Effective Quantum Fietd Theories

NORA BRAMBILLA

- Nonrelativistic (NR)bound and threshold states are multiscale systems
- Nonrelativistic (NR)bound and threshold states are multiscale systems -They have been at the root of Quantum Physics and triggered several revolutions
- Nonrelativistic (NR)bound and threshold states are multiscale systems -They have been at the root of Quantum Physics and triggered several revolutions - Today they appear in many relevant processes at the frontier of particle physics, BSM, nuclear physics, cosmology and atomic physics/condensed matter
- Nonrelativistic (NR)bound and threshold states are multiscale systems
-They have been at the root of Quantum Physics and triggered several revolutions
- Today they appear in many relevant processes at the frontier of particle physics, BSM, nuclear physics, cosmology and atomic physics/condensed matter
- In strongly interacting physics they allow simplifications and are golden probes of the strong dynamics
- Nonrelativistic (NR)bound and threshold states are multiscale systems
-They have been at the root of Quantum Physics and triggered several revolutions
- Today they appear in many relevant processes at the frontier of particle physics, BSM, nuclear physics, cosmology and atomic physics/condensed matter
- In strongly interacting physics they allow simplifications and are golden probes of the strong dynamics
-NR Effective Field Theories (NREFTs) allow to describe these systems in QFT
- Nonrelativistic (NR)bound and threshold states are multiscale systems
-They have been at the root of Quantum Physics and triggered several revolutions
- Today they appear in many relevant processes at the frontier of particle physics, BSM, nuclear physics, cosmology and atomic physics/condensed matter
- In strongly interacting physics they allow simplifications and are golden probes of the strong dynamics
-NR Effective Field Theories (NREFTs) allow to describe these systems in QFT
-pNREFT allows to address the bound state dynamics, define the potentials as matching coefficients and allows systematical and precise calculations both at a perturbative and a nonperturbative scale and in presence of additional scales (e.g the temperature T)
- Nonrelativistic (NR)bound and threshold states are multiscale systems
-They have been at the root of Quantum Physics and triggered several revolutions
- Today they appear in many relevant processes at the frontier of particle physics, BSM, nuclear physics, cosmology and atomic physics/condensed matter
- In strongly interacting physics they allow simplifications and are golden probes of the strong dynamics
-NR Effective Field Theories (NREFTs) allow to describe these systems in QFT
-pNREFT allows to address the bound state dynamics, define the potentials as matching coefficients and allows systematical and precise calculations both at a perturbative and a nonperturbative scale and in presence of additional scales (e.g the temperature T)

for NR systems in

- Nonrelativistic (NR)bound and threshold states are multiscale systems
-They have been at the root of Quantum Physics and triggered several revolutions
- Today they appear in many relevant processes at the frontier of particle physics, BSM, nuclear physics, cosmology and atomic physics/condensed matter
- In strongly interacting physics they allow simplifications and are golden probes of the strong dynamics
-NR Effective Field Theories (NREFTs) allow to describe these systems in QFT
-pNREFT allows to address the bound state dynamics, define the potentials as matching coefficients and allows systematical and precise calculations both at a perturbative and a nonperturbative scale and in presence of additional scales (e.g the temperature T)

for NR systems in

Prototype of NR states: Hydrogen Atom

for the hydrogen atom

Prototype of NR states: Hydrogen Atom

for the hydrogen atom

The relevant scales of the non-relativistic bound state dynamics are

$$
E \sim \frac{\mathbf{p}^{2}}{2 m} \sim V \sim m v^{2}
$$

$$
\quad p \sim 1 / r \sim m v
$$

a crucial observation: if $\quad v($ elocity $) \ll 1$, then $\quad m \gg m v \gg m v^{2}$.

Prototype of NR states: Hydrogen Atom

for the hydrogen atom

The relevant scales of the non-relativistic bound state dynamics are

$$
E \sim \frac{\mathbf{p}^{2}}{2 m} \sim V \sim m v^{2}, \quad \quad \quad p \sim 1 / r \sim m v
$$

a crucial observation: if $\quad v$ (elocity) <1, then $m \gg m v \gg m v^{2}$.

Non-relativistic (NR) bound states accompanied the history of the quantum theory from its inception to the establishing of the quantum theory of fields

Nonrelativistic Quantum Theory of bound states

- 1926 Schrödinger equation: $\left(\frac{\mathbf{p}^{2}}{2 m}+V\right) \phi=E \phi$

$$
\begin{cases}g=g_{0}+g_{0}(-i V) g & =\square+\square \\ g_{0}=\frac{i}{E-\mathbf{p}^{2} /(2 m)} & \end{cases}
$$

- 1927 Pauli equation: $\left(\frac{(\mathbf{p}-e \mathbf{A})^{2}}{2 m}+V-\frac{\boldsymbol{\sigma} \cdot e \mathbf{B}}{2 m}\right) \phi=E \phi$

Relativistic Quantum Theory of bound states

- 1928 Dirac equation: $(i \not D-m) \psi=0$

$$
\left\{\begin{array}{l}
g^{D}=g_{0}^{D}+g_{0}^{D}(-i e \neq A) g^{D} \\
g_{0}^{D}=\frac{i}{p-m}
\end{array}\right.
$$

Nonrelativistic Quantum Theory of bound states

- 1926 Schrödinger equation: $\left(\frac{\mathbf{p}^{2}}{2 m}+V\right) \phi=E \phi$

$$
\begin{cases}g=g_{0}+g_{0}(-i V) g & =\square+\square \\ g_{0}=\frac{i}{E-\mathbf{p}^{2} /(2 m)} & \end{cases}
$$

- 1927 Pauli equation: $\left(\frac{(\mathbf{p}-e \mathbf{A})^{2}}{2 m}+V-\frac{\boldsymbol{\sigma} \cdot e \mathbf{B}}{2 m}\right) \phi=E \phi$

Relativistic Quantum Theory of bound states

- 1928 Dirac equation: $(i \not D-m) \psi=0$

$$
\left\{\begin{array}{l}
g^{D}=g_{0}^{D}+g_{0}^{D}(-i e \neq A) g^{D} \\
g_{0}^{D}=\frac{i}{p-m}
\end{array}\right.
$$

to address relativistic corrections in $1 / \mathrm{m}$

Nonrelativistic Quantum Theory of bound states

- 1926 Schrödinger equation: $\left(\frac{\mathbf{p}^{2}}{2 m}+V\right) \phi=E \phi$

$$
\left\{\begin{array}{l}
g=g_{0}+g_{0}(-i V) g \\
g_{0}=\frac{i}{E-\mathbf{p}^{2} /(2 m)}
\end{array} \quad-\square\right.
$$

- 1927 Pauli equation: $\left(\frac{(\mathbf{p}-e \mathbf{A})^{2}}{2 m}+V-\frac{\boldsymbol{\sigma} \cdot e \mathbf{B}}{2 m}\right) \phi=E \phi$

Relativistic Quantum Theory of bound states

- 1928 Dirac equation: $(i \not D-m) \psi=0$

$$
\left\{\begin{array}{l}
g^{D}=g_{0}^{D}+g_{0}^{D}(-i e A) g^{D} \\
g_{0}^{D}=\frac{i}{p-m}
\end{array}\right.
$$

to address relativistic corrections in $1 / \mathrm{m}$
it produces spin-corrections (spin-orbit), it does not give the Lamb shift (radiative corrections)

Relativistic Quantum Field Theory of bound states

- 1951 Bethe-Salpeter equation:
$\left\{\begin{array}{l}G=G_{0}+G_{0} K G \\ G_{0}=g_{0}^{D} \otimes g_{0}^{D}\end{array}\right.$

All the complexity of the field theory is in the kernel

which only in the non-relativistic limit reduces to the Coulomb potential, but, in general, keeps entangled all bound-state scales.

Relativistic Quantum Field Theory of bound states

- 1951 Bethe-Salpeter equation:

$$
\left\{\begin{array}{l}
G=G_{0}+G_{0} K G \\
G_{0}=g_{0}^{D} \otimes g_{0}^{D}
\end{array}\right.
$$

All the complexity of the field theory is in the kernel

which only in the non-relativistic limit reduces to the Coulomb potential, but, in general, keeps entangled all bound-state scales.
A. It is cumbersome in perturbation theory

Relativistic Quantum Field Theory of bound states

- 1951 Bethe-Salpeter equation:
$\left\{\begin{array}{l}G=G_{0}+G_{0} K G \\ G_{0}=g_{0}^{D} \otimes g_{0}^{D}\end{array}\right.$

All the complexity of the field theory is in the kernel

which only in the non-relativistic limit reduces to the Coulomb potential, but, in general, keeps entangled all bound-state scales.
A. It is cumbersome in perturbation theory

Ex.

- It shows the difficulty of the approach the fact that going from the calculation of the $m \alpha^{5}$ correction in the hyperfine splitting of the positronium ground state to the $m \alpha^{6} \ln \alpha$ term took twenty-five years!
- Karplus Klein PR 87(52)848, Caswell Lepage PRA (20)(79)36 Bodwin Yennie PR 43(78)267

Relativistic Quantum Field Theory of bound states

- 1951 Bethe-Salpeter equation:

$$
\left\{\begin{array}{l}
G=G_{0}+G_{0} K G \\
G_{0}=g_{0}^{D} \otimes g_{0}^{D}
\end{array}\right.
$$

All the complexity of the field theory is in the kernel

which only in the non-relativistic limit reduces to the Coulomb potential, but, in general, keeps entangled all bound-state scales.
B. It is very poorly suited to achieve factorization (especially important in QCD)

THE GFT APPROACH: PNREFT

Disentangling the bound-state scales at the Lagrangian level has advantages

Disentangling the bound-state scales at the Lagrangian level has advantages

I. It facilitates higher order perturbative calculations

Relevant for: atomic physics: Hydrogen atom (e.g. proton radius), positronium (e.g. width, hfs), muonium ttbar threshold production; Dark matter annihilation and production close to threshold; SUSY particles annihilation and production; $\mathrm{QQbar}, \mathrm{QQq}$ and QQQ with small radius; extraction of SM parameters

Disentangling the bound-state scales at the Lagrangian level has advantages
I. It facilitates higher order perturbative calculations

Relevant for: atomic physics: Hydrogen atom (e.g. proton radius), positronium (e.g. width, hfs), muonium ttbar threshold production; Dark matter annihilation and production close to threshold; SUSY particles annihilation and production; $\mathrm{QQbar}, \mathrm{QQq}$ and QQQ with small radius; extraction of SM parameters
II. In QCD (or in a strongly coupled theory) it factorizes automatically high energy contributions (perturbative) from low-energy (nonperturbative, thermal) ones
Relevant for: pionium and precision chiral dynamics; nucleon-nucleon systems;
Quarkonium, Exotic X, Y, Z states, Quarkonium in hot QCD medium in heavy ion collisions; NR states in early universe; confinement and nonperturbative effects

Disentangling the bound-state scales at the Lagrangian level has advantages
I. It facilitates higher order perturbative calculations

Relevant for: atomic physics: Hydrogen atom (e.g. proton radius), positronium (e.g. width, hfs), muonium ttbar threshold production; Dark matter annihilation and production close to threshold; SUSY particles annihilation and production; $\mathrm{QQbar}, \mathrm{QQq}$ and QQQ with small radius; extraction of SM parameters
II. In QCD (or in a strongly coupled theory) it factorizes automatically high energy contributions (perturbative) from low-energy (nonperturbative, thermal) ones
Relevant for: pionium and precision chiral dynamics; nucleon-nucleon systems;
Quarkonium, Exotic X, Y, Z states, Quarkonium in hot QCD medium in heavy ion collisions;
NR states in early universe; confinement and nonperturbative effects
III. It allows to integrate out hierarchically other scales using other EFTs (for example the temperature T using HTL) and to apply lattice directly on the low energy factorized part

Disentangling the bound-state scales at the Lagrangian level has advantages
I. It facilitates higher order perturbative calculations

Relevant for: atomic physics: Hydrogen atom (e.g. proton radius), positronium (e.g. width, hfs), muonium ttbar threshold production; Dark matter annihilation and production close to threshold; SUSY particles annihilation and production; $\mathrm{QQbar}, \mathrm{QQq}$ and QQQ with small radius; extraction of SM parameters
II. In QCD (or in a strongly coupled theory) it factorizes automatically high energy contributions (perturbative) from low-energy (nonperturbative, thermal) ones
Relevant for: pionium and precision chiral dynamics; nucleon-nucleon systems;
Quarkonium, Exotic X, Y, Z states, Quarkonium in hot QCD medium in heavy ion collisions;
NR states in early universe; confinement and nonperturbative effects
III. It allows to integrate out hierarchically other scales using other EFTs (for example the temperature T using HTL) and to apply lattice directly on the low energy factorized part
IV. It allows to define in QFT objects of great importance like potentials

More conceptually V. It provides a field theoretical foundation of the Schroedinger eq.:
the Lagrangian

$$
\mathcal{L}_{\mathrm{pNREFT}}=\int d^{3} r \phi^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V\right) \phi+\Delta \mathcal{L}
$$

separates the Schroedinger dynamics of the two particle field ϕ from the low

pNREFT is the lowest energy EFT that can be constructed for the NR bound system.

More conceptually V . It provides a field theoretical foundation of the Schroedinger eq.:
the Lagrangian $\quad \mathcal{L}_{\text {pNREFT }}=\int d^{3} r \phi^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V\right) \phi+\Delta \mathcal{L}$
separates the Schroedinger dynamics of the two particle field ϕ from the low

${ }_{u}$ It implements the Schroedinger eq. as zero order problem, define the potentials at the level of the QFT, implements systematically retardation corrections (Lamb shift), it encodes Poincare' invariance, and it is equivalent at any given order of the expansion to the underlying QFT

More conceptually V. It provides a field theoretical foundation of the Schroedinger eq.:
the Lagrangian

$$
\mathcal{L}_{\mathrm{pNREFT}}=\int d^{3} r \phi^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V\right) \phi+\Delta \mathcal{L}
$$

separates the Schroedinger dynamics of the two particle field ϕ from the low energy dynamics encoded in $\Delta \mathcal{L}$

pNREFT is the lowest energy EFT that can be constructed for the NR bound system.

It implements the Schroedinger eq. as zero order problem, define the potentials at the level of the QFT, implements systematically retardation corrections (Lamb shift), it encodes Poincare' invariance, and it is equivalent at any given order of the expansion to the underlying QFT
if QFT = QED, pNRQED (Pineda,Soto 1998) gives a proper version of Quantum Mechanics

A RICH PHYSICAL EXAMPLE OF NR STATE: QUARKONIUM

in 1974 the J/psi discovery triggered the
November revolution:
charm discovery and confirmation of asymptotic freedom

Today it is a golden probe of strong interactions

From the physical point of view it is a pretty interesting system, that add Λ_{QCD} to the other scales and requires two different versions of pNREFT, weakly coupled and strongly coupled, for $m v>\Lambda_{\mathrm{QCD}}$ and $m v \sim \Lambda_{\mathrm{QCD}}$ respectively

Heavy quarks offer a privileged access

Heavy quarks offer a privileged access

A large scale $\quad m_{Q} \gg \Lambda_{\mathrm{QCD}} \quad \alpha_{s}\left(m_{Q}\right) \ll 1$

Heavy quarks offer a privileged access

with $Q, \bar{Q}=c, b, t$ $\mathrm{mc}_{\mathrm{c}} \sim 1.5 \mathrm{GeV}$ $\mathrm{mb} \sim 5 \mathrm{GeV}$ $\mathrm{mt} \sim 170 \mathrm{GeV}$

A large scale $\quad m_{Q} \gg \Lambda_{\mathrm{QCD}} \quad \alpha_{s}\left(m_{Q}\right) \ll 1$
Heavy quarkonium is very different from heavy-light hadrons

Heavy quarks offer a privileged access

A large scale $\quad m_{Q} \gg \Lambda_{\mathrm{QCD}} \quad \alpha_{s}\left(m_{Q}\right) \ll 1$
Heavy quarkonia are nonrelativistic bound systems: multiscale systems

Heavy quarks offer a privileged access

A large scale $\quad m_{Q} \gg \Lambda_{\mathrm{QCD}} \quad \alpha_{s}\left(m_{Q}\right) \ll 1$
Heavy quarkonia are nonrelativistic bound systems: multiscale systems
many scales: a challenge and an opportunity

Quarkonium scales

S states
 P states

Normalized with respect to $\chi_{b}(1 P)$ and $\chi_{c}(1 P)$

Quarkonium scales

S states
P states
Normalized with respect to $\chi_{b}(1 P)$ and $\chi_{c}(1 P)$

$$
\begin{aligned}
& \text { The mass scale is perturbative } \\
& m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
& m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{aligned}
$$

$$
\begin{aligned}
M(Y(1 S)) & =9460 \mathrm{GeV} \\
M(J / \Psi) & =3097 \mathrm{GeV}
\end{aligned}
$$

Quarkonium scales

$$
\begin{aligned}
& \text { The system is nonrelativistic(nR) } \\
& \Delta E \sim m v^{2}, \Delta_{f s} E \sim m v^{4} \\
& v_{b}^{2} \sim 0.1, v_{c}^{2} \sim 0.3
\end{aligned}
$$

S states

P states
Normalized with respect to $\chi_{b}(1 P)$ and $\chi_{c}(1 P)$

$$
\begin{gathered}
\text { THE MASS sCALE IS PERTURBATIVE } \\
m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{gathered}
$$

$$
\begin{aligned}
M(Y(1 S)) & =9460 \mathrm{GeV} \\
M(J / \Psi) & =3097 \mathrm{GeV}
\end{aligned}
$$

Quarkonium scales

$\underline{h_{c}(1 P)}$
0

NR BOUND STATES HAVE AT LEAST 3 SCALES

$$
\begin{aligned}
m \gg m & \gg v^{2} \quad v \ll 1 \\
m v & \sim r^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { THE SYSTEM IS NONRELATIVISTIC(NR) } \\
& \Delta E \sim m v^{2}, \Delta_{f s} E \sim m v^{4} \\
& v_{b}^{2} \sim 0.1, v_{c}^{2} \sim 0.3
\end{aligned}
$$

P states
Normalized with respect to $\chi_{b}(1 P)$ and $\chi_{c}(1 P)$

$$
\begin{gathered}
\text { The mass scale is perturbative } \\
m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{gathered}
$$

$$
\begin{aligned}
M(Y(1 S)) & =9460 \mathrm{GeV} \\
M(J / \Psi) & =3097 \mathrm{GeV}
\end{aligned}
$$

Quarkonium scales

$\underline{h_{c}(1 P)}$

NR BOUND STATES HAVE AT LEAST 3 SCALES

$$
\begin{aligned}
m \gg m & \gg v^{2} \quad v \ll 1 \\
m v & \sim r^{-1}
\end{aligned}
$$

and Λ_{QCD}

$$
\begin{aligned}
& \text { THE SYSTEM IS NONRELATIVISTIC(NR) } \\
& \Delta E \sim m v^{2}, \Delta_{f s} E \sim m v^{4} \\
& v_{b}^{2} \sim 0.1, v_{c}^{2} \sim 0.3
\end{aligned}
$$

P states
Normalized with respect to $\chi_{b}(1 P)$ and $\chi_{c}(1 P)$

$$
\begin{gathered}
\text { The mass scale is perturbative } \\
m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{gathered}
$$

$$
\begin{aligned}
M(Y(1 S)) & =9460 \mathrm{GeV} \\
M(J / \Psi) & =3097 \mathrm{GeV}
\end{aligned}
$$

The rich structure of separated energy scales makes QQbar an ideal probe
At zero temperature

- The different quarkonium radii provide different measures of the transition from a Coulombic to a confined bound state.

quarkonia probe the perturbative (high energy) and non perturbative region (low energy) as well as the transition region in dependence of their radius r

The rich structure of separated energy scales makes QQbar an ideal probe

At zero temperature

- The different quarkonium radii provide different measures of the transition from a

Coulombic to a confined bound state.
$\stackrel{\mathrm{V}^{\mathrm{m}}(\mathrm{r})}{(\mathrm{GeV})}$

At finite temperature T they are sensitive to the formation of a quark gluon plasma via color screening

Debye charge screening $m_{D} \sim g T$
$V(r) \sim-\alpha_{s} \frac{e^{-m_{D} r}}{r}$ Matsui Satz 1986

At finite temperature T they are sensitive to the formation of a quark gluon plasma via color screening

Debye charge screening $m_{D} \sim g T$
$V(r) \sim-\alpha_{s} \frac{e^{-m_{D} r}}{r}$ Matsui Satz 1986

At finite temperature T they are sensitive to the formation of a quark gluon plasma via color screening

Debye charge screening $m_{D} \sim g T$
$V(r) \sim-\alpha_{s} \frac{e^{-m_{D} r}}{r}$ Matsui Satz 1986

At finite temperature T they are sensitive to the formation of a quark gluon plasma via color screening

Debye charge screening $m_{D} \sim g T$
$V(r) \sim-\alpha_{s} \frac{e^{-m_{D} r}}{r}$ Matsui Satz 1986
$r \sim \frac{1}{m_{D}} \longrightarrow \begin{gathered}\text { Bound state } \\ \text { dissolves }\end{gathered}$

Quarkonium as a deconfinement probe

At finite temperature T they are sensitive to the formation of a quark gluon plasma via color screening

Debye charge screening $m_{D} \sim g T$
$V(r) \sim-\alpha_{s} \frac{e^{-m_{D} r}}{r} \quad$ Matsui Satz 1986

Quarkonium as a deconfinement probe

At finite temperature T they are sensitive to the formation of a quark gluon plasma via color screening

Debye charge screening $m_{D} \sim g T$
$V(r) \sim-\alpha_{s} \frac{e^{-m_{D} r}}{r} \quad$ Matsui Satz 1986

nuclear
modificatio
$R_{\mathrm{AA}}=\frac{\text { Yield }_{\mathrm{AA}}^{q \bar{q}}}{\left\langle N_{\text {coll }}\right\rangle \times \text { Yield }_{\text {Pp }}^{q \overline{\bar{q}}}}$

Quarkonium as an exploration tool of physics of Standard Model and beyond

- Quarkonium can serve for the precise extraction of Standard Model parameters: heavy quark masses and strong coupling constant α_{s}
- Quarkonium in its exotic manifestations probes the nonstandard characteristics of a nonabelian gauge theory: hybrids, multi quark configurations
- The large m makes Quarkonium an ideal probe of new light particles

BaBar light-Higgs \& dark-photon searches

Mode	Mass range (GeV)	BF upper limit $(90 \% \mathrm{CL})$
$\Upsilon(2 S, 3 S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \mu^{+} \mu^{-}$	$0.21<m_{A}<9.3$	$(0.3-8.3) \times 10^{-6}$
$\Upsilon(3 S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \tau^{+} \tau^{-}$	$4.0<m_{A}<10.1$	$(1.5-16) \times 10^{-5}$
$\Upsilon(2 S, 3 S) \rightarrow \gamma A^{0}, A^{0} \rightarrow$ hadrons	$0.3<m_{A}<7.0$	$(0.1-8) \times 10^{-5}$
$\Upsilon(1 S) \rightarrow \gamma A^{0}, A^{0} \rightarrow \chi \bar{\chi}$	$m_{\chi}<4.5 \mathrm{GeV}$	$(0.5-24) \times 10^{-5}$
$\Upsilon(1 S) \rightarrow \gamma A^{0}, A^{0} \rightarrow$ invisible	$m_{A}<9.2 \mathrm{GeV}$	$(1.9-37) \times 10^{-6}$
$\Upsilon(3 S) \rightarrow \gamma A^{0}, A^{0} \rightarrow$ invisible	$m_{A}<9.2 \mathrm{GeV}$	$(0.7-31) \times 10^{-6}$
$\Upsilon(1 S) \rightarrow \gamma A^{0}, A^{0} \rightarrow g \bar{g}$	$m_{A}<9.0 \mathrm{GeV}$	$10^{-6}-10^{-2}$
$\Upsilon(1 S) \rightarrow \gamma A^{0}, A^{0} \rightarrow s \bar{s}$	$m_{A}<9.0 \mathrm{GeV}$	$10^{-5}-10^{-3}$

invisible
decays of
$\mathrm{Y}(1 \mathrm{~S})$ at Belle
$\rightarrow \gamma A^{0}, A^{0} \rightarrow \chi \bar{\chi}$
$m_{\chi}<4.5 \mathrm{GeV}$
$0.5-24) \times 10^{-5}$
$(1.9-37) \times 10^{-6}$
$\Upsilon(1 S) \rightarrow \gamma A^{0}, A^{0} \rightarrow g \bar{g}$
$m_{A}<9.0 \mathrm{GeV}$
$10^{-5}-10^{-3}$

B-FACTORIES (Belle, BABAR): Heavy Mesons Factories

CLEO-c BES tau charm factories RHIC (Star, Phenix), NA60

B-FACTORIES (Belle, BABAR): Heavy Mesons Factories

CLEO-c BES tau charm factories

Fermilab CDF, D0, E835 Hera

RHIC (Star, Phenix), NA60

CLEO-III bottomonium factory
Discovery of New States, New Discovery of New
Production Mechanisms, Exotics, decays and transitions data high statistics data

B-FACTORIES (Belle, BABAR): Heavy Mesons Factories

Fermilab CDF, D0, E835 Hera

 RHIC (Star, Phenix), NA 60CLEO-c BES tau charm factories
CLEO-III bottomonium factory
Discovery of New States, New Production Mechanisms, Excision and decays and transitions, pret high statistics data

B-FACTORIES (Belle, BABAR): Heavy Mesons Factories

Fermilab CDF, D0, E835 Hera
RHIC (Star, Phenix), NA60

Now they come from:

BESIII at IHEP

CMS ATLAS LHCb

heavy ions experiments ALICE at CERN, RHIC

 BELLEII at SuperKEKBand in the future PANDA at FAIR, Electron Ion
Collider, target experiments

QCD THEORY OF QUARKONIUM: A VERY CHALLENGING PROBLEM
Close to the bound state $\alpha_{\mathrm{S}} \sim v$

CCD THEORY OF CUARKONIUM: A VERY CHALLENGING PROBLEM

CCD THEORY OF CUARKONIUM: A VERY CHALLENGING PROBLEM

CCD THEORY OF CUARKONIUM: A VERY CHALLENGING PROBLEM

CCD THEORY OF CUARKONIUM: A VERY CHALLENGING PROBLEM
Q Close to the bound state $\alpha_{\mathrm{s}} \sim v$

QCD THEORY OF QUARKONIUM: A VERY CHALLENGING PROBLEM Close to the bound state $\alpha_{\mathrm{S}} \sim v$

SOLUTION:

FORMULATE A
hierarchy of effective field theories
IN CORRESPONDENCE OF the hierarchy of scales

EFT for a system with two scales

An effective field theory makes the expansion in λ / Λ explicit at the Lagrangian level.

EFT for a system with two scales

An effective field theory makes the expansion in λ / Λ explicit at the Lagrangian level.
The EFT Lagrangian, $\mathcal{L}_{\text {EFT }}$, suitable to describe H at scales lower than Λ is defined by
(1) a cut off $\Lambda \gg \mu \gg \lambda$;
(2) by some degrees of freedom that exist at scales lower than μ

EFT for a system with two scales

An effective field theory makes the expansion in λ / Λ explicit at the Lagrangian level.
The EFT Lagrangian, $\mathcal{L}_{\text {EFT }}$, suitable to describe H at scales lower than Λ is defined by
(1) a cut off $\Lambda \gg \mu \gg \lambda$;
(2) by some degrees of freedom that exist at scales lower than μ

```
RANGE OF VALIDITY OF THE EFT:ENERGY< < 
```

$\Rightarrow \mathcal{L}_{\mathrm{EFT}}$ is made of all operators O_{n} that may be built from the effective degrees of freedom and are consistent with the symmetries of \mathcal{L}.

Effective Field Theories

Effective Field Theories

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{\substack{n \\ \text { Wilson coefficient }}} c_{n}(\Lambda, \mu) \frac{O_{n} \quad \text { low energy operator }}{\Lambda^{n}}
$$

Effective Field Theories

Effective Field Theories

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}(\Lambda, \mu) \frac{O_{n}(\mu, \lambda)}{\Lambda^{n}}
$$

- Since $\left\langle O_{n}\right\rangle \sim \lambda^{n}$ the EFT is organized as an expansion in λ / Λ.

Effective Field Theories

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}(\Lambda, \mu) \frac{O_{n}(\mu, \lambda)}{\Lambda^{n}}
$$

- Since $\left\langle O_{n}\right\rangle \sim \lambda^{n}$ the EFT is organized as an expansion in λ / Λ.

Power counting

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}(\Lambda, \mu) \frac{O_{n}(\mu, \lambda)}{\Lambda^{n}}
$$

- Since $\left\langle O_{n}\right\rangle \sim \lambda^{n}$ the EFT is organized as an expansion in λ / Λ.

Power counting

- The EFT is renormalizable order by order in λ / Λ.

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}(\Lambda, \mu) \frac{O_{n}(\mu, \lambda)}{\Lambda^{n}}
$$

- Since $\left\langle O_{n}\right\rangle \sim \lambda^{n}$ the EFT is organized as an expansion in λ / Λ.

Power counting

- The EFT is renormalizable order by order in λ / Λ.

Modern view on "renormalization"

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}(\Lambda, \mu) \frac{O_{n}(\mu, \lambda)}{\Lambda^{n}}
$$

- Since $\left\langle O_{n}\right\rangle \sim \lambda^{n}$ the EFT is organized as an expansion in λ / Λ.

Power counting

- The EFT is renormalizable order by order in λ / Λ.

Modern view on "renormalization"

- The matching coefficients $c_{n}(\Lambda / \mu)$ encode the non-analytic behaviour in Λ. They are calculated by imposing that $\mathcal{L}_{\text {EFT }}$ and \mathcal{L} describe the same physics at any finite order in the expansion: matching procedure.

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}(\Lambda, \mu) \frac{O_{n}(\mu, \lambda)}{\Lambda^{n}}
$$

- Since $\left\langle O_{n}\right\rangle \sim \lambda^{n}$ the EFT is organized as an expansion in λ / Λ.

Power counting

- The EFT is renormalizable order by order in λ / Λ.

Modern view on "renormalization"

- The matching coefficients $c_{n}(\Lambda / \mu)$ encode the non-analytic behaviour in Λ. They are calculated by imposing that $\mathcal{L}_{\text {EFT }}$ and \mathcal{L} describe the same physics at any finite order in the expansion: matching procedure.

Matching

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}(\Lambda, \mu) \frac{O_{n}(\mu, \lambda)}{\Lambda^{n}}
$$

- Since $\left\langle O_{n}\right\rangle \sim \lambda^{n}$ the EFT is organized as an expansion in λ / Λ.

Power counting

- The EFT is renormalizable order by order in λ / Λ.

Modern view on "renormalization"

- The matching coefficients $c_{n}(\Lambda / \mu)$ encode the non-analytic behaviour in Λ. They are calculated by imposing that $\mathcal{L}_{\text {EFT }}$ and \mathcal{L} describe the same physics at any finite order in the expansion: matching procedure.

Matching

- If $\Lambda \gg \Lambda_{\mathrm{QCD}}$ then $c_{n}(\Lambda / \mu)$ may be calculated in perturbation theory.

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}(\Lambda, \mu) \frac{O_{n}(\mu, \lambda)}{\Lambda^{n}}
$$

- Since $\left\langle O_{n}\right\rangle \sim \lambda^{n}$ the EFT is organized as an expansion in λ / Λ.

Power counting

- The EFT is renormalizable order by order in λ / Λ.

Modern view on "renormalization"

- The matching coefficients $c_{n}(\Lambda / \mu)$ encode the non-analytic behaviour in Λ. They are calculated by imposing that $\mathcal{L}_{\text {EFT }}$ and \mathcal{L} describe the same physics at any finite order in the expansion: matching procedure.

Matching

- If $\Lambda \gg \Lambda_{\mathrm{QCD}}$ then $c_{n}(\Lambda / \mu)$ may be calculated in perturbation theory.
- Symmetries of the system become manifest;
- Large $\log (\Lambda / \lambda)$ can be resummed via RG. (Renormalization group)

Quarkonium with NREFTs: Non Relativistic QCD (NRQCD)

Quarkonium with NREFTs: Non Relativistic QCD (NRQCD)

Quarkonium with NREFTs: Non Relativistic QCD (NRQCD)

Quarkonium with NR EFT: potential NonRelativistic QCD (pNRQCD)

(with perturbative matching)

Quarkonium with NR EFT: potential NonRelativistic QCD (pNRQCD)

Quarkonium with NR EFT: potential NonRelativistic QCD (pNRQCD)

(with perturbative matching)

$$
\mathcal{L}_{\mathrm{pNRQCD}}=\sum_{k} \sum_{n} \frac{1}{m^{k}} c_{k}\left(\alpha_{\mathrm{s}}(m / \mu)\right) \times V\left(r \mu^{\prime}, r \mu\right) \times O_{n}\left(\mu^{\prime}, \lambda\right) r^{n}
$$

Quarkonium with NR EFT: potential NonRelativistic QCD (pNRQCD)

(with perturbative matching)

$$
\mathcal{L}_{\mathrm{pNRQCD}}=\sum_{k} \sum_{n} \frac{1}{m^{k}} c_{k}\left(\alpha_{\mathrm{s}}(m / \mu)\right) \times V\left(r \mu^{\prime}, r \mu\right) \times O_{n}\left(\mu^{\prime}, \lambda\right) r^{n}
$$

Quarkonium with NREFT: pNRQCD

Quarkonium with NREFT: pNRQCD

In QCD another scale is relevant Λ_{QCD}

Quarkonium with NREFT: pNRQCD

In QCD another scale is relevant Λ_{QCD}

Quarkonium with NREFT: pNRQCD

In QCD another scale is relevant Λ_{QCD}

Quarkonium with NREFT: pNRQCD

In QCD another scale is relevant Λ_{QCD}

Quarkonium with NREFT

NRQCD
 (Caswell Lepage 86, Thacker, Lepage 88, 91, Bodwin Braaten Lepage 95)

$$
\begin{array}{r}
\mathcal{L}^{\mathrm{NRQCD}}=\psi^{\dagger}\left(i D_{0}+\frac{\mathbf{D}^{2}}{2 m}+c_{F} \frac{\mathbf{S} \cdot g \mathbf{B}}{m}+c_{D} \frac{[\mathbf{D} \cdot, g \mathbf{E}]}{8 m^{2}}+i c_{s} \frac{\mathbf{S} \cdot[\mathbf{D} \times, g \mathbf{E}]}{4 m^{2}}+\cdots\right) \psi+\chi^{\dagger}(\quad \cdots) \chi \\
+O\left(1 / m^{3}\right)
\end{array}
$$

$$
+\sum_{K} \frac{f}{m^{2}} \psi^{\dagger} K \chi \chi^{\dagger} K \psi+\cdots
$$

$$
-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum^{n_{f}} \bar{q} i \not D q+\ldots
$$

$\psi(\chi)$ is the field that annihilates (creates) the (anti)fermion expansion in v and $\alpha_{s}(m)$
the relevant dynamical scales are : $m v, m v^{2}$

NRQCD (Caswell Lepage 86, Whacker, Lepage 88, 91, Bodwin Braaten Lepage 95)

$$
\begin{aligned}
\mathcal{L}^{\mathrm{NRQCD}}= & \psi^{\dagger}\left(i D_{0}+\frac{\mathbf{D}^{2}}{2 m}+c_{F} \frac{\mathbf{S} \cdot g \mathbf{B}}{m}+c_{D} \frac{[\mathbf{D} \cdot, g \mathbf{E}]}{8 m^{2}}+i c_{s} \frac{\mathbf{S} \cdot[\mathbf{D} \times, g \mathbf{E}]}{4 m^{2}}+\cdots\right) \psi+\chi^{\dagger}(\quad \cdots) \chi \\
1+(\cdots) \alpha_{s}+\ldots & +O\left(1 / m^{3}\right) \\
+f=\operatorname{Re} f+i \operatorname{Im} f) \text { Imaginary parts give the decay } & \\
+\sum_{K} \frac{f}{m^{2}} \psi^{\dagger} K \chi \chi^{\dagger} K \psi+\cdots & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum^{n_{f}} \bar{q} i \not D q+\ldots
\end{aligned}
$$

[^0]the relevant dynamical scales are : $m v, m v^{2}$

NRQCD (Caswell Lepage 86, Thacker, Lepage 88, 91, Bodwin Braaten Lepage 95)

$$
\begin{aligned}
\mathcal{L}^{\mathrm{NRQCD}}= & \psi^{\dagger}\left(i D_{0}+\frac{\mathbf{D}^{2}}{2 m}+c_{F} \frac{\mathbf{S} \cdot g \mathbf{B}}{m}+c_{D} \frac{[\mathbf{D} \cdot, g \mathbf{E}]}{8 m^{2}}+i c_{s} \frac{\mathbf{S} \cdot[\mathbf{D} \times, g \mathbf{E}]}{4 m^{2}}+\cdots\right) \psi+\chi^{\dagger}(\quad \cdots) \chi \\
1+(\cdots) \alpha_{s}+\ldots & +O\left(1 / m^{3}\right) \\
+f=\operatorname{Re} f+i \operatorname{Im} f) & \\
+\sum_{K} \frac{f}{m^{2}} \psi^{\dagger} K \chi \chi^{\dagger} K \psi+\cdots & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum^{n_{f}} \bar{q} i \not D q+\ldots
\end{aligned}
$$

[^1]the relevant dynamical scales are : $m v, m v^{2}$
No unique power counting!

NRQCD
 (Caswell Lepage 86, Thacker, Lepage 88, 91, Bodwin Braaten Lepage 95)

$$
\begin{gathered}
\mathcal{L}^{\mathrm{NRQCD}}=\psi^{\psi^{\dagger}\left(i D_{0}+\frac{\mathbf{D}^{2}}{2 m}+c_{F} \frac{\mathbf{S} \cdot g \mathbf{B}}{m}+c_{D} \frac{[\mathbf{D} \cdot, g \mathbf{E}]}{8 m^{2}}+i c_{s} \frac{\mathbf{S} \cdot[\mathbf{D} \times, g \mathbf{E}]}{4 m^{2}}+\cdots\right) \psi+\chi^{\dagger}(\quad \cdots) \chi} \begin{array}{ll}
1+(\cdots) \alpha_{s}+\ldots & +O\left(1 / m^{3}\right) \\
& f=\operatorname{Re} f+i \operatorname{Im} f \\
& \text { Imaginary parts give the decay } \\
+\sum_{K} \frac{f}{m^{2}} \psi^{\dagger} K \chi \chi^{\dagger} K \psi+\cdots & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum^{n_{f}} \bar{q} i \not D q+\ldots
\end{array}
\end{gathered}
$$

$\psi(\chi)$ is the field that annihilates (creates) the (anti)fermion expansion in v and $\alpha_{s}(m)$
the relevant dynamical scales are : $m v, m v^{2}$ No unique power counting!

$$
\begin{aligned}
& |H\rangle=\left(\left|(Q \bar{Q})_{1}\right\rangle+\left|(Q \bar{Q})_{8} g\right\rangle+\cdots\right) \otimes|n l j s\rangle \\
& \quad \text { quarkonium state } \mathrm{H}
\end{aligned} \quad \psi^{\dagger} K^{(n)} \chi \chi^{\dagger} K^{\prime(n)} \psi=\left\{\begin{array}{cc}
O_{1}\left({ }^{2 S+1} L_{J}\right) & \psi^{\dagger} T^{a} \chi \chi^{\dagger} T^{a} \psi=O_{8}\left({ }^{1} S_{0}\right) \\
O_{8}\left({ }^{2 S+1} L_{J}\right) & \psi^{\dagger} \mathbf{D} \chi \chi^{\dagger} \mathbf{D} \psi=O_{1}\left({ }^{1} P_{1}\right)
\end{array}\right.
$$

(Caswell Lepage 86, Thacker, Lepage 88, 91, Bodwin Braaten Lepage 95)

$$
\begin{aligned}
& \mathcal{L}^{\mathrm{NRQCD}}=: \psi^{\dagger}\left(i D_{0}+\frac{\mathbf{D}^{2}}{2 m}+c_{F} \frac{\mathbf{S} \cdot g \mathbf{B}}{m}+c_{D} \frac{[\mathbf{D} \cdot, g \mathbf{E}]}{8 m^{2}}+i c_{s} \frac{\mathbf{S} \cdot[\mathbf{D} \times, g \mathbf{E}]}{4 m^{2}}+\cdots\right) \psi+\chi^{\dagger}(\quad \cdots) \chi \\
& 1+(\cdots) \alpha_{\mathrm{s}}+\ldots \\
& +O\left(1 / m^{3}\right) \\
& f=\operatorname{Re} f+i \operatorname{Im} f \text { Imaginary parts give the decay } \\
& +\sum_{K} \frac{f}{m^{2}} \psi^{\dagger} K \chi \chi^{\dagger} K \psi+\cdots \\
& -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\sum^{n_{f}} \bar{q} i \not D q+\ldots
\end{aligned}
$$

$\psi(\chi)$ is the field that annihilates (creates) the (anti)fermion expansion in v and $\alpha_{s}(m)$
the relevant dynamical scales are : $m v, m v^{2}$ No unique power counting!
$|H\rangle=\left(\left|(Q \bar{Q})_{1}\right\rangle+\left|(Q \bar{Q})_{8} g\right\rangle+\cdots\right) \otimes|n l j s\rangle$

$$
\psi^{\dagger} K^{(n)} \chi \chi^{\dagger} K^{\prime(n)} \psi=\left\{\begin{array}{cc}
O_{1}\left({ }^{2 S+1} L_{J}\right) & \psi^{\dagger} T^{a} \chi \chi^{\dagger} T^{a} \psi=O_{8}\left({ }^{1} S_{0}\right) \\
O_{8}\left({ }^{2 S+1} L_{J}\right) & \psi^{\dagger} \mathbf{D} \chi \chi^{\dagger} \mathbf{D} \psi=O_{1}\left({ }^{1} P_{1}\right)
\end{array}\right.
$$

NRQCD had a tremendous impact on spectrum lattice calculations, has given a theoretical framework for quarkonium production at colliders and for decays
pNRQCD is the EFT for nonrelativistic quark-antiquark pairs $(Q \bar{Q})$ near threshold.
with respect to $\quad \mathcal{L}_{\text {pNREFT }}=\int d^{3} r \phi^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V\right) \phi+\Delta \mathcal{L}$

- QFT = QCD
- It is obtained by integrating out hard and soft gluons with p or E scaling like $m, m v$.
- The d.o.f. are $Q \bar{Q}$ pairs (sometimes cast in color singlet S and color octet O) and ultrasoft modes (e.g. light quarks, low-energy gluons):
$\phi=S$
- The Lagrangian is organized as an expansion in $1 / m$ and r.
- The form of $\Delta \mathcal{L}$ and of the ultrasoft modes depends on the low energy dynamics.
- The power counting is
$\rightarrow p \sim 1 / r \sim m v$ (soft scale),
$\rightarrow E \sim \mathbf{p}^{2} / 2 m \sim V^{(0)} \sim \mathbf{P}_{\mathrm{cm}} \sim 1 / \mathbf{R}_{\mathrm{cm}} \sim m v^{2}$ (ultrasoft scale),
\rightarrow operators in $\Delta \mathcal{L}$ scale like $\left(m v^{2}\right)^{\text {dimension }}$.

Low energy (nonperturbative) factorized effects depend on the size of the physical system

The EFT factorizes the low energy nonperturbative part. Depending on the physical system:

The more extended the physical object, the more we probe the non-perturbative vacuum.

quarkonia and exotics close and above threshold

Low energy (nonperturbative) factor effects depend on the size of th
system

$r \ll \frac{1}{\Lambda_{Q C D}}$
lowest quarkonia states
excited quarkonia states

$r \sim \frac{1}{\Lambda_{Q C D}}$

$$
r \ll \frac{1}{\Lambda_{Q C D}} \quad T_{\quad}^{\substack{\text { quarkonia } \\ \text { in a hot medium }}}
$$

quarkonia and exotics close and above threshold

WEAKLY COUPLED PNRECD: $m v \gg \Lambda_{\mathrm{QCD}}$

QUARKONIA OR CEY, CQe Systems WIth A small Radius

WEAKLY COUPLED PNRECD: $m v \gg \Lambda_{\mathrm{QCD}}$
eUARKONIA OR eey, eee systems WIth A small radius
—precision calculations of observables: spectra, decays, tRANSITIONS
-precise extraction of standard model parameters:
ALPHAS, M_C, M_B,M_T

WEAKLY COUPLED PNRECD: $m v \gg \Lambda_{\mathrm{QCD}}$

QUARKONIA OR CCY, CEQ SyStems WITH A small RADIUs
-pRECISION CALCULATIONS OF OBSERVABLES: SPECTRA, DECAYS, TRANSITIONS
—precise extraction of standard model parameters:
ALPHAS, M_C, M_B,M_T

WEAKLY COUPLED PNREFT CAN bE APPLIED TO ANY NR system of ANY NATURE: sUSY PARTICLES, DM PARTICLES...

Weakly coupled pNRQCD

- If $m v \gg \Lambda_{\mathrm{QCD}}$, the matching is perturbative Non-analytic behaviour in $r \rightarrow$ matching coefficients V

The gauge fields are multipole expanded:
$A(R, r, t)=A(R, t)+\mathbf{r} \cdot \nabla A(R, t)+\ldots$

$$
\begin{array}{lll}
\mathcal{L}^{\mathrm{PNRQCD}}=\int d^{3} r \operatorname{Tr}\left\{S^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V_{S}+\cdots\right) S+O^{\dagger}\left(i D_{0}-\frac{\mathbf{p}^{2}}{m}-V_{O}+\cdots\right) O+\right. & \text { LO in } \mathrm{r} \\
& \left.+V_{A}\left(S^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S\right)+\frac{V_{B}}{2}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} O \mathbf{r} \cdot g \mathbf{E}\right)\right\}+\ldots & \text { NLO in } r \\
& -\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+\sum_{i=1}^{n_{f}} \bar{q}_{i} i \not \nabla_{i} &
\end{array}
$$

- If $m v \gg \Lambda_{\mathrm{QCD}}$, the matching is perturbative Non-analytic behaviour in $r \rightarrow$ matching coefficients V

The gauge fields are multipole expanded:

$$
A(R, r, t)=A(R, t)+\mathbf{r} \cdot \nabla A(R, t)+\ldots
$$

$\mathcal{L}^{\mathrm{pNRQCD}}=\int d^{3} r \operatorname{Tr}\left\{S^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V_{S}+\cdots\right) S+O^{\dagger}\left(i D_{0}-\frac{\mathbf{p}^{2}}{m}-V_{O}+\cdots\right) O+\right.$ LO in r
$\left.+V_{A}\left(S^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S\right)+\frac{V_{B}}{2}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} O \mathbf{r} \cdot g \mathbf{E}\right)\right\}+\ldots$

$$
-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+\sum_{i=1}^{n_{f}} \bar{q}_{i} i \not D q_{i}
$$

The matching coefficients are the Coulomb potential
Feynman rules

$$
V_{\mathrm{S}}(r)=-C_{F} \frac{\alpha_{\mathrm{s}}}{r}+\ldots, \quad V_{o}(r)=\frac{1}{2 N} \frac{\alpha_{\mathrm{s}}}{r}+\ldots
$$

$$
V_{A}=1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right), V_{B}=1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)
$$

$$
=\theta(t) e^{-i t\left(\mathbf{p}^{2} / m+V\right)}
$$

$$
\overline{\underline{ }}=\theta(t) e^{-i t\left(\mathbf{p}^{2} / m+V_{o}\right)}\left(e^{-i \int d t A^{\mathrm{adj}}}\right)
$$

筬pNRQCD provides a QM description from field theory: the Schroedinger equation and the potentials appear once all scales above the binding energy have been integrated out: this provides a clear definition of the potential
*The EFT accounts for non-potential terms as well. They provide loop corrections to the leading potential picture. Retardation effects are typically related to the nonperturbative physics
*The Quantum Mechanical divergences are cancelled by the NRQCD matching coefficients.

糈Poincare' invariance is intact and is realized via exact relations among the matching coefficients (potentials)

QCD singlet static potential and singlet static energy

$$
\begin{aligned}
V^{(0)}\left(r, \mu^{\prime}\right) & =\lim _{T \rightarrow \infty} \frac{i}{T} \ln \langle\square\rangle-\cdots \\
& =E_{0}(r)+\frac{i}{N} \int_{0}^{\infty} d t e^{-i t\left(V_{o}-V\right)}\langle\operatorname{Tr} \mathbf{r} \cdot g \mathbf{E}(t) \mathbf{r} \cdot g \mathbf{E}(0)\rangle\left(\mu^{\prime}\right)+\cdots
\end{aligned}
$$

$$
\begin{aligned}
V^{(0)}\left(r, \mu^{\prime}\right) & =\lim _{T \rightarrow \infty} \frac{i}{T} \ln \langle\square\rangle-\square \\
& =E_{0}(r)+\frac{i}{N} \int_{0}^{\infty} d t e^{-i t\left(V_{o}-V\right)}\langle\operatorname{Tr} \mathbf{r} \cdot g \mathbf{E}(t) \mathbf{r} \cdot g \mathbf{E}(0)\rangle\left(\mu^{\prime}\right)+\cdots
\end{aligned}
$$

The potential is a Wilson coefficient of the EFT.
In general, it undergoes renormalization, develops scale dependence and satisfies renormalization group equations, which allow to resum large logarithms.

$$
\begin{aligned}
V^{(0)}\left(r, \mu^{\prime}\right) & =\lim _{T \rightarrow \infty} \frac{i}{T} \ln \langle\square\rangle-\cdots \\
& =E_{0}(r)+\frac{i}{N} \int_{0}^{\infty} d t e^{-i t\left(V_{o}-V\right)}\langle\operatorname{Tr} \mathbf{r} \cdot g \mathbf{E}(t) \mathbf{r} \cdot g \mathbf{E}(0)\rangle\left(\mu^{\prime}\right)+\cdots
\end{aligned}
$$

> The potential is a Wilson coefficient of the EFT. In general, it undergoes renormalization, develops scale dependence and satisfies renormalization group equations, which allow to resum large logarithms.

The static energy $E_{0}(r)$ is known at three loops:
$E_{0}(r)=\Lambda_{s}-\frac{C_{F} \alpha_{\mathrm{s}}}{r}\left(1+\# \alpha_{\mathrm{s}}+\# \alpha_{\mathrm{s}}^{2}+\# \alpha_{\mathrm{s}}^{3}+\# \alpha_{\mathrm{s}}^{3} \ln \alpha_{\mathrm{s}}+\# \alpha_{\mathrm{s}}^{4} \ln ^{2} \alpha_{\mathrm{s}}+\# \alpha_{\mathrm{s}}^{4} \ln \alpha_{\mathrm{s}}+\ldots\right)$
$\ln \alpha_{\mathrm{S}}$ in E_{0} signals the cancellation of contributions coming from soft and ultrasoft gluons:

$$
\ln \alpha_{\mathrm{S}}=\ln \frac{\mu^{\prime}}{1 / r}+\ln \frac{\alpha_{\mathrm{s}} / r}{\mu^{\prime}}
$$

Infrared logarithms in the potential may be computed in the EFT solving the ADM problem.

- Appelquist Dine Muzinich PRD 17 (1978) 2074

Quarkonium singlet static potential at $\mathrm{N}^{\wedge} 4 \mathrm{LO}$

$$
\begin{aligned}
& V_{s}(r, \mu)=-C_{F} \frac{\alpha_{\mathrm{S}}(1 / r)}{r}\left[1+a_{1} \frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}+a_{2}\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{2}\right. \\
& \quad+\left(\frac{16 \pi^{2}}{3} C_{A}^{3} \ln r \mu+a_{3}\right)\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{3} \\
& \left.\quad+\left(a_{4}^{L 2} \ln ^{2} r \mu+\left(a_{4}^{L}+\frac{16}{9} \pi^{2} C_{A}^{3} \beta_{0}(-5+6 \ln 2)\right) \ln r \mu+a_{4}\right)\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{4}\right]
\end{aligned}
$$

Quarkonium singlet static potential at $\mathrm{N}^{\wedge} 4 \mathrm{LO}$

$$
\begin{aligned}
& V_{S}(r, \mu)=-C_{F} \frac{\alpha_{\mathrm{S}}(1 / r)}{r}\left[1+a_{1} \frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}+a_{2}\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{2}\right. \\
& \quad+\left(\frac{16 \pi^{2}}{3} C_{A}^{3} \ln r \mu+a_{3}\right)\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{3} \\
& \left.\quad+\left(a_{4}^{L 2} \ln ^{2} r \mu+\left(a_{4}^{L}+\frac{16}{9} \pi^{2} C_{A}^{3} \beta_{0}(-5+6 \ln 2)\right) \ln r \mu+a_{4}\right)\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{4}\right]
\end{aligned}
$$

```
a
a}\mp@code{Schroeder 99, Peter 97
coeff }\operatorname{ln}r\mu\quad\mathrm{ N.B. Pineda, Soto, Vairo }9
a}\mp@subsup{4}{}{L2},\mp@subsup{a}{4}{L}\quad\mathrm{ N.B., Garcia, Soto, Vairo 06
a3 Anzai, Kiyo, Sumino 09, Smirnov, Smirnov, Steinhauser 09
```


Quarkonium singlet static potential at $\mathrm{N}^{\wedge} 4 \mathrm{LO}$

$$
\begin{aligned}
& V_{S}(r, \mu)=-C_{F} \frac{\alpha_{\mathrm{S}}(1 / r)}{r}\left[1+a_{1} \frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}+a_{2}\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{2}\right. \\
& \quad+\left(\frac{16 \pi^{2}}{3} C_{A}^{3} \ln r \mu+a_{3}\right)\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{3} \\
& \left.\quad+\left(a_{4}^{L 2} \ln ^{2} r \mu+\left(a_{4}^{L}+\frac{16}{9} \pi^{2} C_{A}^{3} \beta_{0}(-5+6 \ln 2)\right) \ln r \mu+a_{4}\right)\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{4}\right]
\end{aligned}
$$

a_{1} Billoire 80
$a_{2} \quad$ schroeder 99, Peter 97
coeff $\ln r \mu \quad$ N.B. Pineda, Soto, '/3LOOPS REDUCES TO 1 LOOP IN THE EFT $a_{4}^{L 2}, a_{4}^{L}$ N.B., Garcia, Sotı 4 LOOPS REDUCES TO 2LOOPS IN THE EFT
a_{3} Anzai, Kiyo, Sumino 09, Smirnov, Smirnov, Steinhauser 09

Quarkonium singlet static potential at $\mathrm{N}^{\wedge} 4 \mathrm{LO}$

$$
\begin{aligned}
& V_{S}(r, \mu)=-C_{F} \frac{\alpha_{\mathrm{S}}(1 / r)}{r}\left[1+a_{1} \frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}+a_{2}\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{2}\right. \\
& \quad+\left(\frac{16 \pi^{2}}{3} C_{A}^{3} \ln r \mu+a_{3}\right)\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{3} \\
& \left.\quad+\left(a_{4}^{L 2} \ln ^{2} r \mu+\left(a_{4}^{L}+\frac{16}{9} \pi^{2} C_{A}^{3} \beta_{0}(-5+6 \ln 2)\right) \ln r \mu+a_{4}\right)\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{4}\right]
\end{aligned}
$$

Two problems:
1)Bad convergence of the series due to large beta_0 terms
2) Large logs

Quarkonium singlet static potential at $\mathrm{N}^{\wedge} 4 \mathrm{LO}$

$$
\begin{aligned}
& V_{S}(r, \mu)=-C_{F} \frac{\alpha_{\mathrm{S}}(1 / r)}{r}\left[1+a_{1} \frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}+a_{2}\left(\frac{\alpha_{\mathrm{S}}(1 / r)}{4 \pi}\right)^{2}\right. \\
& \quad+\left(\frac{16 \pi^{2}}{3} C_{A}^{3} \ln r \mu+a_{3}\right)\left(\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\right)^{3} \\
& \left.\quad+\left(a_{4}^{L 2} \ln ^{2} r \mu+\left(a_{4}^{L}+\frac{16}{9} \pi^{2} C_{A}^{3} \beta_{0}(-5+6 \ln 2)\right) \ln r \mu+a_{4}\right)\left(\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\right)^{4}\right]
\end{aligned}
$$

Two problems: for long it was believed that such series was not conver 1) Bad convergence of theroblem for any phen due to large beta_0 terms
2) Large logs

Quarkonium singlet static potential at $\mathrm{N}^{\wedge} 4 \mathrm{LO}$

$$
\begin{aligned}
& V_{s}(r, \mu)=-C_{F} \frac{\alpha_{\mathrm{s}}(1 / r)}{r}\left[1+a_{1} \frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}+a_{2}\left(\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\right)^{2}\right. \\
& \quad+\left(\frac{16 \pi^{2}}{3} C_{A}^{3} \ln r \mu+a_{3}\right)\left(\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\right)^{3} \\
& \left.\quad+\left(a_{4}^{L 2} \ln ^{2} r \mu+\left(a_{4}^{L}+\frac{16}{9} \pi^{2} C_{A}^{3} \beta_{0}(-5+6 \ln 2)\right) \ln r \mu+a_{4}\right)\left(\frac{\alpha_{\mathrm{s}}(1 / r)}{4 \pi}\right)^{4}\right]
\end{aligned}
$$

Two problems: for long it was believed that such series was not conver 1) Bad convergence of theroblem for any pheries due to large beta_0 terms
2) Large logs

The eft cures both:

1) Renormalon subtracted scheme

Beneke 98, Hoang, Lee 99, Pineda 01, N.B. Pineda
2) Renormalization group summation of the logis up to $N \wedge 3 L L \quad\left(\alpha_{s}^{4+n} \ln ^{n} \alpha_{s}\right)$ N. B Garcia, Soto Vairo 2007, 2009, Pineda, Soto

QQbar singlet static energy at $\mathrm{N} \wedge 3 \mathrm{LI}$ in comparison with unquenched (n _f $=2+1$) lattice data (red points, blue points)
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo, 2012, 2014, with Weber 2019

QQbar singlet static energy at $\mathrm{N} \wedge 3 \mathrm{LI}$ in comparison with unquenched (n _f $=2+1$) lattice data (red points, blue points)
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo, 2012, 2014, with Weber 2019

QQbar singlet static energy at $\mathrm{N} \wedge 3 \mathrm{LI}$ in comparison with unquenched (n _f $=2+1$) lattice data (red points, blue points)
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo, 2012, 2014, with Weber 2019

QQbar singlet static energy at $\mathrm{N} \wedge 3 \mathrm{LI}$ in comparison with unquenched (n _f $=2+1$) lattice data (red points, blue points)
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo, 2012, 2014, with Weber 2019

QQbar singlet static energy at $\mathrm{N} \wedge 3 \mathrm{LI}$ in comparison with unquenched (n_f=2+1) lattice data (red points, blue points)
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo, 2012, 2014, with Weber 2019

QQbar singlet static energy at $\mathrm{N} \wedge 3 \mathrm{LI}$ in comparison with unquenched (n _f=2+1) lattice data (red points, blue points)
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo, 2012, 2014, with Weber 2019

Good convergence to the lattice data Lattice data less accurate in the unquenched case

QQbar singlet static energy at $\mathrm{N} \wedge 3 \mathrm{LI}$ in comparison with unquenched (n _f $=2+1$) lattice data (red points, blue points)
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo, 2012, 2014, with Weber 2019

Good convergence to the lattice data Lattice data less accurate in the unquenched case

QQbar singlet static energy at $\mathrm{N} \wedge 3 \mathrm{LI}$ in comparison with unquenched (n _f=2+1) lattice data (red points, blue points)
Bazanov, N. B., Garcia, Petreczky, Soto, Vairo, 2012, 2014, with Weber 2019

Good convergence to the lattice data Lattice data less accurate in the unquenched case

All the potentials can be calculated in the matching

$$
V=V_{0}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{S D}+V_{V D}\right)
$$

$m \alpha_{\mathrm{S}}^{5} \ln \alpha_{\mathrm{s}}$ Brambilla Pineda Soto Vairo 99, Kniehl Penin 99 $m \alpha_{\mathrm{s}}^{5}$ Kniehl Penin Smirnov Steinhauser 02 NNLL Pineda 02 NNNLL Peset Pineda et al 2018,2019, Kiyo Sumino 2014, Beneke, Kiyo Schuler 05,08

All the potentials can be calculated in

 the matching$m \alpha_{\mathrm{s}}^{5} \ln \alpha_{\mathrm{s}}$ Brambilla Pineda Soto Vairo 99, Kniehl Penin 99 $m \alpha_{\mathrm{s}}^{5}$ Kniehl Penin Smirnov Steinhauser 02 NNLL Pineda 02

$$
V_{\mathbf{s}}=V_{0}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{S D}+V_{V D}\right)
$$

Energies at order m alpha^5 (nNnLo)

$$
E_{n}=\langle n| H_{s}(\mu)|n\rangle-i \frac{g^{2}}{3 N_{c}} \int_{0}^{\infty} d t\langle n| \mathbf{r} e^{i t\left(E_{n}^{(0)}-H_{o}\right)} \mathbf{r}|n\rangle\langle\mathbf{E}(t) \widehat{\mathbf{E}(0)\rangle(\mu)}
$$

All the potentials can be calculated in the matching

$$
V_{\mathbf{s}}=V_{0}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{S D}+V_{V D}\right)
$$

Energies at order m alpha^5 (NNNLO)

$E_{n}^{(0)}-H_{o} \gg \Lambda_{\mathrm{QCD}} \Rightarrow\langle\mathbf{E}(t) \mathbf{E}(0)\rangle(\mu) \rightarrow\left\langle\mathbf{E}^{2}(0)\right\rangle$
local condensates
$E_{n}^{(0)}-H_{o} \sim \Lambda_{\mathrm{QCD}} \Rightarrow$ no expansion possible, non-local condensates, analogous to the Lamb shift in QED

All the potentials can be calculated in the matching

$$
V_{\mathbf{s}}=V_{0}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{S D}+V_{V D}\right)
$$

Energies at order m alpha^5 (nNnLo)

$E_{n}^{(0)}-H_{o} \gg \Lambda_{\mathrm{QCD}} \Rightarrow\langle\mathbf{E}(t) \mathbf{E}(0)\rangle(\mu) \rightarrow\left\langle\mathbf{E}^{2}(0)\right\rangle$
local condensates
$E_{n}^{(0)}-H_{o} \sim \Lambda_{\mathrm{QCD}} \Rightarrow$ no expansion possible, non-local condensates, analogous to the Lamb shift in QED

->used to extract precise (NNNLO) determination of m_c and m_b

$\sim \alpha_{\mathrm{s}}^{5} \ln \alpha_{\mathrm{s}}$ (Lamb-shift)

STRONGLY COUPLED PNRECD: $m v \sim \Lambda_{Q C D}$
QUARKONIA OR Cey, eee systems WIth A LARGER RADIUS BELOW THE STRONG DECAY THRESHOLD

STRONGLY COUPLED PNRECD: $m v \sim \Lambda_{Q C D}$
QUARKONIA OR CeY, CeQ Systems WIth A LARGER RADIUS BELOW THESTRONG DECAY THRESHOLD
-FACTORIZATION OF HIGH ENERGY AND LOW ENERGY CONTRIBUTIONS, ONLY GLUE DEPENDENT:
to be calculated on the lattice - STUDY OF CONFINEMENT EFFECTS

- Exploit the bound state dynamics to reduce the

NONPERTURBATIVE UNKNOWNS: APPLICATION TO QUARKONIUM PRODUCTION

STRONGLY COUPLED PNRECD: $m v \sim \Lambda_{Q C D}$
QUARKONIA OR CeY, CeQ Systems WIth A LARGER RADIUS BELOW THE STRONG DECAY THRESHOLD
-FACTORIZATION OF HIGH ENERGY AND LOW ENERGY CONTRIBUTIONS, ONLY GLUE DEPENDENT:
to be calculated on the lattice - STUDY OF CONFINEMENT EFFECTS

- Exploit the bound state dynamics to reduce the

NONPERTURBATIVE UNKNOWNS: APPLICATION TO QUARKONIUM PRODUCTION
strongly coupled pnreft can be applied to any strongly COUPLED NR SYStEM: APPLICATIONS TO BSM PhySICS AND STRINGS

Strongly coupled pNRQCD: Hitting the scale $\Lambda_{\mathrm{QCD}} \quad r \sim \Lambda_{Q C D}^{-1}$

The degrees of freedoms now are

with gluons at the scale
Λ_{QCD}

Static NRQCD spectrum

 from lattice QCD

Static states classified by symmetry group $D_{\infty h}$ Representations labeled $\Lambda_{\eta}^{\sigma}-->\eta$

- \wedge rotational quantum number
$|\lambda|=|\hat{\mathbf{n}} \cdot \mathbf{K}|=0,1,2 \ldots$ corresponds to $\Lambda=\Sigma, \Pi, \Delta \ldots$
- η eigenvalue of $C P$: $g \hat{=}+1$ (gerade), $/ \hat{=}-1$ (ungerade)
- σ eigenvalue of eflections
- σ label only ${ }^{\prime}$ isplayed on Σ states (others are degenerate)
K is the angular momentum of the light degrees of freedom;same symmetry as the diatomic molecule

$$
\begin{aligned}
& \left.\mathcal{H}^{\text {NRaCD }}\left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}=E_{n}^{(0)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \nsim ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)} \\
& \left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}=\psi^{\dagger}\left(\mathbf{x}_{1}\right) \chi\left(\mathbf{x}_{2}\right)\left|n ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}
\end{aligned}
$$

NRQCD states
$\left|\underline{0} ; \mathbf{x}_{1} \mathbf{x}_{2}\right\rangle->\quad\left|(Q \bar{Q})_{1}\right\rangle \rightarrow$ Quarkonium Singlet
$\left|\underline{n}>0 ; \mathbf{x}_{1} \mathbf{x}_{2}\right\rangle->\left|(Q \bar{Q}) g^{(n)}\right\rangle \rightarrow$ Higher Gluonic Excitations
$m v \sim \Lambda_{Q C D} \cdot p N R Q C D$ and the potentials come from integrating out all scales up to $m v^{2}$

- gluonic excitations develop a gap Λ_{QCD} and are integrated out
$m v \sim \Lambda_{Q C D} \cdot p N R Q C D$ and the potentials come from integrating out all scales up to $m v^{2}$

- gluonic excitations develop a gap Λ_{QCD} and are integrated out
\Rightarrow The singlet quarkonium field S of energy $m v^{2}$ is the only the degree of freedom of pNRQCD (up to ultrasoft light quarks, e.g. pions).
$m v \sim \Lambda_{Q C D} \cdot p N R Q C D$ and the potentials come from integrating out all scales up to $m v^{2}$

- gluonic excitations develop a gap Λ_{QCD} and are integrated out
\Rightarrow The singlet quarkonium field S of energy $m v^{2}$ is the only the degree of freedom of pNRQCD (up to ultrasoft light quarks, e.g. pions).

$$
\mathcal{L}=\operatorname{Tr}\left\{S^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V_{s}\right) \mathrm{S}\right\} \quad+\Delta \mathcal{L}(\text { US light quarks })
$$

$m v \sim \Lambda_{Q C D} \cdot p N R Q C D$ and the potentials come from integrating out all scales up to $m v^{2}$

- gluonic excitations develop a gap Λ_{QCD} and are integrated out
\Rightarrow The singlet quarkonium field S of energy $m v^{2}$ is the only the degree of freedom of pNRQCD (up to ultrasoft light quarks, e.g. pions).

$$
\mathcal{L}=\operatorname{Tr}\left\{\mathrm{S}^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V_{s}\right) \mathrm{S}\right\} \quad+\Delta \mathcal{L}(\text { US light quarks })
$$

- A pure potential description emerges from the EFT
- The potentials $V=\operatorname{ReV}+\operatorname{Im} V$ from QCD in the matching: get spectra and decays
- We obtain the form of the nonperturbative potentials V in terms of generalized Wilson loops, that are low energy pure gluonic correlators: all the flavour dependence is pulled out

The matching condition is: $\langle H| \mathcal{H}|H\rangle=\langle n l j s| \frac{\mathbf{p}^{2}}{m}+\sum_{n} \frac{V_{s}^{(n)}}{m^{n}}|n l j s\rangle$
and from this we obtain the
Quarkonium singlet potential
$V=V_{0}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{S D}+V_{V D}\right)$

The matching condition is: $\langle H| \mathcal{H}|H\rangle=\langle n l j s| \frac{\mathbf{p}^{2}}{m}+\sum_{n} \frac{V_{s}^{(n)}}{m^{n}}|n l j s\rangle$
and from this we obtain the
Quarkonium singlet potential

$$
V=V_{0}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{S D}+V_{V D}\right)
$$

$$
V_{s}^{(0)}=\lim _{T \rightarrow \infty} \frac{i}{T} \ln \langle W(r \times T)\rangle=\lim _{T \rightarrow \infty} \frac{i}{T} \ln \langle
$$

$W=\left\langle\exp \left\{i g \oint A^{\mu} d x_{\mu}\right\}\right\rangle$

QCD spin dependent potentials

$$
\begin{aligned}
& V_{\mathrm{SD}}^{(2)}=\frac{1}{r}\left(c_{F} \epsilon^{k i j} \frac{2 r^{k}}{r} i \int_{0}^{\infty} d t t\left\langle\mathrm{~B}_{\mathrm{B}}^{\mathrm{E}}\right\rangle-\frac{1}{2} V_{s}^{(0) \prime}\right)\left(\mathrm{S}_{1}+\mathrm{S}_{2}\right) \cdot \mathrm{L} \\
& -c_{F}^{2} \hat{r}_{i} \hat{r}_{j} i \int_{0}^{\infty} d t\left(\left\langle\square^{\square}\right\rangle-\frac{\delta_{i j}}{3}\langle\square\rangle\right) \\
& \times\left(\mathrm{S}_{1} \cdot \mathrm{~S}_{2}-3\left(\mathrm{~S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathrm{S}_{2} \cdot \hat{\mathbf{r}}\right)\right) \\
& +\left(\frac{2}{3} c_{F}{ }^{2} i \int_{0}^{\infty} d t\langle\square\rangle-4\left(d_{2}+C_{F} d_{4}\right) \delta^{(3)}(\mathbf{r})\right) \mathrm{S}_{1} \cdot \mathrm{~S}_{2} \\
& \text { Eichten Feinberg 81, Gromes 84, Chen et al. } 95 \text { Brambilla Vairo } 99 \text { Pineda, Vairo } 00
\end{aligned}
$$

-factorization: the NRQCD matching coefficients encode the physics at the large scale m, the potentials are given in terms of low energy nonperturbative Wilson loops. They depend only on the glue, only one lattice calculation to get the spectrum of charmonium bottomonium and BC
-the spin dependent potential has the usual structure with spin-orbit, tensor and spin-spin terms. The spinorbit term has a confining contribution: they appear at order $1 / \mathrm{m} \wedge 2$
-the spin dependent potentials in the Schroedinger eq. give the multiplet spin structure

Spin dependent potentials

Terrific advance in the data precision with Lüscher multivel algorithm!

Spin dependent potentials

Terrific advance in the data precision with Lüscher multivel algorithm!
Such data can distinguish different models for the dynamics of low energy QCD e.g. effective string model
N. B., Martinez, vairo 2014

Low energy physics factorized in Wilson loops: can be used to probe the confinement mechanism

Exact relations from Poincare' invariance

The EFT is still Poincare' invariant-> this induces relations

Exact relations from Poincare' invariance

The EFT is still Poincare' invariant-> this induces relations

Applications of strongly coupled pNRQCD include: Quarkonium Production at LHC

Intense work in the theory community:
Qiu, Nayak, Sterman, Butenschon Kniehl, Bodwin, Hee Soh, Chung, J. Lee, Kuang Ta Chao, Y. Q. Ma, Gong Wang, Fleming, Mehen, Yu Jia, Braaten, Lansberg, Leibovich, Rothstein.

Applications of strongly coupled pNRQCD include: Quarkonium Production at LHC

NRQCD factorization formula for quarkonium production
valid for large P_T Bodwin Braaten Lepage 1995
cross section $\quad \sigma(H)=\sum_{n} F_{n}\langle 0| \mathcal{O}_{n}^{H}|0\rangle$.

Intense work in the theory community:
Qiu, Nayak, Sterman, Butenschon Kniehl, Bodwin, Hee Soh, Chung, J. Lee, Kuang Ta Chao, Y. Q. Ma, Gong Wang, Fleming, Mehen, Yu Jia, Braaten, Lansberg, Leibovich, Rothstein.

Applications of strongly coupled pNRQCD include: Quarkonium Production at LHC

NRQCD factorization formula for quarkonium production

$$
\text { valid for large P_T Bodwin Braaten Lepage } 1995
$$

cross section $\sigma(H)=\sum_{n} F_{n}\langle 0| \mathcal{O}_{n}^{H}|0\rangle$. long distance matrix elements
short distance coefficients partonic hard scattering cross section convoluted with parton distribution
give the probability of a qqbar pair with certain quantum number to evolve into a final quarkonium H
they are vacuum expectation values of four fermion operators with color singlet and color octet contributions and a projection over quarkonium plus X in the middle

Intense work in the theory community:
Qiu, Nayak, Sterman, Butenschon Kniehl, Bodwin, Hee Soh, Chung, J. Lee, Kuang Ta Chao, Y. Q. Ma, Gong Wang, Fleming, Mehen, Yu Jia, Braaten, Lansberg, Leibovich, Rothstein.

Applications of strongly coupled pNRQCD include: Quarkonium Production at LHC

NRQCD factorization formula for quarkonium production

$$
\text { valid for large P_T Bodwin Braaten Lepage } 1995
$$

cross section $\sigma(H)=\sum_{n} F_{n}\langle 0| \mathcal{O}_{n}^{H}|0\rangle$. long distance matrix elements
short distance coefficients partonic hard scattering cross section convoluted with parton distribution

One problem is the proliferation of LDMEs: nonperturbative objects that cannot evaluated on the lattice and should be extracted from the data, they depend on the considered quarkonium state
give the probability of a qqbar pair with certain quantum number to evolve into a final quarkonium H they are vacuum expectation values of four fermion operators with color singlet and color octet contributions and a projection over quarkonium plus X in the middle

Intense work in the theory community:
Qiu, Nayak, Sterman, Butenschon Kniehl, Bodwin, Hee Soh, Chung, J. Lee, Kuang Ta Chao, Y. Q. Ma, Gong Wang, Fleming, Mehen, Yu Jia, Braaten, Lansberg, Leibovich, Rothstein.

Factorization of LDMEs in pNRQCD : the NRQCD LDMEs are factorized in terms of wave smomesmenimenefunctions and universal nonperturbative correlators depending only on the glue
-The number of nonperturbative unknowns is reduced by half
-The nonperturbative unknowns are correlators of gluonic fields that can be calculated on the lattice

Factorization of LDMEs in pNRQCD : the NRQCD LDMEs are factorized in terms of wave smomesmenimenefunctions and universal nonperturbative correlators depending only on the glue
-The number of nonperturbative unknowns is reduced by half
-The nonperturbative unknowns are correlators of gluonic fields that can be calculated on the lattice

Inclusive hadroproduction of p wave quarkonia

$$
\begin{aligned}
\sigma_{\chi Q J}+X & =(2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)}\left\langle\mathcal{O}^{\chi} Q_{Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle \\
& +(2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)}\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle
\end{aligned}
$$

Factorization of LDMEs in pNRQCD : the NRQCD LDMEs are factorized in terms of wave smoseraniminexefunctions and universal nonperturbative correlators depending only on the glue
-The number of nonperturbative unknowns is reduced by half
-The nonperturbative unknowns are correlators of gluonic fields that can be calculated on the lattice

Inclusive hadroproduction of p wave quarkonia

$$
\begin{aligned}
\sigma_{\chi Q J}+X= & (2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)^{\wedge}} \\
& +(2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)^{\wedge}}
\end{aligned}
$$

- The dimensionless correlator \mathcal{E} is defined in terms of chromoelectric fields $g E$ with Wilson lines Φ extending to infinity in the ℓ direction.
- \mathcal{E} has a one-loop scale dependence that is consistent with the evolution equation for NROCD matrix elements
$\mathcal{E}=\frac{3}{N_{c}} \int_{0}^{\infty} t d t \int_{0}^{\infty} t^{\prime} d t^{\prime}\langle\Omega| \Phi_{\ell}^{\dagger a b} \Phi_{0}^{\dagger d a}(0, t) g E^{d, i}(t) g E^{e, i}\left(t^{\prime}\right) \Phi_{0}^{e c}\left(t^{\prime}, 0\right) \Phi_{\ell}^{b c}|\Omega\rangle$

Factorization of LDMEs in pNRQCD : the NRQCD LDMEs are factorized in terms of wave masersiminimexunctions and universal nonperturbative correlators depending only on the glue

\llcorner
-The number of nonperturbative unknowns is reduced by half
-The nonperturbative unknowns are correlators of gluonic fields that can be calculated on the lattice

Inclusive hadroproduction of p wave quarkonia

$$
\begin{aligned}
\sigma_{\chi Q J}+X= & (2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)^{\prime}} \\
& +(2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)^{\prime}}
\end{aligned}
$$

- The dimensionless correlator \mathcal{E} is defined in terms of chromoelectric fields $g E$ with Wilson lines Φ extending to infinity in the ℓ direction.
- \mathcal{E} has a one-loop scale dependence that is consistent with the evolution equation for NROCD matrix elements
$\mathcal{E}=\frac{3}{N_{c}} \int_{0}^{\infty} t d t \int_{0}^{\infty} t^{\prime} d t^{\prime}\langle\Omega| \Phi_{\ell}^{\dagger a b} \Phi_{0}^{\dagger d a}(0, t) g E^{d, i}(t) g E^{e, i}\left(t^{\prime}\right) \Phi_{0}^{e c}\left(t^{\prime}, 0\right) \Phi_{\ell}^{b c}|\Omega\rangle$.
\mathcal{E} is a universal quantity that does not depend on quark flavor or radial excitation. Determination of \mathcal{E} directly leads to determination of all $\chi_{c J}$ and $\chi_{b J}(n P)$ cross sections, as well as h_{c} and h_{b} production rates.

->good description of data at ATLAS and CMS

Ratio r_{21} of $\chi_{c 2}$ and $\chi_{c 1}$ cross sections at the LHC (cMs, ATLAS)

we are currently investigating the J/psi case

Ratio r_{21} of $\chi_{c 2}$ and $\chi_{c 1}$ cross sections at the LHC (cMs, ATLAS)

Example: quarkonium in thermal medium, $\mathrm{T}<\mathrm{m}$, the thermal medium has scales T and m_d=gT=> integrate out T produces Hard Thermal EFT (HTL)

The potential $V(r, T)$ dictates throught the Schroedinger equation the real time evolution of the QQbar pair in the medium-> use pNRQCD to define and calculate it

The potential $V(r, T)$ dictates throught the Schroedinger equation the real time evolution of the QQbar pair in the medium-> use pNRQCD to define and calculate it

=> a technology to calculate systemically thermal energies and widths: spectrum of quarkonium at finite T at alpha_ $s^{\wedge} 5$
pNREFT is the lowest energy EFT for a single NR system but in the interaction between two NR systems more energy scales can be integrated out giving interaction potentials:

WEFT the EFT for bound-state-bound state-interaction
pNREFT is the lowest energy EFT for a single NR system but in the interaction between two NR systems more energy scales can be integrated out giving interaction potentials:

WEFI the EFI for bound-state-bound state-interaction

We have obtained the van der Waals potential also in the intermediate distance region
(limits for short and large distance reproduce London and Casimir Polder)
pNREFT is the lowest energy EFT for a single NR system but in the interaction between two NR systems more energy scales can be integrated out giving interaction potentials:

WEFT the EFI for bound-state-bound state-interaction

N.B., V. Shtabovenko,
J. Tarrus, A. Vairo 1704.03476

We have obtained the van der Waals potential also in the intermediate distance region
(limits for short and large distance reproduce London and Casimir Polder)

we obtained WEFT in QCD for $\eta_{b}-\eta_{b}$

Chromopolarizability \& color van der Waals forces
N.B., G. Krein, J. Tarrus, A. Vairo 2015

THE FRONTIER OF THE NR BOUND STATE:

THE FRONTIER OF THE NR BOUND STATE:

NR PAIRSAND LIGHT DEGREES FREEDOM:

X,Y, Z EXOTICS OBSERVED AT COLLIDERS
BO (BORN-OPPENHEIMER) EFT
N ,B., Berwein, Tarrus, Vairo 1510.04299, Oncala, Soto 1702.03900, N. B., Krein, Tarrus, Vairo, 1707.09647,
Soto, Tarrus, 2005.00552, N.B., W.K. Lai, Segovia, Tarrus, Vairo 1805.07713, 1908.11699

THE FRONTIER OF THE NR BOUND STATE:

NR PAIRS AND LIGHT DEGREES FREEDOM:
X,Y, Z EXOTICS OBSERVED AT COLLIDERS
BO (BORN-OPPENHEIMER) EFT
N ,B., Berwein, Tarrus, Vairo 1510.04299, Oncala, Soto 1702.03900, N. B., Krein, Tarrus, Vairo, 1707.09647, Soto, Tarrus, 2005.00552, N.B., W.K. Lai, Segovia, Tarrus, Vairo 1805.07713, 1908.11699

> NR PAIRS IN NONEQUILIBRIUM
> EVOLUTION IN A MEDIUM (CGP, GARLY
> UNIVERSE) THAT TRIGGER DECAYS AND RECOMBINATIONS

PNREFT PLUS OPEN CUANTUM SYSTEM: LINBLAD EQUATION
N.B; Escobedo, Soto, Vairo. 1711.04515, 1612.07248; N.B. Escobedo, Vairo, Vander Griend 1903.08063;
N.B. Escobedo, Strickland, Vairo, Vander Griend, Weber, 2012.01240; Yao, Mehen 2009.02408, 1811.07027; Sharma 2020.
nonequilibrium evolution of quarkonium in a strongly coupled QGP
work in the hierarchy and in real time formalism

$$
M \gg \frac{1}{r} \sim M \alpha_{\mathrm{s}} \gg T \sim g T \gg \text { any other scale, } \quad v \sim \alpha_{\mathrm{s}}
$$

use a Coulombic quarkonium to test the strongly coupled plasma

nonequilibrium evolution of quarkonium in a strongly coupled QGP

work in the hierarchy and in real time formalism

$$
M \gg \frac{1}{r} \sim M \alpha_{\mathrm{s}} \gg T \sim g T \gg \text { any other scale, } \quad v \sim \alpha_{\mathrm{s}}
$$

use a Coulombic quarkonium to test the strongly coupled plasma
We describe the evolution of singlet and octet quarkonium with the matrix density evolution in an open quantum system using pNRQCD at finite T

nonequilibrium evolution of quarkonium in a strongly coupled QGP

work in the hierarchy and in real time formalism

$$
M \gg \frac{1}{r} \sim M \alpha_{\mathrm{s}} \gg T \sim g T \gg \text { any other scale, } \quad v \sim \alpha_{\mathrm{s}}
$$

use a Coulombic quarkonium to test the strongly coupled plasma
We describe the evolution of singlet and octet quarkonium with the matrix density evolution in an open quantum system using pNRQCD at finite T

Subsystem: heavy quarks/quarkonium Environment: quark gluon plasma
N.B., J. Soto, M. Escobedo, A. Vairo 2016, 2018 (1612.07248, 1711.04515)

We may define a density matrix in pNRQCD for the heavy quark-antiquark pair in a singlet and octet configuration:

$$
\begin{aligned}
\left\langle\mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right| \rho_{s}\left(t^{\prime} ; t\right)|\mathbf{r}, \mathbf{R}\rangle & \equiv \operatorname{Tr}\left\{\rho_{\mathrm{full}}\left(t_{0}\right) S^{\dagger}(t, \mathbf{r}, \mathbf{R}) S\left(t^{\prime}, \mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right)\right\} \\
\left\langle\mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right| \rho_{o}\left(t^{\prime} ; t\right)|\mathbf{r}, \mathbf{R}\rangle \frac{\delta^{a b}}{8} & \equiv \operatorname{Tr}\left\{\rho_{\mathrm{full}}\left(t_{0}\right) O^{a \dagger}(t, \mathbf{r}, \mathbf{R}) O^{b}\left(t^{\prime}, \mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right)\right\}
\end{aligned}
$$

$t_{0} \approx 0.6 \mathrm{fm}$ is the time formation of the plasma.

nonequilibrium evolution of quarkonium in a strongly coupled QGP

work in the hierarchy and in real time formalism

$$
M \gg \frac{1}{r} \sim M \alpha_{\mathrm{s}} \gg T \sim g T \gg \text { any other scale, } \quad v \sim \alpha_{\mathrm{s}}
$$

use a Coulombic quarkonium to test the strongly coupled plasma

We describe the evolution of singlet and octet quarkonium with the matrix density evolution in an open quantum system using pNRQCD at finite T

Subsystem: heavy quarks/quarkonium
Environment: quark gluon plasma
N.B., J. Soto, M. Escobedo, A. Vairo 2016, 2018 (1612.07248, 1711.04515)

We may define a density matrix in pNRQCD for the heavy quark-antiquark pair in a singlet and octet configuration:

$$
\begin{aligned}
\left\langle\mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right| \rho_{s}\left(t^{\prime} ; t\right)|\mathbf{r}, \mathbf{R}\rangle & \equiv \operatorname{Tr}\left\{\rho_{\mathrm{full}}\left(t_{0}\right) S^{\dagger}(t, \mathbf{r}, \mathbf{R}) S\left(t^{\prime}, \mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right)\right\} \\
\left\langle\mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right| \rho_{o}\left(t^{\prime} ; t\right)|\mathbf{r}, \mathbf{R}\rangle \frac{\delta^{a b}}{8} & \equiv \operatorname{Tr}\left\{\rho_{\mathrm{full}}\left(t_{0}\right) O^{a \dagger}(t, \mathbf{r}, \mathbf{R}) O^{b}\left(t^{\prime}, \mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right)\right\}
\end{aligned}
$$

$t_{0} \approx 0.6 \mathrm{fm}$ is the time formation of the plasma.

The system is in non-equilibrium because through interaction with the environment (quark gluon plasma) singlet and octet quark-antiquark states continuously transform in each other although the number of heavy quarks is conserved: $\operatorname{Tr}\left\{\rho_{s}\right\}+\operatorname{Tr}\left\{\rho_{o}\right\}=1$.

nonequilibrium evolution of quarkonium in a strongly coupled QGP

work in the hierarchy and in real time formalism

$$
M \gg \frac{1}{r} \sim M \alpha_{\mathrm{s}} \gg T \sim g T \gg \text { any other scale, } \quad v \sim \alpha_{\mathrm{s}}
$$

use a Coulombic quarkonium to test the strongly coupled plasma

We describe the evolution of singlet and octet quarkonium with the matrix density evolution in an open quantum system using pNRQCD at finite T

Subsystem: heavy quarks/quarkonium
Environment: quark gluon plasma
N.B., J. Soto, M. Escobedo, A. Vairo 2016, 2018 (1612.07248, 1711.04515)

We may define a density matrix in pNRQCD for the heavy quark-antiquark pair in a singlet and octet configuration:

$$
\begin{aligned}
\left\langle\mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right| \rho_{s}\left(t^{\prime} ; t\right)|\mathbf{r}, \mathbf{R}\rangle & \equiv \operatorname{Tr}\left\{\rho_{\mathrm{full}}\left(t_{0}\right) S^{\dagger}(t, \mathbf{r}, \mathbf{R}) S\left(t^{\prime}, \mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right)\right\} \\
\left\langle\mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right| \rho_{o}\left(t^{\prime} ; t\right)|\mathbf{r}, \mathbf{R}\rangle \frac{\delta^{a b}}{8} & \equiv \operatorname{Tr}\left\{\rho_{\mathrm{full}}\left(t_{0}\right) O^{a \dagger}(t, \mathbf{r}, \mathbf{R}) O^{b}\left(t^{\prime}, \mathbf{r}^{\prime}, \mathbf{R}^{\prime}\right)\right\}
\end{aligned}
$$

$t_{0} \approx 0.6 \mathrm{fm}$ is the time formation of the plasma.

The system is in non-equilibrium because through interaction with the environment (quark gluon plasma) singlet and octet quark-antiquark states continuously transform in each other although the number of heavy quarks is conserved: $\operatorname{Tr}\left\{\rho_{s}\right\}+\operatorname{Tr}\left\{\rho_{o}\right\}=1$.

nonequilibrium evolution of quarkonium: density matrix evolution

$$
\begin{aligned}
\frac{d \rho_{s}(t ; t)}{d t}= & -i\left[h_{s}, \rho_{s}(t ; t)\right]-\Sigma_{s}(t) \rho_{s}(t ; t)-\rho_{s}(t ; t) \Sigma_{s}^{\dagger}(t)+\Xi_{s o}\left(\rho_{o}(t ; t), t\right) \\
\frac{d \rho_{o}(t ; t)}{d t}= & -i\left[h_{o}, \rho_{o}(t ; t)\right]-\Sigma_{o}(t) \rho_{o}(t ; t)-\rho_{o}(t ; t) \Sigma_{o}^{\dagger}(t)+\Xi_{o s}\left(\rho_{s}(t ; t), t\right) \\
& +\Xi_{o o}\left(\rho_{o}(t ; t), t\right)
\end{aligned}
$$

evolution with t is evolution with T or any other parameter characterising the QGP out of equilibrium

nonequilibrium evolution of quarkonium: density matrix evolution

$$
\begin{aligned}
\frac{d \rho_{s}(t ; t)}{d t}= & -i\left[h_{s}, \rho_{s}(t ; t)\right]-\Sigma_{s}(t) \rho_{s}(t ; t)-\rho_{s}(t ; t) \Sigma_{s}^{\dagger}(t)+\Xi_{s o}\left(\rho_{o}(t ; t), t\right) \\
\frac{d \rho_{o}(t ; t)}{d t}= & -i\left[h_{o}, \rho_{o}(t ; t)\right]-\Sigma_{o}(t) \rho_{o}(t ; t)-\rho_{o}(t ; t) \Sigma_{o}^{\dagger}(t)+\Xi_{o s}\left(\rho_{s}(t ; t), t\right) \\
& +\Xi_{o o}\left(\rho_{o}(t ; t), t\right)
\end{aligned}
$$

- The self energies Σ_{s} and Σ_{o} provide the in-medium induced mass shifts, $\delta m_{s, o}$, and widths, $\Gamma_{s, o}$, for the color-singlet and color-octet heavy quark-antiquark systems respectively:

$$
\begin{aligned}
-i \Sigma_{s, o}(t)+i \Sigma_{s, o}^{\dagger}(t) & =2 \operatorname{Re}\left(-i \Sigma_{s, o}(t)\right)=2 \delta m_{s, o}(t) \\
\Sigma_{s, o}(t)+\Sigma_{s, o}^{\dagger}(t) & =-2 \operatorname{Im}\left(-i \Sigma_{s, o}(t)\right)=\Gamma_{s, o}(t)
\end{aligned}
$$

nonequilibrium evolution of quarkonium: density matrix evolution

$$
\begin{aligned}
\frac{d \rho_{s}(t ; t)}{d t}= & -i\left[h_{s}, \rho_{s}(t ; t)\right]-\Sigma_{s}(t) \rho_{s}(t ; t)-\rho_{s}(t ; t) \Sigma_{s}^{\dagger}(t)+\Xi_{s o}\left(\rho_{o}(t ; t), t\right) \\
\frac{d \rho_{o}(t ; t)}{d t}= & -i\left[h_{o}, \rho_{o}(t ; t)\right]-\Sigma_{o}(t) \rho_{o}(t ; t)-\rho_{o}(t ; t) \Sigma_{o}^{\dagger}(t)+\Xi_{o s}\left(\rho_{s}(t ; t), t\right) \\
& +\Xi_{o o}\left(\rho_{o}(t ; t), t\right)
\end{aligned}
$$

- The self energies Σ_{s} and Σ_{o} provide the in-medium induced mass shifts, $\delta m_{s, o}$, and widths, $\Gamma_{s, o}$, for the color-singlet and color-octet heavy quark-antiquark systems respectively:

$$
\begin{aligned}
-i \Sigma_{s, o}(t)+i \Sigma_{s, o}^{\dagger}(t) & =2 \operatorname{Re}\left(-i \Sigma_{s, o}(t)\right)=2 \delta m_{s, o}(t) \\
\Sigma_{s, o}(t)+\Sigma_{s, o}^{\dagger}(t) & =-2 \operatorname{Im}\left(-i \Sigma_{s, o}(t)\right)=\Gamma_{s, o}(t)
\end{aligned}
$$

- $\Xi_{s o}$ accounts for the production of singlets through the decay of octets, and $\Xi_{o s}$ and $\Xi_{o o}$ account for the production of octets through the decays of singlets and octets respectively. There are two octet production mechanisms/octet chromoelectric dipole vertices in the pNRQCD Lagrangian.

If $E \ll T \sim m_{D}$ the Lindblad equation for a strongly coupled plasma reads
$\rho=\left(\begin{array}{cc}\rho_{s} & 0 \\ 0 & \rho_{o}\end{array}\right) \quad \frac{d \rho}{d t}=-i[H, \rho]+\sum_{i}\left(C_{i} \rho C_{i}^{\dagger}-\frac{1}{2}\left\{C_{i}^{\dagger} C_{i}, \rho\right\}\right)$

C collapse operators

$$
H=\left(\begin{array}{cc}
h_{s} & 0 \\
0 & h_{0}
\end{array}\right)+\frac{r^{2}}{2} \gamma(t)\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{7}{16}
\end{array}\right), \quad C_{i}^{0}=\sqrt{\frac{\kappa(t)}{8}} r^{i}\left(\begin{array}{cc}
0 & 1 \\
\sqrt{8} & 0
\end{array}\right), \quad C_{i}^{1}=\sqrt{\frac{5 \kappa(t)}{16}} r^{i}\left(\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right)
$$

If $E \ll T \sim m_{D}$ the Lindblad equation for a strongly coupled plasma reads

$$
\rho=\left(\begin{array}{cc}
\rho_{s} & 0 \\
0 & \rho_{o}
\end{array}\right) \quad \frac{d \rho}{d t}=-i[H, \rho]+\sum_{i}\left(C_{i} \rho C_{i}^{\dagger}-\frac{1}{2}\left\{C_{i}^{\dagger} C_{i}, \rho\right\}\right)
$$

$$
H=\left(\begin{array}{cc}
h_{s} & 0 \\
0 & h_{0}
\end{array}\right)+\frac{r^{2}}{2} \gamma(t)\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{7}{16}
\end{array}\right), \quad C_{i}^{0}=\sqrt{\frac{\kappa(t)}{8}} r^{i}\left(\begin{array}{cc}
0 & 1 \\
\sqrt{8} & 0
\end{array}\right), \quad C_{i}^{1}=\sqrt{\frac{5 \kappa(t)}{16}} r^{i}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

the sQGP is characterised by two nonperturbative parameters (transport coefficients) kappa and gamma that must be calculated on the lattice
κ is the heavy-quark momentum diffusion coefficient: $\quad \kappa=\frac{g^{2}}{18} \operatorname{Re} \int_{-\infty}^{+\infty} d s\left\langle\operatorname{T} E^{a, i}(s, \mathbf{0}) \phi^{a b}(s, 0) E^{b, i}(0, \mathbf{0})\right\rangle$

$$
\gamma=\frac{g^{2}}{18} \operatorname{Im} \int_{-\infty}^{+\infty} d s\left\langle\mathrm{~T} E^{a, i}(s, \mathbf{0}) \phi^{a b}(s, 0) E^{b, i}(0, \mathbf{0})\right\rangle
$$

nonequilibrium evolution of quarkonium: Linblad equations

If $E \ll T \sim m_{D}$ the Lindblad equation for a strongly coupled plasma reads
$\rho=\left(\begin{array}{cc}\rho_{s} & 0 \\ 0 & \rho_{0}\end{array}\right) \quad \frac{d \rho}{d t}=-i[H, \rho]+\sum_{i}\left(C_{i} \rho C_{i}^{\dagger}-\frac{1}{2}\left\{C_{i}^{\dagger} C_{i}, \rho\right\}\right)$

$$
H=\left(\begin{array}{cc}
h_{s} & 0 \\
0 & h_{o}
\end{array}\right)+\frac{r^{2}}{2} \gamma(t)\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{7}{16}
\end{array}\right), \quad C_{i}^{0}=\sqrt{\frac{\kappa(t)}{8}} r^{i}\left(\begin{array}{cc}
0 & 1 \\
\sqrt{8} & 0
\end{array}\right), \quad C_{i}^{1}=\sqrt{\frac{5 \kappa(t)}{16}} r^{i}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

the sQGP is characterised by two nonperturbative parameters (transport coefficients) kappa and gamma that must be calculated on the lattice
κ is the heavy-quark momentum diffusion coefficient: $\quad \kappa=\frac{g^{2}}{18} \operatorname{Re} \int_{-\infty}^{+\infty} d s\left\langle\operatorname{T} E^{a, i}(s, \mathbf{0}) \phi^{a b}(s, 0) E^{b, i}(0, \mathbf{0})\right\rangle$

$$
\gamma=\frac{g^{2}}{18} \operatorname{Im} \int_{-\infty}^{+\infty} d s\left\langle\mathrm{~T} E^{a, i}(s, \mathbf{0}) \phi^{a b}(s, 0) E^{b, i}(0, \mathbf{0})\right\rangle
$$

the EFT allows to use lattice QCD equilibrium calculation to study the non equilibrium evolution! EFT is intermediate layer to non equilibrium

nonequilibrium evolution of quarkonium in medium: nuclear modification factor R_AA

 calculation with no$$
R_{A A}(n S)=\frac{\langle n, \mathbf{q}| \rho_{s}\left(t_{F} ; t_{F}\right)|n, \mathbf{q}\rangle}{\langle n, \mathbf{q}| \rho_{s}(0 ; 0)|n, \mathbf{q}\rangle}
$$

free parameters, results depends on kappa function
of \mathbf{T} (calculated on the lattice) and gamma (extracted from the lattice)
 right plot variation in gamma —> we can use R_AA to learn about the QGP!

These results and approach could be applied to the study of the non equilibrium evolutio of dark matter annihilation and formation in the early universe and after

indirect

- DM as a particle: many candidates
- Any model has to comply with

$$
\Omega_{\mathrm{DM}} h^{2}\left(M_{\mathrm{DM}}, M_{\mathrm{DM}^{\prime}}, \alpha_{\mathrm{DM}}, \alpha_{\mathrm{SM}}\right)=0.1200 \pm 0.0012
$$

THERMAL FREEZE-OUT

- Boltzmann equation for DM (χ)

$$
\frac{d n_{\chi}}{d t}+3 H n_{\chi}=-\langle\sigma v\rangle\left(n_{\chi}^{2}-n_{\chi, \text { eq }}^{2}\right)
$$

- relevant processes $\chi \chi \leftrightarrow$ SM SM
- $\langle\sigma v\rangle$: input from particle physics with $v \sim \sqrt{T / M}<1$

$$
\langle\sigma v\rangle \approx\left\langle a+b v^{2}+\ldots\right\rangle \Rightarrow\langle\sigma v\rangle^{(0)} \approx \frac{\alpha^{2}}{M^{2}}
$$

BOEFT: EFT for nonrelativistic pairs and light d.o.f.

Consider bound states of two nonrelativistic particles and some light d.o.f., e.g., molecules/quarkonium hybrids ($Q \bar{Q} g$ states)or tetraquarks ($Q \bar{Q} q \bar{q}$ states):

- electron/gluon fields change adiabatically in the presence of heavy quarks/nuclei. The heavy quarks/nuclei interaction may be described at leading order in the non-relativistic expansion by an effective potential V_{κ} between static sources, where κ labels different excitations of the light d.o.f.
- a plethora of states can be built on each of the potentials V_{κ} by solving the corresponding Schrödinger equation.

This picture goes also under the name of Born-Oppenheimer approximation. Starting from pNRQED/pNRQCD the Born-Oppenheimer approximation can be made rigorous and cast into a suitable nonrelativistic EFT called Born-Oppenheimer EFT (BOEFT).

Michael et al. 1983, Juge, Kuti, Mornigstar 1997, 1998, Braaten,Langsmack, Smith 2014

two different scales
$\Lambda_{\mathrm{QCD}} \gg m v^{2}$
we proceed to integrate out $1 / r$ and then Λ_{QCD}
(the two scales can also be integrated out simultaneously see Soto, Tarrus 2020)

$E_{\text {electrons }} \gg E_{\text {nuclei }}$ in QED

Λ_{QCD}
is nonperturbative but we can use the lattice static energies
two different scales

$\Lambda_{\mathrm{QCD}} \gg m v^{2}$

we proceed to integrate

 out $1 / r$ and then Λ_{QCD}

$E_{\text {electrons }} \gg E_{\text {nuclei }}$

in QED

- Σ_{g}^{+}is the ground state potential that generates the standard quarkonium states.
- The rest of the static energies correspond to excited gluonic states that generate hybrids.
- The two lowest hybrid static energies are Π_{u} and $\Sigma_{\bar{u}}$, they are nearly degenerate at short distances.

BOEFT for $E_{\Pi_{u}}$ and $E_{\Sigma_{u}^{-}}$hybrids

- Berwein Brambilla Tarrus Vairo PRD 92 (2015) 114019 Oncala Soto PRD 96 (2017) 014004
Brambilla Krein Tarrus Vairo PRD 97 (2018) 016016

$$
\mathcal{L}_{\mathrm{BOEFT} \text { for } 1+-}=\int d^{3} r \sum_{\lambda \lambda^{\prime}} \operatorname{Tr}\left\{\Psi_{1+-\lambda}^{\dagger}\left(i \partial_{0}-V_{1+-\lambda \lambda^{\prime}}(r)+\hat{r}_{\lambda}^{i \dagger} \frac{\boldsymbol{\nabla}_{r}^{2}}{m} \hat{r}_{\lambda^{\prime}}^{i}\right) \Psi_{1+-\lambda^{\prime}}\right\}
$$

- $\lambda= \pm 1,0 ; \quad \hat{r}_{0}^{i}=\hat{r}^{i}$ and $\hat{r}_{ \pm 1}^{i}=\mp\left(\hat{\theta}^{i} \pm i \hat{\phi}^{i}\right) / \sqrt{2}$.
- $V_{1+-\lambda \lambda^{\prime}}=V_{1+-\lambda \lambda^{\prime}}^{(0)}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(1)}}{m}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(2)}}{m^{2}}+\cdots$
- For the static potential: $V_{1+-\lambda \lambda^{\prime}}^{(0)}=\delta_{\lambda \lambda^{\prime}} V_{1+-\lambda}^{(0)}$, with $V_{1^{++-}}^{(0)}=E_{\Sigma_{u}^{-}}, V_{1^{+-}{ }^{+1}}^{(0)}=E_{\Pi_{u}}$.

BOEFT for $E_{\Pi_{u}}$ and $E_{\Sigma_{u}^{-}}$hybrids

- Berwein Brambilla Tarrus Vairo PRD 92 (2015) 114019

$$
\mathcal{L}_{\mathrm{BOEFT} \text { for } 1+-}=\int d^{3} r \sum_{\lambda \lambda^{\prime}} \operatorname{Tr}\left\{\Psi_{1+-\lambda}^{\dagger}\left(i \partial_{0}-V_{1+-\lambda \lambda^{\prime}}(r)+\hat{r}_{\lambda}^{i \dagger} \frac{\boldsymbol{\nabla}_{r}^{2}}{m} \hat{r}_{\lambda^{\prime}}^{i}\right) \Psi_{1+-\lambda^{\prime}}\right\}
$$

- $\lambda= \pm 1,0 ; \quad \hat{r}_{0}^{i}=\hat{r}^{i}$ and $\hat{r}_{ \pm 1}^{i}=\mp\left(\hat{\theta}^{i} \pm i \hat{\phi}^{i}\right) / \sqrt{2}$.
- $V_{1+-\lambda \lambda^{\prime}}=V_{1+-\lambda \lambda^{\prime}}^{(0)}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(1)}}{m}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(2)}}{m^{2}}+\cdots$
- For the static potential: $V_{1+-\lambda \lambda^{\prime}}^{(0)}=\delta_{\lambda \lambda^{\prime}} V_{1+-\lambda}^{(0)}$, with $V_{1+-0}^{(0)}=E_{\Sigma_{u}^{-}}, V_{1+ - \pm 1}^{(0)}=E_{\Pi_{u}}$.

The LO e.o.m. for the fields $\Psi_{1+-\lambda}^{\dagger}$ are a set of coupled Schrödinger equations:

$$
i \partial_{0} \Psi_{1+-\lambda}=\left[\left(-\frac{\boldsymbol{\nabla}_{r}^{2}}{m}+V_{1+-\lambda}^{(0)}\right) \delta_{\lambda \lambda^{\prime}}-\sum_{\lambda^{\prime}} C_{1+-\lambda \lambda^{\prime}}^{\mathrm{nad}}\right] \Psi_{\kappa \lambda^{\prime}}
$$

The eigenvalues \mathcal{E}_{N} give the masses M_{N} of the states as $M_{N}=2 m+\mathcal{E}_{N}$.

$$
\hat{r}_{\lambda}^{i \dagger}\left(\frac{\nabla_{r}^{2}}{m}\right) \hat{r}_{\lambda^{\prime}}^{i}=\delta_{\lambda \lambda^{\prime}} \frac{\nabla_{r}^{2}}{m}+C_{1+-\lambda \lambda^{\prime}}^{\mathrm{nad}}
$$

with $C_{1+-\lambda \lambda^{\prime}}^{\mathrm{nad}}=\hat{r}_{\lambda}^{i \dagger}\left[\frac{\nabla_{r}^{2}}{m}, \hat{r}_{\lambda^{\prime}}^{i}\right]$ called the nonadiabatic coupling.

Spectrum: general consideration

- The Schrödinger equation mixes states with the same parity. A consequence is Λ-doubling, i.e., the lifting of degeneracy between states with opposite parity. This happens also in molecular physics, however, there Λ-doubling is a subleading effect, while it is a LO effect in the quarkonium hybrid spectrum.
- The eigenstates are organized in the multiplets H_{1}, H_{2}, \ldots. Neglecting off-diagonal terms, the multiplets H_{1} and H_{2} would be degenerate.

Multiplet	T	$J^{P C}(S=0)$	$J^{P C}(S=1)$	E_{Γ}
H_{1}	1	1^{--}	$(0,1,2)^{-+}$	$E_{\Sigma_{u}^{-}}, E_{\Pi_{u}}$
H_{2}	1	1^{++}	$(0,1,2)^{+-}$	$E_{\Pi_{u}}$
H_{3}	0	0^{++}	1^{+-}	$E_{\Sigma_{u}^{-}}$
H_{4}	2	2^{++}	$(1,2,3)^{+-}$	$E_{\Sigma_{u}^{--}}, E_{\Pi_{u}}$

we can calculate the structure of the hybrids multiplets

T is the sum of the orbital angular momentum of the quark-antiquark pair and the gluonic angular momentum; $T=0$ state turns out not to be the lowest mass state.

```
O Braaten PRL 111 (2013) 162003
    Braaten Langmack Smith PRD 90 (2014) 014044
```


Quarkonium hybrid states vs experiments I

Hybrid spin-dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{2}$

$$
\begin{aligned}
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r}) & =V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S} \\
& +V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right] \\
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r}) & =V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j} \\
& +V_{L S c}^{(2)}(r)\left[\hat{r}_{\lambda} \cdot \boldsymbol{r}(\boldsymbol{p} \times \boldsymbol{S}) \cdot \hat{r}_{\lambda^{\prime}}+\hat{r}_{\lambda} \cdot(\boldsymbol{p} \times \boldsymbol{S}) \hat{r}_{\lambda^{\prime}} \cdot \boldsymbol{r}\right] \\
& +V_{S^{2}}^{(2)}(r) \boldsymbol{S}^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
\end{aligned}
$$

$\left(K^{i j}\right)^{k}=i \epsilon^{i k j}$ is the angular momentum of the spin one gluons and L is the orbital angular momentum of the heavy-quark-antiquark pair.

Differently from the quarkonium case, the hybrid potential gets a first contribution already at order $\Lambda_{\mathrm{QCD}}^{2} / m$. The corresponding operator does not contribute at LO to matrix elements of quarkonium states as its projection on quark-antiquark color singlet states vanishes. Hence, spin splittings are remarkably less suppressed in heavy quarkonium hybrids than in heavy quarkonia.

Hybrid spin-dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{2}$

The non perturbative part of the potentials depends on six nonperturbative

 correlators that could be calculated on the lattice directly-The only flavour dependence is carried by the NRQCD matching coefficients

$$
\begin{aligned}
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r}) & =V_{S K}(r)\left(\hat{r}_{\lambda}^{2 \top} \boldsymbol{K}^{i J} \hat{r}_{\lambda^{\prime}}^{3}\right) \cdot \boldsymbol{S} \\
& +V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right] \\
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r}) & =V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{\dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j} \\
& +V_{L S c}^{(2)}(r)\left[\hat{r}_{\lambda} \cdot \boldsymbol{r}(\boldsymbol{p} \times \boldsymbol{S}) \cdot \hat{r}_{\lambda^{\prime}}+\hat{r}_{\lambda} \cdot(\boldsymbol{p} \times \boldsymbol{S}) \hat{r}_{\lambda^{\prime}} \cdot \boldsymbol{r}\right] \\
& +V_{S^{2}}^{(2)}(r) \boldsymbol{S}^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
\end{aligned}
$$

$\left(K^{i j}\right)^{k}=i \epsilon^{i k j}$ is the angular momentum of the spin one gluons and L is the orbital angular momentum of the heavy-quark-antiquark pair.

Differently from the quarkonium case, the hybrid potential gets a first contribution already at order $\Lambda_{\mathrm{QCD}}^{2} / m$. The corresponding operator does not contribute at LO to matrix elements of quarkonium states as its projection on quark-antiquark color singlet states vanishes. Hence, spin splittings are remarkably less suppressed in heavy quarkonium hybrids than in heavy quarkonia.

Hybrid spin-dependent potentials at order $1 / m$ and $1 / m^{2}$

The non perturbative part of the potentials depends on six nonperturbative

 correlators that could be calculated on the lattice directlyThe only flavour dependence is carried by the NRQCD matching coefficients

$$
\begin{aligned}
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r}) & =V_{S K}(r)\left(\hat{r}_{\lambda}^{2 \top} \boldsymbol{K}^{i J} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S} \\
& +V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right] \\
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r}) & =V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{\dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j} \\
& +V_{L S c}^{(2)}(r)\left[\hat{r}_{\lambda} \cdot \boldsymbol{r}(\boldsymbol{p} \times \boldsymbol{S}) \cdot \hat{r}_{\lambda^{\prime}}+\hat{r}_{\lambda} \cdot(\boldsymbol{p} \times \boldsymbol{S}) \hat{r}_{\lambda^{\prime}} \cdot \boldsymbol{r}\right] \\
& +V_{S^{2}}^{(2)}(r) \boldsymbol{S}^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
\end{aligned}
$$

$\left(K^{i j}\right)^{k}=i \epsilon^{i k j}$ is the angular momentum of the spin one gluons and L is the orbital angular momentum of the heavy-quark-antiquark pair.

Differently from the quarkonium case, the hybrid potential gets a first contribution already at order $\Lambda_{\mathrm{QCD}}^{2} / m$. The corresponding operator does not contribute at LO to matrix elements of quarkonium states as its projection on quark-antiquark color singlet states

We can use lattice data on charmonium hybrids

spin multiplets to fix the nonperturbative and predict bottomonium hybrids spin multiplets

Charmonium Hybrids Multiplets H_1 lattice data from
G. K. C. Cheung, C. O'Hara, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and D. Tims (Hadron Spectrum), JHEP 12, 089 (2016), arXiv: 1610.01073 (hep-lat].

with a pion of about 240 MeV

We fit the nonperturbative correlators on the lattice data: violet boxes are the nonperturbative contributions
the perturbative part produces a pattern opposite to the lattice and to ordinary quarkonia \longrightarrow discrepancy can be reconciled thanks to the nonperturbative parts, especially the one at order $1 / m$ (note that all models are inspired to the perturbative part..)
Power counting: we include terms up to order Lambda^3/m^2 and $m \vee \wedge 4$ to the spin splittings
height of the boxes is an estimate of the uncertainty:
estimated by the parametric size of higher order corrections, m alpha_s $\wedge 5$ for the perturbative part, powers of Lambda_qcd/m for the nonperturbative part, plus the statistical error on the fit

Charmonium H_{1} hybrid spin splittings

fix the nonperturbative unknowns from a charmonium hybrid calculation

```
O Brambilla Lai Segovia Tarrus Vairo PRD 99 (2019) 014017
lattice data from Liu et al JHEP 1612 (2016) 089
[2+1 flavors, m}=240 MeV
```


Charmonium H_{1} hybrid spin splittings

predict the bottomonium hybrid splittings
fix the nonperturbative unknowns from a charmonium hybrid calculation

```
O Brambilla Lai Segovia Tarrus Vairo PRD 99 (2019) 014017
lattice data from Liu et al JHEP 1612 (2016) 089
[2+1 flavors, m}=240 MeV
```


fix the nonperturbative unknowns from a charmonium hybrid calculation

blue EFT predictions, violet actual lattice calculation

```
O Brambilla Lai Segovia Tarrus Vairo PRD 99 (2019) 014017
lattice data from Liu et al JHEP 1612 (2016) 089
[2+1 flavors, m
```

pNREFT gives us a powerful tool to address NR bound and threshold states in QFT In QCD, pNRQCD makes quarkonium a precious probe of strong interaction
It allows to perform systematic higher order calculations on bound state, to factorize and study the nonperturbative effects and the relation between perturbative and nonperturbative effects (e.g. renormalons/condensates). Factorization allows model independent predictions and direct lattice calculation of low energy quantities
pNREFT gives us a powerful tool to address NR bound and threshold states in QFT In QCD, pNRQCD makes quarkonium a precious probe of strong interaction
It allows to perform systematic higher order calculations on bound state, to factorize and study the nonperturbative effects and the relation between perturbative and nonperturbative effects (e.g. renormalons/condensates). Factorization allows model independent predictions and direct lattice calculation of low energy quantities
It allows to define objects of great phenomenological interest like the potentials at zero and finite temperature and gives a scheme for the calculations of energies and decays
pNREFT gives us a powerful tool to address NR bound and threshold states in QFT In QCD, pNRQCD makes quarkonium a precious probe of strong interaction
It allows to perform systematic higher order calculations on bound state, to factorize and study the nonperturbative effects and the relation between perturbative and nonperturbative effects (e.g. renormalons/condensates). Factorization allows model independent predictions and direct lattice calculation of low energy quantities
It allows to define objects of great phenomenological interest like the potentials at zero and finite temperature and gives a scheme for the calculations of energies and decays
With Open Quantum Systems It offers us a framework to study the nonequilibrium evolution of NR states: allows a diagnostic of the QGP in terms of two nonperturbative transport coefficients with a clear QFT definition; it allows to use lattice equilibrium calculation for non equilibrium studies

Outlook

pNREFT gives us a powerful tool to address NR bound and threshold states in QFT In QCD, pNRQCD makes quarkonium a precious probe of strong interaction
It allows to perform systematic higher order calculations on bound state, to factorize and study the nonperturbative effects and the relation between perturbative and nonperturbative effects (e.g. renormalons/condensates). Factorization allows model independent predictions and direct lattice calculation of low energy quantities
It allows to define objects of great phenomenological interest like the potentials at zero and finite temperature and gives a scheme for the calculations of energies and decays
With Open Quantum Systems It offers us a framework to study the nonequilibrium evolution of NR states: allows a diagnostic of the QGP in terms of two nonperturbative transport coefficients with a clear QFT definition; it allows to use lattice equilibrium calculation for non

equilibrium studies

It gives a novel framework to explore complex NR strongly interacting systems: the XYZ exotics, bound states of two onia

Outlook

pNREFT gives us a powerful tool to address NR bound and threshold states in QFT In QCD, pNRQCD makes quarkonium a precious probe of strong interaction
It allows to perform systematic higher order calculations on bound state, to factorize and study the nonperturbative effects and the relation between perturbative and nonperturbative effects (e.g. renormalons/condensates). Factorization allows model independent predictions and direct lattice calculation of low energy quantities
It allows to define objects of great phenomenological interest like the potentials at zero and finite temperature and gives a scheme for the calculations of energies and decays
With Open Quantum Systems It offers us a framework to study the nonequilibrium evolution of NR states: allows a diagnostic of the QGP in terms of two nonperturbative transport coefficients with a clear QFT definition; it allows to use lattice equilibrium calculation for non

equilibrium studies

It gives a novel framework to explore complex NR strongly interacting systems: the XYZ exotics, bound states of two onia
The alliance of PNRQCD with lattice and with other EFTs plays a key role

Outlook

pNREFT gives us a powerful tool to address NR bound and threshold states in QFT In QCD, pNRQCD makes quarkonium a precious probe of strong interaction
It allows to perform systematic higher order calculations on bound state, to factorize and study the nonperturbative effects and the relation between perturbative and nonperturbative effects (e.g. renormalons/condensates). Factorization allows model independent predictions and direct lattice calculation of low energy quantities
It allows to define objects of great phenomenological interest like the potentials at zero and finite temperature and gives a scheme for the calculations of energies and decays
With Open Quantum Systems It offers us a framework to study the nonequilibrium evolution of NR states: allows a diagnostic of the QGP in terms of two nonperturbative transport coefficients with a clear QFT definition; it allows to use lattice equilibrium calculation for non
equilibrium studies

It gives a novel framework to explore complex NR strongly interacting systems: the $X Y Z$ exotics, bound states of two onia
The alliance of pNRQCD with lattice and with other EFTs plays a key role
pNREFT is a flexible and versatile tool that could be applied to the realm of atomic, condensed matter, BSM.... any physics wherever NR states play a role
one can imagine a situation of this type where the BOEFT comprehends all the different phenomenological models in different dynamical regions

Static energies for tetraquarks (schematic):

Courtesy J. Tarrús Castellà
Lattice calculations of these objects are needed: we started such calculations in our TUMQCD collaboration

[^0]: $\psi(\chi)$ is the field that annihilates (creates) the (anti)fermion expansion in v and $\alpha_{s}(m)$

[^1]: $\psi(\chi)$ is the field that annihilates (creates) the (anti)fermion expansion in v and $\alpha_{s}(m)$

