
  Parity-Time	(PT)	Symmetry	
	In	Quantum	and	Classical	Physics	

Carl	M.	Bender	

ASU	
5	October	2022	 ASU	
5	October	2022	



Thank	you,	Prof.	Shovkovy,	so	much	for	the	invitaAon	to	speak	in	
your	seminar	series!	But	I	wish	I	were	giving	this	talk	live…		
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30-second	summary	of	this	talk:	

							Energy	is	key	in	physics	and,	when	you	measure	it,	
							you	get	a	real	number.	
	
							So,	in	quantum	mechanics	we	tradiAonally	(since	Dirac)			
							assume	that	H	is	Hermi8an.	
	
							But	there’s	another	less	mathemaAcal	and	more		

							physical	possibility	---	that	H	is	PT	symmetric.	

So,	this	will	be	a	talk	on	…	



(PuAn-Trump	symmetry)	

	
																																														…	in	physics		

				PT	symmetry	…	



Newton	discovered	gravity;	Einstein	rediscovered	it	



 Einstein	told	us	to	study	the	Lorentz	group	

Homogeneous	Lorentz	group:	Set	of	all	real	4	x	4	matrices	
that	map	the	space-Ame	point	(x,y,z,t)	!	(x’,y’,z’,t’)	
such	that		x2	+	y2	+	z2	–	t2	=	x’2	+	y’2	+	z’2	–	t’2		is	preserved.	
	
	
Parity	(space	reflecAon)	P	and	8me	reversal	T	
are	elements	of	the	homogeneous	Lorentz	group:	
	
P:	(x,y,z,t)	!	(-x,-y,-z,t)	
	
T:	(x,y,z,t)	!	(x,y,z,-t)	
	



				The	homogeneous	(real)	Lorentz	group	is	a	6-parameter	
				con8nuous	group	consisAng	of	four	disconnected	parts:	

Proper  
orthochronous 
Lorentz group 

Elements of 
POLG  

multiplied by 

T	

Elements of 
POLG 

multiplied by 

PT	

Elements of 
POLG 

multiplied by 

P	

						P	and	T	are	not	fundamental	symmetries	of	the	world	
						(Lee	and	Yang,	Cronin	and	Fitch).		Also,		PT	does	not	
						appear	to	have	any	special	significance.		But	…	



				COMPLEX	Lorentz	group	has	TWO	disconnected	parts:		

Proper		
orthochronous	
Lorentz	group	

(POLG)	

Elements	of	
POLG		

mul6plied	by	

T	

Elements	of	
POLG	

mul6plied	by	

PT	

Elements	of	
POLG	

mul6plied	by	

P	

			PT	symmetry	is	connected	with	complex-variable	theory.	
				This	is	the	basis	of	the	proof	of	the	CPT	Theorem	in	
				parAcle	physics		(see	Streater	&	Wightman)		

Con6nuous	path	
from	POLG	to	
POLG	mul6plied	
by	PT	



					
						Mathema6cians	find	it	enlightening	to					
						extend	the	real	number	system	to	the		
						complex	number	system	because	it	helps	
						to	explain	the	real	number	system.	
	
							
						In	our	study	of	PT	symmetry	we	extend		
						conven6onal	real	(Hermi8an)	physics	
						to	complex	(non-Hermi8an)	physics.	



ConvenAonal	world	is	described	by	real	numbers:	

-	ElecAon	results	
	
	
	
-	IQ	test	results	
	
	
	
-	Money	



Real	quanAty	of	money:	



Complex	mathemaAcs	is	powerful!!	

!Explains	the	convergence	of	(real)	Taylor	series	
	
!Determines	asymptoAc	behavior	(of	real	integrals)	
	
!Enables	us	to	sum	divergent	series	
	
!Explains	real	funcAons,	such	as	square	root	
	
!And	much	much	much	more	(some	other	Ame)	



Q:		√	4	=	+2	and	-2.			Why	are	there	two	answers??	

A:		The	square-root	funcAon	is	defined	on	a	Riemann	surface	…	

    Complex	variables	helps	to	explain	real	
				funcAons,	such	as	the	square-root	funcAon	



        Two-sheeted	Riemann	surface	for	the	
									square-root	funcAon:	

The	surface	is	two	complex	planes	cut	and	glued	together.	
	
	
Like	a	Möbius	strip,	if	you	go	around	twice,		
you	return	back	to	the	starAng	point.	





In	school	you	learn:	
	
Quantum	mechanics:	
ParAcle	in	a	potenAal	
well	has	quan8zed	
energy	levels	
	
	
	
	
	
Going	from	one	level	to	
another	is	a	discrete	
“quantum	leap”	
  



 Complex	analysis	provides	a	deeper	
understanding	of	quanAzaAon…	

Imagine	a	two-state	system	
having	energies	a	and	b…	

Couple the states: 



Energies	for	this	two-state	system	

Square-root	singulariAes	
in	the	complex-g	plane	at	

Called	excep1onal	points,	originally	called	Bender-Wu	singulari1es	



E(g) is	a	smooth	funcAon	defined	on	
	a	two-sheeted	Riemann	surface:	

Complex-g 
surface 

On	this	complex-g	surface	the	energy	levels	are	not	discrete!	
Quan1za1on	is		topological	–	quan6zed	energy	levels	
correspond	to	the	discrete	sheets	in	the	Riemann	surface.	
	
Square-root	singulari6es	explain	the	divergence	of	perturba6on	series.	
(Complex-variable	techniques	can	be	used	to	sum	the	series!)	



Imagine	a	parking	garage…	

Unlike	what	is	taught	in	convenAonal	quantum	theory	
courses,	energy	levels	smoothly	deform	into	one	another	
under	analyAc	conAnuaAon.	



Laboratory	analy8c	con8nua8on	of	eigenvalues	

(2) H. Xu, D. Mason, L. Jiang, and J. G. E. Harris, Nature 537, 80 (2016) 
 
 
(3) J. Doppler, A. A. Mailybaev, J. Böhm, U. Kuhl, A. Girschik, F. Libisch, 
     T. J. Milburn, P. Rabl, N. Moiseyev, and S. Rotter, Nature 537, 76 (2016) 

(1) 

Note	the	term	PT	symmetry	…	



PT	reflecAon	–	a	simultaneous	reflecAon	of	space	and	Ame	

						PT-symmetric	quantum	mechanics:	
								Extending	quantum	mechanics	into	the	complex	domain.	
	
								If	you	respect	PT	symmetry,	the	eigenvalues	can	remain	real	and	unitarity	
								can	be	preserved	even	if	the	Hamiltonian	is	not	HermiAan!	

0
0
0
0 



Early	example	of	a	PT-symmetric	
Hamiltonian.	This	Hamiltonian	
is	not	HermiAan,	but	---	
It	has	REAL	EIGENVALUES!		
	
(Bessis	and	Itzykson,	1-D	model	of	
Lee-Yang	edge	singularity;	Tan	et	al.,	
Reggeon	field	theory)	

 P:  x à -x,  p à -p 
 
T:  x à x,  p à -p,   i à -i 



How	perturbaAon	theory	works	
to	solve	difficult	problems…	



To	solve	a	
FRIGHTENINGLY	
DIFFICULT	PROBLEM…	
	
	
You	insert	an	ε	and	
expand	in	powers	ε.	
This	converts	the	
hard	problem	to	a		
sequence	of	smaller	
and	easier	problems…	



Smaller	and	easier	problems:	



Example	of	a	hard	problem	

Find	the	real	root	of   x5 + x = 1 
 
Exact	answer:   x = 0.75487767 



Strong-coupling	perturbaAon	expansion	



Weak-coupling	perturbaAon	expansion	



										Exponen8al	perturbaAon	expansion	



Applied	to	Thomas-Fermi	equaAon	

y’’(x) = y3/2(x) x-1/2     and   y(0)=1, y(∞)=0  
 

	
Objec6ve:	find	y’(0)	
	
Insert ε	
 

y’’(x) = y(x) [y(x)/x]ε	
 

Expand	in	powers	of	ε and	then	set	ε = ½ 
(ε measures	the	departure	from	linearity) 



ExponenAal	perturbaAon	theory	
	applied	to			H = p2 + ix3 

 
 
 

H = p2 + x2(ix)ε      (ε real) 
This	preserves	PT	symmetry!		

	
	

ε	measures	the	departure	from	an	exactly	
solvable	theory	(the	harmonic	oscillator)	



PT	symmetry	unmasked:	
	

PT-symmetric	Hamiltonians	are	complex	
deforma8ons	of	HermiAan	Hamiltonians	

You	begin	with	a	HermiAan	Hamiltonian	
and	introduce	a	deformaAon	parameter	ε	…	



One-parameter	family	of	PT-symmetric	Hamiltonians		
obtained	by	complex	deformaAon	of	the	harmonic	oscillator	

Special cases: 

Look!	H	is	not	
Hermi6an	but	
its	eigenvalues	
are	all	real!	

Quartic: H = p2 - x4  
Cubic: H = p2 + ix3  

Sextic: H = p2 + x6  

Proof of spectral reality: 
 
P. Dorey, C. Dunning, and R. Tateo 
J. Phys. A 34, 5679 (2001) 
 
P. Dorey, C. Dunning, and R. Tateo 
J. Phys. A 40, R205 (2007) 

H = p2 + x2(ix)ε      (ε real) 



PT-symmetric	Hamiltonians	as	
complex	deforma8ons	of	
HermiAan	Hamiltonians	

You	begin	with	a	HermiAan	Hamiltonian	
and	introduce	a	deforma8on	parameter	ε	

Complex deformed parrot Complex deformed frog Complex deformed squirrel 



Simple	example:	 H = p2 + x2 + iεx  

En = 2n + 1 + ε2/4       (n = 0, 1, 2, 3, …) 

-φ’’(x) + x2 φ(x) + iεx φ(x) = E φ(x) 
 
φ(±∞) = 0 



H = p2 + x4 (ix)ε  

This	picture	of	eigenvalues	is	generic…	



H = p4 + x2 (ix)ε  



H = p2 + x2 (ix)ε log(ix) 





“Observa6on	of	PT-symmetry	
breaking	in	complex	op6cal	
poten6als,”	A.	Guo,	G.	Salamo,	
D.	Duchesne,	R.	MorandoY,	M.	
Vola6er-Ravat,	V.	Aimez,	G.	
Siviloglou,	&	D.	Christodoulides,	
Physical	Review	LeCers	103,	
093902	(2009)	







PT	in	China	



PT	in	China	



Stability	of	upside-down	potenAals	

This	potenAal	looks	unstable	(on	the	real	axis)	
	
Complex	variables	explains	why	such	a	potenAal	has	
stable	quantum	bound	states!	

V(x) = -x4 
(PT-symmetric	quar6c	poten6al)	



To	explain,	we	first	study	simple	classical	harmonic	moAon	
in	the	complex	domain.	
 
 
 
 
 
 
 
 
 
 
 
 
                   Remember	what	they	teach	in	physics	101…	



Classical	harmonic	oscillator	

 
             Turning point Turning point 

Back and forth motion on the real-x axis: 

Classically allowed and classically forbidden regions… 

E = p2 + x2  



Classically allowed and 
classically forbidden regions 



Classical	harmonic	oscillator	in	the	complex	plane		

 
             

Turning point Turning point 

H = p2 + x2  

Classical trajectory in 
the complex-x plane 

(ε = 0) 

E = p2 + x2  (These orbits are not Keplerian!) 



(ε = 1) Classical trajectories in 
the complex-x plane 
 

H = p2 + ix3  



(ε = 2) 

Classical trajectories 
in the complex-x plane 
 

H = p2 – x4  

Q: On the real axis classical particles roll down to infinity 
in finite time T, so where is the particle at T+1?? 



As the classical trajectories approach the real axis, the 
classical orbits go further out into complex-x plane 



Probability density for 
a classical particle in 
the potential V(x) = -x4 
to be found on the 
real-x axis at the point x 



Sta8c	instability	becomes	dynamically	stable	
in	the	complex	domain	(like	a	bicycle	or	a	top)  



π	



Instability at x = 0 is tamed! 

Complex analysis allows us to tame instabilities 
 
 
Physical systems that seem to be unstable can 
become stable in the complex domain! 



Q: WHY IS THERE NO INSTABILITY?? 
 
A: If you extend real numbers to complex 
numbers, you lose the ordering property 
of real numbers 
 
You lose the concept of > and < 
 
Physical systems that look 
unstable may be stable! 



PT Boundary 
Region of unbroken 
PT symmetry 

Region of broken 
PT symmetry 

Transition 
 at ε = 0 

H = p2 + x2(ix)ε         (ε real) 



PT symmetry does not conflict with conventional 
quantum theory, but it is weaker than Hermiticity: 
All eigenvalues E of a Hermitian Hamiltonian are real. 
For PT-symmetric Hamiltonians only the 
secular equation    det(H - IE) = 0    is real.  
 
 
Unlike Hermitian Hamiltonians, there are 
       
 TWO POSSIBILITIES: 
 
PT-symmetric theories may have an all real or a partly 
real spectrum.  



Broken ParroT Unbroken ParroT 



HermiAan	Hamiltonians:	
	BORING!	

Eigenvalues	are	always	real	–	nothing	interes6ng	happens	



PT-symmetric	Hamiltonians:	
ASTONISHING!	

TransiAon	between	parametric	regions	of	
broken	and	unbroken	PT	symmetry	–	
Easy	to	observe	experimentally!	



IntuiAve	explanaAon	of	
the	PT	transiAon	…	



Imagine a closed box with gain. The 1 x 1 Hamiltonian 
for this system is non-Hermitian:  H = [a+ib]  

Box 1: Gain 

    Intuitive explanation of the PT transition 



Two noninteracting closed boxes,  one with gain, the 
other with loss: 

Box 2: Loss 

This system is not in equilibrium 

Box 1: Gain 



     Couple the boxes: 

Box 2: Loss 

This Hamiltonian is not Hermitian but it is PT symmetric: 

Box 1: Gain 

Time reversal:      = complex conjugation 
 
Parity:   



Eigenvalues satisfy a real secular equation: 
 
det(Hcoupled – IE) = E2 – 2aE + a2 + b2 – g2 

Transition at |g| = |b| 
Energy is REAL if |g| > |b| 

This system is in equilibrium for sufficiently large coupling! 

± E   = a ± (g2 – b2)1/2 



      PT-symmetric systems lie between 
      closed and open systems 

Hermitian H Non-Hermitian H PT-symmetric H 



Experimental Studies of PT symmetry: 

•  PT-symmetric	wave	guides	
•  PT-symmetric	lasers	
•  PT-symmetric	electronic	and	mechanical	systems	
•  Unidirec6onal	transmission	of	light	
•  PT-symmetric	atomic	diffusion	
•  PT-symmetric	superconduc6ng	wires	
•  PT-symmetric	op6cal	graphene	
•  PT-symmetric	power	transfer	
•  PT-symmetric	fluid	instabili6es	
											…and	many	many	many	many	more!	



First observation of PT transition using 
optical wave guides: 

“Observation of PT-symmetry breaking in complex optical 
potentials,” A. Guo, G. Salamo, D. Duchesne, R. Morandotti, M. 
Volatier-Ravat, V. Aimez, G. Siviloglou, and D. Christodoulides, 
Physical Review Letters 103, 093902 (2009) 



PT-symmetric diffusion – Shanghai/Rutgers 



PT-symmetric optics – Caltech 



PT-symmetric superconducting wires – Indiana 



PT-symmetric microwave cavities – Germany 



PT-symmetric cavity lasers – Yale 



PT-symmetric photonic graphene – Israel 



PT lasers – Vienna/Princeton/Yale/Zurich 



Multiple PT-symmetric waveguides – Germany/Florida 



PT-symmetric superconducting wires – Argonne 



PT-symmetric NMR – Beijing 



PT-symmetric metasurfaces – Texas 



PT-symmetric photonic crystals – Stanford 



PT-symmetric neutrinos – Case Western 



PT-symmetric wireless power transfer – Stanford 



J. Schindler et al., Phys. Rev. A (2011) 
Experimental study of active LRC circuits with PT symmetries 
Joseph Schindler, Ang Li, Mei C. Zheng, F. M. Ellis, and Tsampikos Kottos 
Phys. Rev. A 84, 040101 (2011) 
Published October 13, 2011 
Everyone learns in a first course on quantum mechanics that the result of a measurement cannot be a complex 
number, so the quantum mechanical operator that corresponds to a measurement must be Hermitian. However, 
certain classes of complex Hamiltonians that are not Hermitian can still have real eigenvalues. The key property 
of these Hamiltonians is that they are parity-time (PT) symmetric, that is, they are invariant under a mirror 
reflection and complex conjugation (which is equivalent to time reversal). 
 
Hamiltonians that have PT symmetry have been used to describe the depinning of vortex flux lines in type-II 
superconductors and optical effects that involve a complex index of refraction, but there has never been a simple 
physical system where the effects of PT symmetry can be clearly understood and explored. Now, Joseph Schindler 
and colleagues at Wesleyan University in Connecticut have devised a simple LRC electrical circuit that displays 
directly the effects of PT symmetry. The key components are a pair of coupled resonant circuits, one with active 
gain and the other with an equivalent amount of loss. Schindler et al. explore the eigenfrequencies of this system 
as a function of the “gain/loss” parameter that controls the degree of amplification and attenuation of the system. 
For a critical value of this parameter, the eigenfrequencies undergo a spontaneous phase transition from real to 
complex values, while the eigenstates coalesce and acquire a definite chirality (handedness). This simple electronic 
analog to a quantum Hamiltonian could be a useful reference point for studying more complex applications.  
– Gordon W. F. Drake 

APS: Spotlighting exceptional research 



“Observation of PT phase transition in a simple mechanical system,” 
CMB, B. Berntson, D. Parker, E. Samuel, American Journal of Physics 81, 173 (2013)  



Loss and gain:  
Remove energy from the x pendulum 
and transfer it to the y pendulum. 

PT-symmetric system of coupled pendula 



“Nonreciprocal light transmission in parity-time-symmetric 
whispering-gallery microcavities,” B. Peng, S. K. Ozdemir, F. Lei, 
F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, CMB, L. Yang, 
Nature Physics 10, 394 (2014)  
 
“Twofold transition in PT-symmetric coupled oscillators,” 
CMB, M. Gianfreda, B. Peng, S. K. Ozdemir, and L. Yang, 
Physical Review A 88, 062111 (2013)  
 
“Loss-induced suppression and revival of lasing,” 
B. Peng, S.K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, CMB, F. Nori, L. Yang, 
Science 346, 328 (2014)  

Experiments involving whispering-gallery microcavities: 



    Overview	
				of	my	talk: 



TheoreAcal	applicaAons:	renormalizing	makes	a	
Hamiltonian	non-HermiAan,	but	sAll	PT	symmetric	

•  Lee	model	is	unitary	(there	are	no	ghosts!)	
•  Pais-Uhlenbeck	model	(no	ghosts!)	
•  Self-force	on	the	electron	(runaway	modes)	
•  Double-scaling	limit	in	QFT	
•  Stability	of	the	Higgs	vacuum	
•  Asympto6c	behavior	of	the	Painlevé	transcendents	
•  Repulsive	theory	of	gravity	
•  Applica6on	to	the	Riemann	hypothesis	
											…and	many	many	many	many	more!	



Three	theoreAcal	examples		
	Example	1:	Lee	model	



Problem	with	the	Lee	model	



“A non-Hermitian Hamiltonian is unacceptable 
partly because it may lead to complex energy 
eigenvalues, but chiefly because it implies a non-
unitary S matrix, which fails to conserve probability 
and makes a hash of the physical interpretation.” 

Renormalization creates instability. 
This is a really hard problem. Pauli, Heisenberg, 
Wick, Sudarshan, … worked on it, but no cigar. 



GHOSTBUSTING: Reviving 
quantum theories that were 
thought to be dead 
 

“Ghost busting: PT-symmetric interpretation of the Lee model,” 
CMB, S. Brandt, J.-H. Chen, and Q. Wang, Phys. Rev. D 71, 025014 (2005)  



Example	2:	PT-symmetric	quantum	
field	theory	

“PT-symmetric quantum field theory in D dimensions” 
CMB, N. Hassanpour, S. P. Klevansky, and S. Sarkar 
Physical Review D 98, 125003 (2018) [arXiv: 1810.12479] 
 
“PT symmetry and renormalization in quantum field theory” 
A. Felski, CMB, S. P. Klevansky, and S. Sarkar 
Physical Review D 104, 085011 (2021) [arXiv: 2103.14684] 

D-dimensional Euclidean-space quantum field theory 
with a pseudoscalar field 

Objective: Calculate the vacuum energy density, renormalized 
mass, Green’s functions G1, G2(x-y), G3(x-y, x-z), ... as series 
in powers of ε	



Example	3:	InstabiliAes	of	nonlinear	
differenAal	equaAons	

Painlevé transcendents have fundamental instabilities 
that can be tamed and understood quantitatively by 
using PT-symmetric quantum theory 
 
“Nonlinear eigenvalue problems” 
CMB, A. Fring, and J. Komijani 
Journal of Physics A 47, 235204 (2014) [arXiv: 1402.1158] 
 
“PT-symmetric Hamiltonians and the Painlevé transcendents” 
CMB and J. Komijani 
Journal of Physics A 48, 475202 (2015) [arXiv: 1502.04089] 
 
“Nonlinear eigenvalue problems for generalized Painlevé equations” 
CMB, J. Komijani, and Q.-h. Wang 
Journal of Physics A 52, 315202 (2019) [arXiv: 1903.10640] 
 
“Addendum: Fourth Painlevé equation and PT-symmetric Hamiltonians” 
 CMB and J. Komijani 
Journal of Physics A 55, 109401(2022) [arXiv: 2107.04935] 



Instability of Painlevé I explained from large eigenvalues of  

cubic PT-symmetric Hamiltonian 

(Do you remember the cubic PT-symmetric Hamiltonian?) 

Painlevé I corresponds to ε = 1 H = p2 + ix3  



Instability of Painlevé II explained from large eigenvalues of 
quartic PT-symmetric Hamiltonian 

(Remember the quartic upside-down PT-symmetric Hamiltonian?) 

Painlevé II corresponds to ε = 2 

H = p2 – x4  



Instability of Painlevé IV explained in terms of the  

sextic PT-symmetric Hamiltonian 

(Do you remember the sextic PT-symmetric Hamiltonian?) 

Painlevé IV corresponds to ε = 4 

H = p2 + x6  



for	listening	to	my	talk!	



I	am	happy	to	answer	quesAons…	


