, P. Bedaque, N. Warrington, G. Ridgway]

first-principles studies of strongly interacting systems

Motivations

Motivations

first-principles studies of strongly interacting systems

Heavy ion collisions: Quark gluon plasma is a *liquid* !

Brookhaven National Laboratory	search
Brookhaven National Laboratory	s Relativistic Heavy Ion Collider
News Home News & Feature Archive	
Contacts: Karen McNulty Walsh, (631) 344-8350 (You 🚾 😖 💽 So 🖨 Print r <u>Peter Genzer</u> , (631) 344-3174

RHIC Scientists Serve Up 'Perfect' Liquid

New state of matter more remarkable than predicted - raising many new questions

Monday, April 18, 2005

Heavy ion collisions: Quark gluon plasma is a *liquid* !

Brookhaven National Laboratory	search
RHIC	RHIC
SCIENCE	New york Times
At One Trillion Degrees, Eve	en Gold Turns Into the Sloshiest Liquid
By KENNETH CHANG APRIL 19, 2005	00
SHARE SHARE	🖬 You 🇰 🖻 😒 🔕 erint
Contacts: Karen McNulty Walsh, (631) 344-8350 or Peter G	enzer, (631) 344-3174
RHIC Scientists Serve Up 'Perfect New state of matter more remarkable th	t ' Liquid an predicted — raising many new questions
Monday, April 18, 2005	

Heavy ion collisions: Quark gluon plasma is a *liquid* !

Tiroski	havani Nadoran Lastonamry		-1000077	
	SCIENCE	The New York Times		
	At One Trillion Deg	rees. Even Gold Turns	Into the Sloshiest Lie	uid
	By KENNETH CHAN	topics		00
		ny drople	t of the	
	die Kanise Methol			
	IC Scienti	y univers		
		nuscame mun premitien - r		

Heavy ion collisions: Quark gluon plasma is a *liquid* !

Quark gluon plasma is a *liquid* what is the viscosity, conductivity ...?

first-principles studies of strongly interacting systems

Quantum Chromo Dynamics (QCD)

We know how quarks and gluons interact

Why not just compute the phase diagram, viscosity, equation of state, etc...?

Quantum fluctuations

animation: Derek Leinweber, University of Adelaide

we are interested in expectation values examples: $\langle n \rangle \Leftrightarrow$ equation of state $\langle \mathbf{J}(t)\mathbf{J}(0) \rangle \Leftrightarrow$ conductivity $\langle T^{ab}(t)T^{cd}(0) \rangle \Leftrightarrow$ viscosity

Feynman path integral

Volume 20, Number 2

April, 1948

Space-Time Approach to Non-Relativistic Quantum Mechanics

R. P. FEYNMAN

of contributions, one from each path in the region. The contribution from a single path is postulated to be an exponential whose (imaginary) phase is the classical action (in units of \hbar) for the path in question. The total contribution from all paths reaching x, t from the past is the

The OFT path integral

VOLUME 20, NUMBER 2

April, 1948

Space-Time Approach to Non-Relativistic Quantum Mechanics Fields

R. P. FEYNMAN

of contributions, one from each path in the region. The contribution from a single field is postulated to be an exponential whose (imaginary) phase is the classical action (in units of \hbar) for the field in question. The total contribution from all paths reaching x, t from the past is the

> $\langle \mathcal{O} \rangle = \int [d\phi] e^{iS[\phi]} \mathcal{O}[\phi]$ all fields

• \$\$ domain of PI: space of all fields

A crash course on Lattice Field Theory

Lattice Space Time Approach to Non-Relativistic Quantum Mechanics Fields

of contributions, one from each path in the region. The contribution from a single field is postulated to be an exponential whose real part is the classical action (in units of \hbar) for the field in question. The total contribution from all paths r with imaginary time is the

Main features:

- Discrete space-time
- Imaginary time

$$e^{-i\hat{H}t} \rightarrow e^{-\hat{H}\tau}$$

thermal physics

A crash course on Lattice Field Theory

Main features:

- Discrete space-time
- Imaginary time

 $e^{-i\hat{H}t} \rightarrow e^{-\hat{H}\tau}$

thermal physics!

$$\langle \mathcal{O} \rangle = \int \frac{d\phi_1 \dots d\phi_N e^{-S[\phi]} \mathcal{O}[\phi]}{finite} = \operatorname{Tr}[e^{-\hat{H}/T} \hat{\mathcal{O}}]$$
finite positive

• importance of the field configuration ϕ : $e^{-S[\phi]}$

Importance sampling ("Monte-Carlo" method)

importance of the field configuration ϕ : $e^{-S[\phi]}$

pick out the important (small action) configurations

path integral ~ statistical average with $P(\phi) \propto e^{-S[\phi]}$

$$\langle \mathcal{O} \rangle \approx \frac{1}{\mathcal{N}} \sum_{a=1}^{\mathcal{N}} \mathcal{O}[\phi_a]$$

Lattice QCD

The sign problem

In a variety of problems of interest *S* is *complex*

 $e^{-S[\phi]}$ is not a probability distribution

- Most theories with finite density
- Hubbard model away from half filling
- Dynamical problems (transport, out-of-equilibrium physics...)
- QCD with nonzero **\theta** angle

The sign problem

The sign problem

importance $\propto e^{-S_R[\phi]}$

"reweighting"

$$\langle \mathcal{O} \rangle = \frac{\langle \mathcal{O}e^{-iS_{I}[\phi]} \rangle_{S_{R}}}{\langle e^{-iS_{I}[\phi]} \rangle_{S_{R}}}$$

The sign problem

Ways around the sign problem

- Imaginary chemical potential
- Taylor series in μ
- Dual variables
- Fermion bags
- Complex Langevin
- Canonical partition function

A complex way around the sign problem

$$\int_{-\infty}^{\infty} e^{-(x+42i)^2} dx = 2\sqrt{\pi}$$

A complex way around sign problem

A complex way around the sign problem

The main idea: deform the QFT path integral domain to a better one in complex field space where the sign problem is mild.

Review article : "Complex paths around the sign problem" [Alexandru, GB, Bedaque, Warrington] *coming soon*...

[also work by Cristoforetti, Di Renzo et al, Fujii et al., Tanizaki et al.,...]

Mathematical origins: Picard-Lefschetz theory [Pham, Fedoryuk, Witten,]

Good deformations

- path integral on $\mathcal{M} = \text{path integral on } \mathbb{R}^N$ ("allowed")
- sign problem on $\mathcal{M} \ll sign problem on \mathbb{R}^N$ ("good")

Good deformations

follow an equation of motion, ``holomorphic gradient flow"

- path integral on $\mathcal{M} =$ path integral on \mathbb{R}^N ("allowed")
- sign problem on $\mathcal{M} \ll sign problem on \mathbb{R}^N$ ("good")

discretization

Real time dynamics

$$\left\langle \mathcal{O}(t)\mathcal{O}(0)\right\rangle = \frac{1}{Z} \int [d\phi] e^{\frac{i}{\hbar}S[\phi]} \mathcal{O}(t)\mathcal{O}(0)$$

transport (viscosity, conductivity), out-of equilibrium physics...

 $e^{\frac{i}{\hbar}S[\phi]}$ leads to quantum interference

...and the ultimate sign problem

$$\langle e^{-iS_I[\phi]} \rangle_{S_R} = 0$$

interacting Bose gas:
$$\mathscr{L} = \frac{1}{2}(\partial\phi)^2 - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4$$

free theory $\lambda = 0$

 $C_p(t) = \langle \phi(t, p)\phi(0, p) \rangle_{\beta}$

interacting Bose gas:
$$\mathscr{L} = \frac{1}{2}(\partial\phi)^2 - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4$$

weak coupling λ =0.1

 $C_p(t) = \langle \phi(t, p)\phi(0, p) \rangle_{\beta}$

interacting Bose gas:
$$\mathscr{L} = \frac{1}{2}(\partial\phi)^2 - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4$$

weak coupling λ =0.1

 $C_p(t) = \langle \phi(t, p)\phi(0, p) \rangle_{\beta}$

interacting Bose gas:
$$\mathscr{L} = \frac{1}{2}(\partial\phi)^2 - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4$$

strong coupling $\lambda = 1$

 $C_p(t) = \langle \phi(t, p)\phi(0, p) \rangle_{\beta}$

interacting Bose gas:
$$\mathscr{L} = \frac{1}{2}(\partial\phi)^2 - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4$$

strong coupling $\lambda = 1$

 $C_p(t) = \langle \phi(t, p)\phi(0, p) \rangle_{\beta}$

interacting Bose gas:
$$\mathscr{L} = \frac{1}{2}(\partial\phi)^2 - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4$$

strong coupling $\lambda = 1$

[Alexandru, GB, Bedaque, Ridgway, Vartak, Warrington, PRL 117081602, PRD 95 114501] [see also follow-up by Mou, Saffin, Tranberg, '18]

Real time dynamics -Hybrid Monte Carlo

Case Study : 0+1 *d anharmonic oscillator*

$$\mathscr{L} = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4$$

in progress

[also (finite density) Fujii, Honda, Kato, Kikukawa, Komatsu, Sano, JHEP 10 (2013) 147 01]

Real time dynamics -Hybrid Monte Carlo

Case Study: 0+1 d anharmonic oscillator $\mathscr{L} = \frac{1}{2}\dot{\phi}^2 - \frac{1}{2}m^2\phi^2 - \frac{\lambda}{4!}\phi^4$

$$N_t = 24, \quad N_\beta = 4, \quad \lambda = 24$$

in progress

chain of interacting fermions $S = \int d^2 x \bar{\psi}^a \left(\gamma^\mu \partial_\mu + m + \mu \gamma^0 \right) \psi^a + \frac{g^2}{2N_f} (\psi^a \gamma^\mu \psi^a) (\psi^b \gamma_\mu \psi^b)$

$$\rightarrow \frac{N_f}{2g^2} \int d^2 x A^{\mu} A_{\mu} + \operatorname{tr} \log(\partial \!\!\!/ + A \!\!\!/ + \mu \gamma_0 + m)$$

- a prototype of QCD *asymptotically free, sign problem at finite density*
- •a 2d cousin of the Hubbard model

sign problem

equation of state

sign problem

equation of state

Equation of state: low temperature limit

particularly bad sign problem: $\langle e^{-iS_I[\phi]} \rangle_{S_R} \propto e^{-volume/T}$

Equation of state

continuum limit

thermodynamic limit

Gauge theories - 2d QED

QED with 3 ``quarks'' with charges q=2,-1,-1 $S = \sum_{a=1}^{3} \int d^{2}x \left[F^{2} + \bar{\psi}^{a} \left(\gamma^{\mu} (\partial_{\mu} - gq_{a}A_{\mu}) + m - \mu\gamma^{0} \right) \psi^{a} \right]$

Gauge theories - heavy dense QCD

- In the limit $m_q \rightarrow \infty$ effective theory of Polyakov loops
- Still has a sign problem for $\mu \neq 0$ but easier to simulate
- Exploratory study on a few-site lattice with
- $\mathcal{M} \sim \Sigma$ ``Lefschetz thimbles'' (fixed points of flow+fluctuations)

[Zambello, Di Renzo, Phys. Rev. D95, 014502]

Many body physics - Hubbard model

2d Hubbard model away from half filling on a Honeycomb lattice

deformation ~ \sum "thimbles"

[Ulybyshev, Winterowd, Zafeiropoulos PRD 101 (1), 014508]

Other deformations: "Learnifolds"

Machine learning, training set: points on \mathcal{M} output: $\mathscr{L} \approx \mathcal{M}$

[Alexandru, Bedaque, Lamm, Lawrence Phys.Rev.D 96 (2017) 9, 094505]

Sign optimized manifolds

within a family of manifolds \mathcal{M}_{λ} minimize the sign problem

maximize the average phase:
$$\langle e^{-iS_I} \rangle_{\lambda} = \frac{\int_{\mathcal{M}_{\lambda}} d[\phi] e^{-S}}{\int_{\mathcal{M}_{\lambda}} d[\phi] e^{-S_R}}$$

[Mori et al. '17-'19, Alexandru et al. '18, Bursa et al. '18, Kashiwa et al. '19, Detmold et al. '20]

