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Molecule NucleusAtom Proton/Neutron Quark

• 12 elementary building blocks of nature (plus anti-particles)
• only need three for creation of ordinary matter (u, d, e)
• strong force mediates the interaction between quarks via 

exchange of gluons: Quantum-Chromo-Dynamics (QCD)

Quarks & Gluons: Elementary Building-Blocks of Matter

Elementary Particles:



Phases of Matter

solid

liquid

gaseous

by adding/removing heat, phase of matter can 
be changed between solid, liquid and gaseous

Pressure plays an important role for the value of 
the transition temperature between the phases

boiling temperature:
• sea level: 100 ℃
• Mt. Everest: 71 ℃



Phase Diagram of QCD Matter

Phases of QCD matter: 
•heat & compress QCD matter: 
‣collide heavy atomic nuclei 

•numerical simulations:  
‣solve partition function (Lattice 
Field Theory)

Ordinary Matter: 
• phases determined by (electro-

magnetic) interaction between 
molecules 

• apply heat & pressure to study 
phase-diagram 

• calculate via derivatives of 
partition function

Equation of State for an ideal QGP:

!LFT predicts a phase-transition 
to a state of deconfined nearly 
massless quarks and gluons

!QCD becomes simple at high 
temperature and/or density

e.g. for a gas of ultra-relativistic 
massless bosons, steep rise would 
indicate a change in DOFs:



The Early Universe: Quark-Gluon-Plasma

•a few microseconds after the 
Big Bang the entire Universe 
was in a QGP state

•compressing & heating 
nuclear matter allows to 
investigate the history of the 
Universe 

• the only means of recreating 
temperatures and densities 
of the early Universe is by 
colliding beams of ultra-
relativistic heavy-ions



Properties of QCD: Transport Coefficients

shear and bulk viscosity are defined as the coefficients in the expansion of the stress tensor in terms 
of the velocity fields:
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The determination of the QCD transport coefficients is one of the key goals of the global relativistic 
heavy-ion effort!

The confines of the Euklidian Formulation:
•extracting η/s formally requires taking the 
zero momentum limit in an infinite spatial 
volume, which is numerically not 
possible…

T 1.58 TC 2.32 TC

η/s 0.2-0.25 0.25-0.5

η/s from Lattice QCD:

A. Nakamura & S. Sakai: Phys. Rev. Lett. 94 (2005) 072305
Harvey B. Meyer: Phys. Rev. D79 (2009) 011502
Harvey B. Meyer: arXiv:0809.5202 [hep-lat]

•preliminary estimates:



QGP Shear-Viscosity: 2006 vs. today
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Jonah E. Bernhard, J. Scott Moreland & Steffen A. Bass,
Nature Physics 15 (2019) 11, 1113-1117

• more than a decade of hard work by multiple 
research groups

• cooperation between theory & experiment
• significant investment by the funding agencies



Telescopes for the Early Universe:
Heavy-Ion Collider Facilities



Heating & Compressing QCD Matter

The only way to heat & compress QCD matter under controlled 
laboratory conditions is by colliding two heavy atomic nuclei!



Probes of the Early Universe

•1000+ scientists from 105+ institutions
•dimensions: 26m long, 16m high, 16m wide
•weight: 10.000 tons

two other experiments: CMS, ATLAS

ALICE experiment at CERN:



Typical Particle Physics Event



Typical Heavy-Ion Event

• thousands of particle tracks
• challenge: reconstruction of final state to 

characterize matter created in collision

Pb+Pb Collision at the LHC: 



Transport Theory: 
Connecting Data to Knowledge



Transport Theory
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microscopic transport models based on the 
Boltzmann Equation: 
• transport of a system of microscopic particles 
• all interactions are based on binary scattering

hybrid transport models: 
•combine microscopic & macroscopic degrees of freedom 
•current state of the art for RHIC modeling

Each transport model relies on roughly a dozen physics parameters to describe the time-evolution of the 
collision and its final state. These physics parameters act as a representation of the information we wish to 
extract from RHIC & LHC. 
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2T
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diffusive transport models based  
on the Langevin Equation: 
• transport of a system of microscopic particles in a thermal medium 
• interactions contain a drag term related to the properties of the 
medium and a noise term representing random collisions
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(viscous) relativistic fluid dynamics: 
• transport of macroscopic degrees of freedom  
•based on conservation laws:

(plus an additional 9 eqns. for dissipative flows)



3+1D Hydro + Boltzmann Hybrid

Computational Modeling



1x 10-23 s 10 x 10-23 s 30 x 10-23 s 

nuclei at 99.99% 
speed of light Quark-Gluon-Plasma

measurable (stable) 
particles in detector

hadronic final state 
interactions

non-equilibrium 
early time dynamics

viscous fluid 
dynamics hadronic transport

Principal Challenges of Probing the QGP with Heavy-Ion Collisions: 
• time-scale of the collision process: 10-24 seconds! [too short to resolve] 
•characteristic length scale: 10-15 meters! [too small to resolve] 
•confinement: quarks & gluons form bound states, experiments don’t observe them directly 
‣computational models are need to connect the experiments to QGP properties!

Probing the QGP in Relativistic Heavy-Ion Collisions



Knowledge Extraction from 
Relativistic Heavy-Ion Collisions



Probing QCD in Heavy-Ion Collisions
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Model:
initial conditions, τ0, η/s, ζ/s, ….

Data:

extracted QGP properties: η/s, …



Determining the QGP Properties via a 
Model to Data Comparison

experimental data:
π/K/P spectra
yields vs. centrality & beam
elliptic flow
HBT
charge correlations & BFs
density correlations

Model Parameter:
eqn. of state

shear viscosity
initial state

pre-equilibrium dynamics
thermalization time

quark/hadron chemistry
particlization/freeze-out

• large number of interconnected parameters w/ non-factorizable data dependencies 
• data have correlated uncertainties 
• develop novel optimization techniques: Bayesian Statistics and MCMC methods
• transport models require too much CPU: need new techniques based on emulators
• general problem, not restricted to RHIC Physics →collaboration with Statistical Sciences



Bayesian Analysis

Each computational model relies on a set of physics parameters to describe the dynamics and properties of the system. 
These physics parameters act as a representation of the information we wish to extract from comparison to data. 

estimate or calculate parameters

calculate observables & compare to data

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• ALICE flow & spectra

Physics Model:
• Trento
• iEbE-VISHNU



Bayesian Analysis

Each computational model relies on a set of physics parameters to describe the dynamics and properties of the system. 
These physics parameters act as a representation of the information we wish to extract from comparison to data. 

• Bayesian analysis allows us to simultaneously calibrate all model parameters via a model-to-data comparison 
• determine parameter values such that the model best describes experimental observables 
• extract the probability distributions of all parameters

Bayesian analysis

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• ALICE flow & spectra

Physics Model:
• Trento
• iEbE-VISHNU



Example: Gravitational Waves

LIGO gravitational wave signal: Bayesian analysis of GR model of merging 
black holes of masses m1 and m2 that is 
capable of reproducing LIGO data:



Setup of a Bayesian Statistical Analysis

Posterior Distribution
• diagonals: probability distribution of each 

parameter, integrating out all others
• off-diagonals: pairwise distributions showing 

dependence between parameters 

Physics Model:
• Trento
• iEbE-VISHNU

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• ALICE flow & spectra

Gaussian Process Emulator
• non-parametric interpolation
• fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

• random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

• prior: initial knowledge of parameters
• likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on Latin hypercube



Components of the Bayesian Analysis



Methodology

Posterior Distribution
• diagonals: probability distribution of each 

parameter, integrating out all others
• off-diagonals: pairwise distributions showing 

dependence between parameters 

Physics Model:
• Trento
• iEbE-VISHNU

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• ALICE flow & spectra

Gaussian Process Emulator
• non-parametric interpolation
• fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

• random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

• prior: initial knowledge of parameters
• likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on Latin hypercube



Physics Model: Trento + iEbE-VISHNU

UrQMD:
- Microscopic transport 

model based on 
Boltzmann Eqn.

- non-equilibrium evolution 
of an interacting hadron 
gas

- hadron gas shear & bulk 
viscosities are implicitly 
contained in calculation

Trento:
- parameterized initial 

condition model based 
on phenomenological 
concepts for entropy 
deposition to a QGP
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iEbE-VISHNU:
- EbE 2+1D viscous RFD
- describes QGP dynamics & 

hadronization
- EoS from Lattice QCD
- temperature-dependent 

shear and bulk viscosity as 
input



Methodology

Posterior Distribution
• diagonals: probability distribution of each 

parameter, integrating out all others
• off-diagonals: pairwise distributions showing 

dependence between parameters 

Physics Model:
• Trento
• iEbE-VISHNU

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• ALICE flow & spectra

Gaussian Process Emulator
• non-parametric interpolation
• fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

• random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

• prior: initial knowledge of parameters
• likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on Latin hypercube



Calibration Parameters
• the calibration parameters are the model parameters 

that codify the physical properties of the system that 
we wish to characterize with the analysis

Trento initial condition:
• p: attenuation parameter - entropy deposition
• k: governs fluctuation in nuclear thickness
• w: Gaussian nucleon width

−8 −4 0 4 8
x [fm]

−8

−4

0

4

8

y 
[fm

]

−8 −4 0 4 8
x [fm]

−8

−4

0

4

8 Pb+Pb @ LHC

temperature dependent shear viscosity:
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parameters:
• intercept:  

(η/s)min at TC 

• slope: (η/s)slope

• curvature: β

temperature dependent bulk viscosity:
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parameters:
• magnitude (ζ/s)max 
• width: Γ
• peak position:(ζ/s)peak

ζ/s(T)=(ζ/s)max / [1+(T-(ζ/s)peak)2/Γ2]

• hydro to micro switching temperature Tsw



Methodology

Posterior Distribution
• diagonals: probability distribution of each 

parameter, integrating out all others
• off-diagonals: pairwise distributions showing 

dependence between parameters 

Physics Model:
• Trento
• iEbE-VISHNU

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• ALICE flow & spectra

Gaussian Process Emulator
• non-parametric interpolation
• fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

• random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

• prior: initial knowledge of parameters
• likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on Latin hypercube



Picking the right Data: Elliptic Flow

• two nuclei collide rarely head-on, 
but mostly with an offset:

•only matter in the overlap area 
gets compressed and heated up

Reaction 

      plane

x

z

y

elliptic flow: 
• gradients of almond-shape 

surface will lead to preferential 
emission in the reaction plane 

• anisotropic (elliptic) flow of 
particles

elliptic flow (v2): 
• asymmetry out- vs. in-plane 

emission is quantified by 2nd 
Fourier coefficient of angular 
distribution: v2 

! vRFD: good agreement with 
data for very small η/s

M. Luzum & P. Romatschke: Phys.Rev. C78 (2008) 034915



Elliptic flow: ultra-cold Fermi-Gas

• Li-atoms released from an optical trap exhibit elliptic flow analogous to what is 
observed in ultra-relativistic heavy-ion collisions 

• Elliptic flow is a general feature of strongly interacting systems!

K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, J. E. Thomas: Science 298 (2002) 2179

Li atoms at release from an optical trap: 
• initial almond shape, similar to 

interaction area in heavy-ion collision 
 



Training Data
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Data:
• ALICE v2, v3 & v4 flow cumulants
• identified & charged particle yields
• identified particle mean pT

• 2 beam energies:  
2.76 & 5.02 TeV
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the entire success of the analysis depends 
on the quality of the exp. data!



Methodology

Posterior Distribution
• diagonals: probability distribution of each 

parameter, integrating out all others
• off-diagonals: pairwise distributions showing 

dependence between parameters 

Physics Model:
• Trento
• iEbE-VISHNU

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• ALICE flow & spectra

Gaussian Process Emulator
• non-parametric interpolation
• fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

• random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

• prior: initial knowledge of parameters
• likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on Latin hypercube



Exploring the Model Parameter-Space

brute force analysis:
• 14 model parameters
• 9 centrality bins
• 20 bins per parameter
• need to evaluate model at 9 ×2014 points
• fluctuating initial conditions: "(104) events per point →1018 events
• assume 1 cpu hour per event: 1018 cpu-hours!
• 2 billion years 100% use of TITAN @ ORNL (Cray XK7 w/ 560,640 cores)
• then start MCMC to find point that optimally describes data…

Need to find techniques that cut down the cpu needed by at least a factor of 
1010: Gaussian Process Emulators



Exploring the Model Parameter-Space

brute force analysis:
• 14 model parameters
• 9 centrality bins
• 20 bins per parameter
• need to evaluate model at 9 ×2014 points
• fluctuating initial conditions: "(104) events per point →1018 events
• assume 1 cpu hour per event: 1018 cpu-hours!
• 2 billion years 100% use of TITAN @ ORNL (Cray XK7 w/ 560,640 cores)
• then start MCMC to find point that optimally describes data…

Need to find techniques that cut down the cpu needed by at least a factor of 
1010: Gaussian Process Emulators
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Gaussian process:
• stochastic function:  

maps inputs to normally distributed outputs
• specified by mean and covariance functions

GP as a model emulator:
• non-parametric interpolation of physics model
• predicts probability distributions for model output 

at any given input value
‣ narrow near training points, wide in gaps

• needs to be conditioned on training data (Latin 
hypercube points)

• fast surrogate to actual model



Computer Experiment Design

Latin hypercube:
• algorithm for generating semi-randomized, space-

filling points (here: maximin Latin hypercube)
• avoids large gaps and tight clusters
• all parameters varied simultaneously
• needs only m≥10n points, with  

n: number of model parameters

× v l m

×
v

Example:
• Latin-hypercube projection for !/s parameters

this design:
• n=15 model parameters
• 9 centrality bins, 2 energies
• Latin hypercube with m=500 points 
• "(104) events per point, for a total of approx. 

35,000,000 events
• use Gaussian Process Emulators to interpolate 

between points



Computer Experiment Execution
Edison @ NERSC:
• Cray XC30: 5586 nodes w/ 24 cores each
• 2 hyperthreads per core
• 2.57 Petaflops/s

Duke QCD workflow:
• 1000 nodes per job: running on 48K cores 

simultaneously
• entire model design with 30M events can be 

computed in 1 day



Calibration

Markov-Chain Monte-Carlo:
• random walk through parameter space weighted by posterior
• large number of samples  
⇒ chain equilibrates to posterior distribution

• flat prior within design range, zero outside
• posterior ~ likelihood within design range, zero outside

Vector of input parameters: x=[p,k,w,(!/s)min,(!/s)slope,(#/s)norm,Tsw,…]
• assume true parameters x� exist ⇒ find probability distribution for x� 

Bayes’ Theorem: P(x��|X,Y,yexp) ∝ P(X,Y,yexp| x�)P(x�)
• P(x�) = prior  
⇒ initial knowledge of x�

• P(X,Y,yexp| x�) = likelihood  
⇒ probability of observing (X,Y,yexp) given proposed x�

• X: training data design points
• Y: model output on X 

• P(x��|X,Y,yexp) = posterior  
⇒ probability of x� given observations (X,Y,yexp) 

Likelihood ∝ exp[-1/2 (y-yexp)⊤Σ-1(y-yexp)]
• covariance matrix Σ = Σexperiment + Σmodel 

•Σexperiment=stat(diagonal) + sys(non-diagonal) 
•Σmodel conservatively estimated as 5%

Likelihood and Uncertainty Quantification:



Prior vs. Posterior

Prior: model calculations evenly distributed over full design space 
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Prior vs. Posterior

Prior: model calculations evenly distributed over full design space 
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Posterior: emulator predictions for highest likelihood parameter values 



Analysis Results

Methodology: Jonah E. Bernhard, J. Scott Moreland, Steffen A. Bass, Jia Liu, Ulrich Heinz: Phys. Rev. C94  (2016) 024907,  arXiv:1605.03954
Results: Jonah E. Bernhard, PhD thesis arXiv:1804.06469; John Scott Moreland, PhD thesis arXiv:1904.08290
              Jonah E. Bernhard, J. Scott Moreland & Steffen A. Bass: Nature Physics 15 (2019) 11, 1113-1117



Methodology

Posterior Distribution
• diagonals: probability distribution of each 

parameter, integrating out all others
• off-diagonals: pairwise distributions showing 

dependence between parameters 

Physics Model:
• Trento
• iEbE-VISHNU

Model Parameters - System Properties
• initial state
• temperature-dependent viscosities
• hydro to micro switching temperature

Experimental Data
• ALICE flow & spectra

Gaussian Process Emulator
• non-parametric interpolation
• fast surrogate to full Physics Model

MCMC
(Markov-Chain Monte-Carlo)

• random walk through parameter space 
weighted by posterior probability

Bayes’ Theorem
posterior∝likelihood × prior

• prior: initial knowledge of parameters
• likelihood: probability of observing exp. 

data, given  proposed parameters

after many steps, MCMC equilibrates to

calculate events on Latin hypercube



Calibrated Posterior Distribution

Tsw⩽Tc

• diagonals: probability distribution of each 
parameter, integrating out all others

• off-diagonals: pairwise distributions showing 
dependence between parameters 

p≈0: IP-Glasma & EKRT type scaling

temperature-dependent viscosities:



Temperature Dependence of Shear & Bulk Viscosities
temperature dependent shear viscosity:
• analysis favors small value and shallow rise
• results do not fully constrain temperature 

dependence:
• inverse correlation between (η/s)slope slope and 

intercept (η/s)min

• insufficient data to obtain sharply peaked 
likelihood distributions for (η/s)slope and curvature 
β independently

• current analysis most sensitive to T< 0.23 GeV 
‣RHIC data may disambiguate further

!/s(T) = (!/s)min + (!/s)slope × (T-TC)×(T/TC)β

temperature dependent bulk viscosity:
• setup of analysis allows for vanishing  

value of bulk viscosity 
• significant non-zero value near TC favored, 

confirming the presence / need for bulk viscosity

caveat of current analysis:
• bulk-viscous corrections are implemented using 

relaxation-time approximation & regulated to 
prevent negative particle densities 

ζ/s(T)=(ζ/s)max / [1+(T-(ζ/s)peak)2/Γ2]

S



Precision Science 
or 

“Smoke & Mirrors”?



Validation
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• generate a separate Latin hypercube validation design with 50 points
• evaluate the full physics model at each validation point
• compare physics model output to that of the previously conditioned GP emulators:

• note that since GPEs are stochastic functions, only ~68% of predictions need to fall within 1 standard deviation

centrality:



Verification: Explicit Model Calculation

• explicit physics model calculations (no emulator) 
with parameter values set  to the maximum of the 
posterior probability distributions yield excellent 
agreement with data!

• description of data to within ±10% accuracy



Prediction: Non-Calibrated Observables
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The robustness and quality of the Physics Model can be tested by making predictions on observables 
not used during calibration using highest likelihood parameter values. 

Example: correlations between event-by-event fluctuations of flow harmonics

SC(m,n) are sensitive to:
• initial conditions
• evolution model 
• QGP transport 

coefficients

• excellent agreement of 
model prediction to data!

ALICE: PRL 117 (2016) 182301, 1604.07663

SC(m,n) = ⟨v2mv2n⟩ - ⟨v2m⟩ ⟨v2n⟩



Closure Test

Need to verify that analysis can recover “true” values for the parameters: run physics model with chosen 
set of parameters, generate “fake data” from model output and then conduct analysis on that fake data 
to test if the input parameters can be recovered!

• both, smooth functions as well as peaked functions, can 
be reproduced well within the 90% CR

• note: due to reduction of information when going from 
model output to observables & model/GP uncertainties 
one should not expect a one-to-one reconstruction

• bulk analysis is mostly sensitive to area under bulk peak, 
not peak position, height & width independently 



Summary:



Summary:

• created a comprehensive set of computational models to describe the dynamical evolution of ultra-relativistic heavy-ion collisions

• developed a framework, utilizing Bayesian Statistics and 
high performance computing, to execute model-to-data 
calibrations with uncertainty quantification: 
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lowest η/s of any known substance!

• applied models and framework for the first quantitative determination 
of the temperature-dependence of the QGP specific shear-viscosity



Outlook & Future Directions

current analysis focus was on the properties of bulk QCD matter and utilized only 
LHC data on soft hadrons. The analysis needs to be extended to:
• include data from lower beam energies
‣necessary for determination of the temperature and $B dependence of transport 

coefficients
• include asymmetric collision systems (p+A, d+A, 3He+A, A+B)
‣generate improved understanding of the initial state

• include hard probes (jets and heavy quark observables)
‣consistent determination of jet and heavy flavor transport coefficients

• include other physics models
‣analysis is model agnostic, allows for quantitative comparison among different models 

and verification/falsification of models/conceptual approaches

this work has been made 
possible through support by
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Resources

Trento:
• J. Scott Moreland, Jonah E. Bernhard & Steffen A. Bass: Phys. Rev. C 92, 011901(R)
• https://github.com/Duke-QCD/trento

iEbE-VISHNU:
• Chun Shen, Zhi Qiu, Huichao Song, Jonah Bernhard, Steffen A. Bass & Ulrich Heinz: 

Computer Physics Communications in print, arXiv:1409.8164
• http://u.osu.edu/vishnu/

UrQMD:
• Steffen A. Bass et al. Prog. Part. Nucl. Phys. 41 (1998) 225-370 , arXiv:nucl-th/9803035 
• Marcus Bleicher et al. J.Phys. G25 (1999) 1859-1896 , arXiv:hep-ph/9909407 
• http://urqmd.org

MADAI Collaboration:
• Visualization and Bayesian Analysis packages
• https://madai-public.cs.unc.edu

Duke Bayesian Analysis Package:
• https://github.com/jbernhard/mtd
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https://github.com/Duke-QCD/trento
http://dx.doi.org/10.1016/j.cpc.2015.08.039
http://arxiv.org/abs/1409.8164
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http://dx.doi.org/10.1016/S0146-6410(98)00058-1
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https://madai-public.cs.unc.edu
https://github.com/jbernhard/mtd


The End


