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coefficients and allows systematical and precise calculations both at a perturbative  and a 
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• New frontier:  pNREFT for NR systems in complex or non equilibrium environments: 

Nonequilibrium evolution of NR  systems in a medium  
 (Quarkonium in QGP, Dark Matter in Early Universe)  

Exotics X Y Z Quarkonium production 
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it produces spin-corrections (spin-orbit),  it does not  give the Lamb shift  (radiative 
corrections)
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... and its problems

• cumbersome in perturbation theory;

• very poorly suited to achieve factorization (specially important in QCD).

Ex.

• It shows the difficulty of the approach the fact that going from the calculation of the
mα5 correction in the hyperfine splitting of the positronium ground state to the
mα6 ln α term took twenty-five years!
◦ Karplus Klein PR 87(52)848, Caswell Lepage PRA (20)(79)36
Bodwin Yennie PR 43(78)267

• With few exceptions no applications to QCD and quarkonium physics.
◦ Mödritsch Kummer ZPC 66(95)225

A. It is cumbersome in  
perturbation theory
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V. It provides  a field theoretical foundation of the Schroedinger eq.: More conceptually 
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It implements the Schroedinger eq. as zero order problem, 
 define the potentials at the level of the QFT, implements 

systematically retardation corrections (Lamb shift), 
it encodes Poincare’ invariance, and it is equivalent  

at any given order  of the expansion to the underlying 
QFT
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It implements the Schroedinger eq. as zero order problem, 
 define the potentials at the level of the QFT, implements 

systematically retardation corrections (Lamb shift), 
it encodes Poincare’ invariance, and it is equivalent  

at any given order  of the expansion to the underlying 
QFT
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 separates  the Schroedinger dynamics  of the two particle field         from the low 
energy dynamics encoded in         

pNREFT is the lowest energy EFT that  
can be constructed for the NR bound system. 



in 1974 the J/psi discovery triggered the 
November revolution:  

charm discovery and confirmation of asymptotic freedom  

 Today  it is a golden probe of strong interactions

 From the physical point of view it is a pretty interesting system, that add               
to the other scales and requires two different versions of pNREFT,  

weakly coupled and strongly coupled, for                 and                 respectively
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A Rich Physical example of NR state: Quarkonium 
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Heavy quarkonia are nonrelativistic bound 
systems: multiscale systems

Electromagnetic bound states: atoms, molecules,

Heavy quarks offer a privileged access to the strong 

sector of the Standard Model
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heavy light meson: HQET
only two scales exist                andm ΛQCD

A large scale αs(mQ) ! 1mQ ! ΛQCD

Q̄

Q

v

r

Quarkonium: nonrelativistic 

multiscale system 

m mv ∼ r
−1

mv
2

ΛQCD

v ! 1 → m # mv # mv
2

many scales: a challenge and an opportunity
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The rich structure of separated energy scales makes QQbar  an ideal probe

Quarkonium as a confinement and deconfinement probe

It is precisely the rich structure of separated energy scales that makes quarkonium an
ideal probe of confinement and deconfinement.

• The different quarkonium radii provide different measures of the transition from a
Coulombic to a confined bound state.
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• Different quarkonia will dissociate in a medium at different temperatures, providing
a thermometer for the plasma.
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At zero temperature 

quarkonia probe the perturbative (high energy)  and non 
perturbative region (low energy)  as well as the transition 

region in dependence of their radius r
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Quarkonium as an exploration tool of physics of 
 Standard Model and beyond

40

Quarkonium decay into new particles?

Mode Mass range ( GeV) BF upper limit (90% CL)
Υ(2S , 3S )→ γA0, A0 → µ+µ− 0.21 < mA < 9.3 (0.3 − 8.3) × 10−6

Υ(3S )→ γA0, A0 → τ+τ− 4.0 < mA < 10.1 (1.5 − 16) × 10−5

Υ(2S , 3S )→ γA0, A0 → hadrons 0.3 < mA < 7.0 (0.1 − 8) × 10−5

Υ(1S )→ γA0, A0 → χχ̄ mχ < 4.5 GeV (0.5 − 24) × 10−5

Υ(1S )→ γA0, A0 → invisible mA < 9.2 GeV (1.9 − 37) × 10−6

Υ(3S )→ γA0, A0 → invisible mA < 9.2 GeV (0.7 − 31) × 10−6

Υ(1S )→ γA0, A0 → gg mA < 9.0 GeV 10−6 − 10−2

Υ(1S )→ γA0, A0 → ss mA < 9.0 GeV 10−5 − 10−3

Table 3. Results of light Higgs boson searches performed by the BABAR Collaboration.

from e+e− → γγ, radiative Bhabha, and two-photon fusion events. The A0 yield is extracted by a
series of unbinned likelihood fits to the photon energy distribution for 0 < mA0 < 7.8 GeV. No excess
is seen, and limits on the branching fraction at the level of (0.7 − 31) × 10−6 are derived with 90%
confidence level [13].

3.5 Search for Υ(1S )→ γA0, A0 → gg or ss

.
A recent search was performed by BABAR for Υ(2S ) → π+π− − Υ(1S )),Υ(1S ) → γA0, A0 →

gg(orss). Selected events with final states consisting of three or more light adrons, in addition to the
two pions from the Υ(2S ) decay, and the radiative photon. A total of 26 final states composed of
light hadrons were studied, including some containing at least a kaon pair, which were assigned to
the A0 → ss decay. The main background is due to Υ(1S ) decay to ggg, where one of the π0 of the
hadronization decays to photons, one of which is mistaken for the radiative one. The A0 mass range
explored is 0.5 to 9 GeV. We observe no signals [14]in the hadronic invariant mass spectra, and set
upper limits at 90% CL limits on the product branching for Υ(1S )→ γA0, A0 → gg from 10−6 to 10−2

; for the branghing ratio Υ(1S ) → γA0, A0 → ss the corresponding limits are from 10−5 to 10−3 We
do not observe a NMSSM A0 or any narrow hadronic resonance.

4 Search for light dark matter

We have now overwhelming astrophysical evidence for dark matter with several possibly related
anomalies observed. There is more than one explanation, of course, and most models introduce a
new dark force mediated by a new gauge boson with a mass around a GeV. Dark matter particles are
expected at the TeV scale, but the lightest particles in which they would annihilate could be pairs of
light dark bosons, which subsequently could only decay into lepton pairs, or scatter. This light hidden
sector is poorly constrained, and it is worth exploring the possibility that these particles are produced
at accelerators. B-factories offer a low background environment , so signatures of dark particles at the
MeV/GeV scale, should not escape detection, and a discovery would allow to probe their structure.
The 2 sectors could interact via kinematical mixing, and the value of the mixing parameter would be
the key to a possible detection. The dark photon, the equivalent of the e.m. photon, could have a mass
of the order from MeV to GeV, and would couple to the SM fermions with a charge ε. The preferred
value for ε is from 10−5 to 10−3 and several experiments have already put limits. The hidden boson
masses are usually generated via the Higgs mechanism, adding hidden Higgs bosons (h′) to the theory.
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Figure 6. Constraints on the mixing parameters, ε, as a function of the hidden photon mass derived from searches
in Υ(2S , 3S ) decays at BABAR (orange shading) and from other experiments [18–20] (gray shading). The red
line shows the value of the coupling required to explain the discrepancy between the calculated and measured
anomalous magnetic moment of the muon [? ].

10−10 − 10−8 are excluded for a large range of hidden photon and hidden Higgs masses, assuming
prompt decays. Assuming αD = α " 1/137, limits on the mixing strength in the range 10−4 − 10−3

are derived, an order of magnitude smaller than the current experimental bounds extracted from direct
photon production in this mass range.

5 Summary

More than 5 years after completion of the data taking, the BABAR collaboration is still very active.
The great amount of data collected is stimulating new ideas. The T violation measurement is a first
and constitues a beautiful proof of the CPT theorem. Searches for exotic particles have not given
positive results, but have contributed to considerably narrow the parameters space. One of the hot
topics in Particles Physics is now dark matter: recent evidence has suggested that dark matter might
contain a MeV- GeV scale component. Thanks to their large luminosities, B factories provide an ideal
environment to probe for such a possibility, complementing direct detection and satellite experiments.
No sign of light dark matter has been observed so far, but several new analyses are going on and we
still hope for surprises. A big step forward is expected with the atart of the Super flavor factory at
KEK: BELLE-II is expected to increase the sensitivity of these searches by a factor 10 − 100.
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• The large m makes Quarkonium an ideal probe  of  new light particles

invisible 
decays of 
Y(1S) at Belle

• Quarkonium can serve for the precise extraction of Standard 
Model parameters: heavy quark masses and strong coupling 

constant ↵s

• Quarkonium in its exotic manifestations probes the 
nonstandard characteristics of a nonabelian gauge 

theory: hybrids, multi quark configurations
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bottomonium: the present revolution  
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QCD Theory of Quarkonium: a very  challenging problem
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Effective Field Theories

Whenever a system H, described by LQCD, is characterized by 2 scales Λ ! λ,
observables may be calculated by expanding one scale with respect to the other.
An effective field theory makes the expansion in λ/Λ explicit at the Lagrangian level.

The EFT Lagrangian, LEFT , suitable to describe H at scales lower than Λ is defined by
(1) a cut off Λ ! µ ! λ;
(2) by some degrees of freedom that exist at scales lower than µ

⇒ LEFT is made of all operators On that may be built from the effective degrees
of freedom and are consistent with the symmetries of L.

EFT for a system with two scales
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How to build EFTS 

range of validity of the EFT: energy < µ
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• Since 〈On〉 ∼ λn the EFT is organized as an expansion in λ/Λ.

• The EFT is renormalizable order by order in λ/Λ.

• The matching coefficients cn(Λ/µ) encode the non-analytic behaviour in Λ. They
are calculated by imposing that LEFT and L describe the same physics at any
finite order in the expansion: matching procedure.

• If Λ $ ΛQCD then cn(Λ/µ) may be calculated in perturbation theory.
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Quarkonium with NREFTEFTs for Quarkonium
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<latexit sha1_base64="yUQSqD5NRwjmQJBYzIJ/mH81vOw=">AAACMXicdVBNSwMxEM36bf2qevQyWAQPsmSr1eJJ9OJRwarQ1pJNpzY02V2SbKEs/Ute/CfixYMiXv0TZmsFFR0IefPmDTPzwkQKYyl98iYmp6ZnZufmCwuLS8srxdW1SxOnmmONxzLW1yEzKEWENSusxOtEI1OhxKuwd5LXr/qojYijCztIsKnYbSQ6gjPrqFbxNGtoBbaL0NgBjRL7LLKQJ+1BxJTTyVFmHECTI6bx0P1DUP 2dPFf9mzIAtIol6gflgFYOgPp0v7pX3XegUt0NdisQ+HQUJTKOs1bxodGOeaowslwyY+oBTWwzY9oKLnFYaKQGE8Z77BbrDrpl0DSz0cVD2HJMGzqxds/tO2K/d2RMGTNQoVMqZrvmdy0n/6rVU9upNjMRJanFiH8O6qQSbAy5fdAWGrmVAwcY18LtCrzLNOPWmVxwJnxdCv+Dy7IfVHx6vlc6Oh7bMUc2yCbZJgE5IEfklJyRGuHkjjySZ/Li3XtP3qv39imd8MY96+RHeO8fquemLg==</latexit>

the relevant dynamical scales are :mv, mv2



NRQCD
<latexit sha1_base64="ICn6u13m0dwwCU2SsBHYFgSfPmk=">AAAB/3icbVDLSsNAFJ34rPEVFdy4GSyCq5KIohuhWBcuRFqxD2himUwn7dCZJMxMhBKz8FfcuFDErb/hzr9x2mahrQcuHM65l3vv8WNGpbLtb2NufmFxabmwYq6urW9sWlvbDRklApM6jlgkWj6ShNGQ1BVVjLRiQRD3GWn6g8rIbz4QIWkU3qlhTDyOeiENKEZKSx1r10xdjBi8zu5TV3B4c1urXGbnHatol+wx4CxxclIEOaod68vtRjjhJFSYISnbjh0rL0VCUcxIZrqJJDHCA9QjbU1DxIn00vH9GTzQShcGkdAVKjhWf0+kiEs55L7u5Ej15bQ3Ev/z2okKzryUhnGiSIgni4KEQRXBURiwSwXBig01QVhQfSvEfSQQVjoyU4fgTL88SxpHJeekZNeOi+WLPI4C2AP74BA44BSUwRWogjrA4BE8g1fwZjwZL8a78TFpnTPymR3wB8bnDy7PlOs=</latexit>
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Caswell Lepage 86, Bodwin Braaten Lepage 95, Manohar 97
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Caswell Lepage 86, Bodwin Braaten Lepage 95, Manohar 97

(Caswell Lepage 86,  Thacker, Lepage 88, 91, Bodwin Braaten Lepage 95)
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Caswell Lepage 86, Bodwin Braaten Lepage 95, Manohar 97

<latexit sha1_base64="d54ZqQuYI4pLzLm//78l0ipdqCk=">AAACOXicbVBLS8NAEN74tr6qHr0MFkFRSiKKHsUHeKxoVWhi2Ww37eImG3YnQgn5W178F94ELx4U8eofcPs4+BpY+Oab+WZnvjCVwqDrPjkjo2PjE5NT06WZ2bn5hfLi0qVRmWa8zpRU+jqkhkuR8DoKlPw61ZzGoeRX4e1Rr351x7URKrnAbsqDmLYTEQlG0VLNcq0kgDUN5JD7YQTnBfispRCg0c+PbY4i5mYL2oOOkyIAX9mRsAPxzXYBmwOFgQ3wUyOa5YpbdfsBf4E3BBUyjFqz/Oi3FMtiniCT1JiG56YY5FSjYJIXJT8zPKXslrZ5w8KE2m2CvH95AWuWaUGktH0JQp/9rshpbEw3Dm1nTLFjftd65H+1RobRfpCLJM2QJ2zwUZRJQAU9G6ElNGcouxZQpoXdFViHasrQml2yJni/T/4LLrer3m7VPdupHBwO7ZgiK2SVrBOP7JEDckpqpE4YuSfP5JW8OQ/Oi/PufAxaR5yhZpn8COfzCydhqYw=</latexit>

ics
S · [D⇥, gE]

4m2
+ · · · ) 

<latexit sha1_base64="6kWVRYap9NDs6J9y4fCeXA9Kav4=">AAACInicbVBNS8MwGE79nPWr6tFLcAgTYbSiqLehF48T3AesdaRp2oWlaU1SYZT9Fi/+FS8eFPUk+GPMth7c5gshD8/zPm/yPn7KqFS2/W0sLC4tr6yW1sz1jc2tbWtntymTTGDSwAlLRNtHkjDKSUNRxUg7FQTFPiMtv3890luPREia8Ds1SIkXo4jTkGKkNNW1Ls1j6OIevXcDFEVEwAp0HzIUwOJyg0RJOM0djR1dq2xX7XHBeeAUoAyKqnetTz0MZzHhCjMkZcexU+XlSCiKGRmabiZJinAfRaSjIUcxkV4+XnEIDzUTwDAR+nAFx+xfR45iKQexrztjpHpyVhuR/2mdTIUXXk55minC8eShMGNQJXCUFwyoIFixgQYIC6r/CnEPCYSVTtXUITizK8+D5knVOavat6fl2lURRwnsgwNQAQ44BzVwA+qgATB4Ai/gDbwbz8ar8WF8TVoXjMKzB6bK+PkF0bqhZQ==</latexit>

+�†( . . . )�

<latexit sha1_base64="c0vqa/5beejUmp3ZjEX1lm1luHU=">AAAB8nicbVDLSsNAFJ3UV42vqks3g0WoCDXxgS6LbtxZwT4gjWUynbRD5xFmJkIJ/Qw3LhRx69e482+ctllo9cCFwzn3cu89UcKoNp735RQWFpeWV4qr7tr6xuZWaXunqWWqMGlgyaRqR0gTRgVpGGoYaSeKIB4x0oqG1xO/9UiUplLcm1FCQo76gsYUI2OlwD2CtxX/mD+cHnZLZa/qTQH/Ej8nZZCj3i19dnoSp5wIgxnSOvC9xIQZUoZiRsZuJ9UkQXiI+iSwVCBOdJhNTx7DA6v0YCyVLWHgVP05kSGu9YhHtpMjM9Dz3kT8zwtSE1+GGRVJaojAs0VxyqCRcPI/7FFFsGEjSxBW1N4K8QAphI1NybUh+PMv/yXNk6p/XvXuzsq1qzyOItgD+6ACfHABauAG1EEDYCDBE3gBr45xnp03533WWnDymV3wC87HNzLrjz8=</latexit>

+O(1/m3)

<latexit sha1_base64="jcRbltB+aHklGYJuj5u7KF0as1E=">AAACIHicdVDLSgMxFM34tr6qLt0Ei6AgQ6Za26XoxqWCVaFTyp00tcEkMyQZsQz9FDf+ihsXiuhOv8bMWEFFLyT3cM65JPdEieDGEvLmjY1PTE5Nz8yW5uYXFpfKyytnJk41ZU0ai1hfRGCY4Io1LbeCXSSagYwEO4+uDnP9/Jppw2N1agcJa0u4VLzHKVhHdcr1UhZqidlNAio34XAbczXM23V+FSqobsGEIJI+dMym3OqUK8 QPqgGp1THxyV5jt7HnQK2xE+zUcOCToipoVMed8mvYjWkqmbJUgDGtgCS2nYG2nAo2LIWpYQnQK7hkLQcVSGbaWbHgEG84pot7sXZHWVyw3ycykMYMZOScEmzf/NZy8i+tldpeo51xlaSWKfr5UC8V2MY4Twt3uWbUioEDQDV3f8W0DxqodZmWXAhfm+L/wVnVD2o+Odmt7B+M4phBa2gdbaIA1dE+OkLHqIkoukX36BE9eXfeg/fsvXxax7zRzCr6Ud77B0YroTU=</latexit>

expansion in v and↵s(m)

<latexit sha1_base64="5feYSBY+MISGLI159OWxdPKAUTw=">AAACT3icdZFNaxsxEIa17lfifsRtj7mImkIMZdEmceJjaC89plAnAa8xs/JsVkTSLtJswSz+h70kt/6NXnpoKdFuXGhLOyDp4Z0ZRnqVVVp5EuJL1Lt3/8HDR1vb/cdPnj7bGTx/cebL2kmcylKX7iIDj1pZnJIijReVQzCZxvPs6l2bP/+EzqvSfqRVhXMDl1blSgIFaTHI+2nlFU/f8L1UFmrUUpM6w5UPSAWGPVeol22CCqD2BGtVoTQQ+q5ThomBR3c12GlgSY1ydCaMWfPFYCjiZD8R42MuYnE0OZwcBRhPDpKDMU9i0cWQbeJ0MbhJl6WsDVqSGryfJaKieQOOlNS47qe1xwrkFVziLKAFg37edH6s+eugLHleurAs8U79vaMB4/3KZKHSABX+71wr/is3qymfzBtlq5rQyrtBea05lbw1ly+VQ0l6FQCkU+GuXBbgQFL4gn4w4ddL+f/hbD9OxrH4cDg8ebuxY4vtsldsjyXsmJ2w9+yUTZlkn9lX9p39iK6jb9HP3qa0F23gJfsjetu3WHOvjA==</latexit>

 (�) is the field that annihilates (creates) the (anti)fermion

<latexit sha1_base64="yUQSqD5NRwjmQJBYzIJ/mH81vOw=">AAACMXicdVBNSwMxEM36bf2qevQyWAQPsmSr1eJJ9OJRwarQ1pJNpzY02V2SbKEs/Ute/CfixYMiXv0TZmsFFR0IefPmDTPzwkQKYyl98iYmp6ZnZufmCwuLS8srxdW1SxOnmmONxzLW1yEzKEWENSusxOtEI1OhxKuwd5LXr/qojYijCztIsKnYbSQ6gjPrqFbxNGtoBbaL0NgBjRL7LLKQJ+1BxJTTyVFmHECTI6bx0P1DUP 2dPFf9mzIAtIol6gflgFYOgPp0v7pX3XegUt0NdisQ+HQUJTKOs1bxodGOeaowslwyY+oBTWwzY9oKLnFYaKQGE8Z77BbrDrpl0DSz0cVD2HJMGzqxds/tO2K/d2RMGTNQoVMqZrvmdy0n/6rVU9upNjMRJanFiH8O6qQSbAy5fdAWGrmVAwcY18LtCrzLNOPWmVxwJnxdCv+Dy7IfVHx6vlc6Oh7bMUc2yCbZJgE5IEfklJyRGuHkjjySZ/Li3XtP3qv39imd8MY96+RHeO8fquemLg==</latexit>

the relevant dynamical scales are :mv, mv2
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Imaginary parts give the decay



NRQCD
<latexit sha1_base64="ICn6u13m0dwwCU2SsBHYFgSfPmk=">AAAB/3icbVDLSsNAFJ34rPEVFdy4GSyCq5KIohuhWBcuRFqxD2himUwn7dCZJMxMhBKz8FfcuFDErb/hzr9x2mahrQcuHM65l3vv8WNGpbLtb2NufmFxabmwYq6urW9sWlvbDRklApM6jlgkWj6ShNGQ1BVVjLRiQRD3GWn6g8rIbz4QIWkU3qlhTDyOeiENKEZKSx1r10xdjBi8zu5TV3B4c1urXGbnHatol+wx4CxxclIEOaod68vtRjjhJFSYISnbjh0rL0VCUcxIZrqJJDHCA9QjbU1DxIn00vH9GTzQShcGkdAVKjhWf0+kiEs55L7u5Ej15bQ3Ev/z2okKzryUhnGiSIgni4KEQRXBURiwSwXBig01QVhQfSvEfSQQVjoyU4fgTL88SxpHJeekZNeOi+WLPI4C2AP74BA44BSUwRWogjrA4BE8g1fwZjwZL8a78TFpnTPymR3wB8bnDy7PlOs=</latexit>
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Caswell Lepage 86, Bodwin Braaten Lepage 95, Manohar 97
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Caswell Lepage 86, Bodwin Braaten Lepage 95, Manohar 97

(Caswell Lepage 86,  Thacker, Lepage 88, 91, Bodwin Braaten Lepage 95)
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<latexit sha1_base64="d54ZqQuYI4pLzLm//78l0ipdqCk="></latexit>
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S · [D⇥, gE]

4m2
+ · · · ) 

<latexit sha1_base64="6kWVRYap9NDs6J9y4fCeXA9Kav4=">AAACInicbVBNS8MwGE79nPWr6tFLcAgTYbSiqLehF48T3AesdaRp2oWlaU1SYZT9Fi/+FS8eFPUk+GPMth7c5gshD8/zPm/yPn7KqFS2/W0sLC4tr6yW1sz1jc2tbWtntymTTGDSwAlLRNtHkjDKSUNRxUg7FQTFPiMtv3890luPREia8Ds1SIkXo4jTkGKkNNW1Ls1j6OIevXcDFEVEwAp0HzIUwOJyg0RJOM0djR1dq2xX7XHBeeAUoAyKqnetTz0MZzHhCjMkZcexU+XlSCiKGRmabiZJinAfRaSjIUcxkV4+XnEIDzUTwDAR+nAFx+xfR45iKQexrztjpHpyVhuR/2mdTIUXXk55minC8eShMGNQJXCUFwyoIFixgQYIC6r/CnEPCYSVTtXUITizK8+D5knVOavat6fl2lURRwnsgwNQAQ44BzVwA+qgATB4Ai/gDbwbz8ar8WF8TVoXjMKzB6bK+PkF0bqhZQ==</latexit>

+�†( . . . )�

<latexit sha1_base64="c0vqa/5beejUmp3ZjEX1lm1luHU=">AAAB8nicbVDLSsNAFJ3UV42vqks3g0WoCDXxgS6LbtxZwT4gjWUynbRD5xFmJkIJ/Qw3LhRx69e482+ctllo9cCFwzn3cu89UcKoNp735RQWFpeWV4qr7tr6xuZWaXunqWWqMGlgyaRqR0gTRgVpGGoYaSeKIB4x0oqG1xO/9UiUplLcm1FCQo76gsYUI2OlwD2CtxX/mD+cHnZLZa/qTQH/Ej8nZZCj3i19dnoSp5wIgxnSOvC9xIQZUoZiRsZuJ9UkQXiI+iSwVCBOdJhNTx7DA6v0YCyVLWHgVP05kSGu9YhHtpMjM9Dz3kT8zwtSE1+GGRVJaojAs0VxyqCRcPI/7FFFsGEjSxBW1N4K8QAphI1NybUh+PMv/yXNk6p/XvXuzsq1qzyOItgD+6ACfHABauAG1EEDYCDBE3gBr45xnp03533WWnDymV3wC87HNzLrjz8=</latexit>

+O(1/m3)

No unique power counting!

<latexit sha1_base64="jcRbltB+aHklGYJuj5u7KF0as1E=">AAACIHicdVDLSgMxFM34tr6qLt0Ei6AgQ6Za26XoxqWCVaFTyp00tcEkMyQZsQz9FDf+ihsXiuhOv8bMWEFFLyT3cM65JPdEieDGEvLmjY1PTE5Nz8yW5uYXFpfKyytnJk41ZU0ai1hfRGCY4Io1LbeCXSSagYwEO4+uDnP9/Jppw2N1agcJa0u4VLzHKVhHdcr1UhZqidlNAio34XAbczXM23V+FSqobsGEIJI+dMym3OqUK8 QPqgGp1THxyV5jt7HnQK2xE+zUcOCToipoVMed8mvYjWkqmbJUgDGtgCS2nYG2nAo2LIWpYQnQK7hkLQcVSGbaWbHgEG84pot7sXZHWVyw3ycykMYMZOScEmzf/NZy8i+tldpeo51xlaSWKfr5UC8V2MY4Twt3uWbUioEDQDV3f8W0DxqodZmWXAhfm+L/wVnVD2o+Odmt7B+M4phBa2gdbaIA1dE+OkLHqIkoukX36BE9eXfeg/fsvXxax7zRzCr6Ud77B0YroTU=</latexit>

expansion in v and↵s(m)

<latexit sha1_base64="5feYSBY+MISGLI159OWxdPKAUTw="></latexit>

 (�) is the field that annihilates (creates) the (anti)fermion

<latexit sha1_base64="yUQSqD5NRwjmQJBYzIJ/mH81vOw=">AAACMXicdVBNSwMxEM36bf2qevQyWAQPsmSr1eJJ9OJRwarQ1pJNpzY02V2SbKEs/Ute/CfixYMiXv0TZmsFFR0IefPmDTPzwkQKYyl98iYmp6ZnZufmCwuLS8srxdW1SxOnmmONxzLW1yEzKEWENSusxOtEI1OhxKuwd5LXr/qojYijCztIsKnYbSQ6gjPrqFbxNGtoBbaL0NgBjRL7LLKQJ+1BxJTTyVFmHECTI6bx0P1DUP 2dPFf9mzIAtIol6gflgFYOgPp0v7pX3XegUt0NdisQ+HQUJTKOs1bxodGOeaowslwyY+oBTWwzY9oKLnFYaKQGE8Z77BbrDrpl0DSz0cVD2HJMGzqxds/tO2K/d2RMGTNQoVMqZrvmdy0n/6rVU9upNjMRJanFiH8O6qQSbAy5fdAWGrmVAwcY18LtCrzLNOPWmVxwJnxdCv+Dy7IfVHx6vlc6Oh7bMUc2yCbZJgE5IEfklJyRGuHkjjySZ/Li3XtP3qv39imd8MY96+RHeO8fquemLg==</latexit>

the relevant dynamical scales are :mv, mv2
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Imaginary parts give the decay



NRQCD
<latexit sha1_base64="ICn6u13m0dwwCU2SsBHYFgSfPmk=">AAAB/3icbVDLSsNAFJ34rPEVFdy4GSyCq5KIohuhWBcuRFqxD2himUwn7dCZJMxMhBKz8FfcuFDErb/hzr9x2mahrQcuHM65l3vv8WNGpbLtb2NufmFxabmwYq6urW9sWlvbDRklApM6jlgkWj6ShNGQ1BVVjLRiQRD3GWn6g8rIbz4QIWkU3qlhTDyOeiENKEZKSx1r10xdjBi8zu5TV3B4c1urXGbnHatol+wx4CxxclIEOaod68vtRjjhJFSYISnbjh0rL0VCUcxIZrqJJDHCA9QjbU1DxIn00vH9GTzQShcGkdAVKjhWf0+kiEs55L7u5Ej15bQ3Ev/z2okKzryUhnGiSIgni4KEQRXBURiwSwXBig01QVhQfSvEfSQQVjoyU4fgTL88SxpHJeekZNeOi+WLPI4C2AP74BA44BSUwRWogjrA4BE8g1fwZjwZL8a78TFpnTPymR3wB8bnDy7PlOs=</latexit>
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Caswell Lepage 86, Bodwin Braaten Lepage 95, Manohar 97
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NRQCD had a tremendous impact  on spectrum lattice calculations,  has given a 
theoretical framework for quarkonium production at colliders and for decays
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pNRQCD: EFT for QQ̄

pNRQCD is the EFT for nonrelativistic quark-antiquark pairs (QQ̄) near threshold.

• QFT = QCD

• It is obtained by integrating out hard and soft gluons with p or E scaling like m, mv.

• The d.o.f. are QQ̄ pairs (sometimes cast in color singlet S and color octet O)

and ultrasoft modes (e.g. light quarks, low-energy gluons):

φ = S

• The Lagrangian is organized as an expansion in 1/m and r.

• The form of ∆L and of the ultrasoft modes depends on the low energy dynamics.

• The power counting is

→ p ∼ 1/r ∼ mv (soft scale),

→ E ∼ p2/2m ∼ V (0) ∼ Pcm ∼ 1/Rcm ∼ mv2 (ultrasoft scale),

→ operators in ∆L scale like (mv2)dimension.

◦ Brambilla Pineda Soto Vairo RMP 77 (2005) 1423

<latexit sha1_base64="VDkr/eb6cdfCPbBLHxoTOpb98TM="></latexit>

LpNREFT =

Z
d3r�†(i@0 �

p2

m
� V )�+�L

pNRQCD: EFT for QQ̄

pNRQCD is the EFT for nonrelativistic quark-antiquark pairs (QQ̄) near threshold.

• QFT = QCD

• It is obtained by integrating out hard and soft gluons with p or E scaling like m, mv.

• The d.o.f. are QQ̄ pairs (sometimes cast in color singlet S and color octet O)

and ultrasoft modes (e.g. light quarks, low-energy gluons):

φ = S

• The Lagrangian is organized as an expansion in 1/m and r.

• The form of ∆L and of the ultrasoft modes depends on the low energy dynamics.

• The power counting is

→ p ∼ 1/r ∼ mv (soft scale),

→ E ∼ p2/2m ∼ V (0) ∼ Pcm ∼ 1/Rcm ∼ mv2 (ultrasoft scale),

→ operators in ∆L scale like (mv2)dimension.

◦ Brambilla Pineda Soto Vairo RMP 77 (2005) 1423

with respect to pNRQCD: EFT for QQ̄

pNRQCD is the EFT for nonrelativistic quark-antiquark pairs (QQ̄) near threshold.

• QFT = QCD

• It is obtained by integrating out hard and soft gluons with p or E scaling like m, mv.

• The d.o.f. are QQ̄ pairs (sometimes cast in color singlet S and color octet O)

and ultrasoft modes (e.g. light quarks, low-energy gluons):

φ = S

• The Lagrangian is organized as an expansion in 1/m and r.

• The form of ∆L and of the ultrasoft modes depends on the low energy dynamics.

• The power counting is

→ p ∼ 1/r ∼ mv (soft scale),

→ E ∼ p2/2m ∼ V (0) ∼ Pcm ∼ 1/Rcm ∼ mv2 (ultrasoft scale),

→ operators in ∆L scale like (mv2)dimension.

◦ Brambilla Pineda Soto Vairo RMP 77 (2005) 1423

Weak coupling pNRQCD

∆L =

∫

d3r Tr

{

O†

(

iD0 −
p2

m
+ · · ·− Vo

)

O

VAO†r · gES +H.c.+
VB

2
O†r · gEO + c.c.

}

+ · · ·

−
1

4
Fa
µνF

µν a +

nf
∑

i=1

q̄i iD/ qi

The (weak coupling) matching coefficients are the Coulomb potential:
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Weakly coupled pNREFT  can be applied to any NR system 

of any nature: Susy particles, DM Particles…
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pNRQCD

pNRQCD provides a QM description from field theory: the Schroedinger equation 
and the potentials appear once all scales above the binding energy have been 
integrated out: this provides a clear definition of the potential 

The EFT accounts for non-potential terms as well. They provide loop corrections to 
the leading potential picture. Retardation effects are typically related to the 
nonperturbative physics 

The Quantum Mechanical divergences are cancelled by the NRQCD matching 
coefficients. 

Poincare’ invariance is intact and is realized via exact relations among the 
matching coefficients (potentials)



QCD  singlet static potential  and singlet  static energy 

Weak coupling static potential

V (0)(r, µ′) = lim
T→∞

i

T
ln − + · · ·

= E0(r) +
i

N

∫ ∞

0
dt e−it(Vo−V )〈Tr r · gE(t) r · gE(0)〉(µ′) + · · ·

◦ Brambilla Pineda Soto Vairo PRD 60 (1999) 091502

The static energy E0(r) is known at three loops:

E0(r) = Λs−
CFαs

r
(1+#αs+#α2

s +#α3
s +#α3

s lnαs+#α4
s ln

2 αs+#α4
s lnαs+ . . . )

◦ Anzai Kiyo Sumino PRL 104 (2010) 112003

A.Smirnov V.Smirnov Steinhauser PRL 104 (2010) 112002
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The potential is a Wilson coefficient of the EFT.  
In general, it  undergoes renormalization, develops scale 

dependence and satisfies renormalization 
group equations, which allow to resum large logarithms.
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Infrared logarithms

lnαs in E0 signals the cancellation of contributions coming from soft and ultrasoft gluons:

lnαs = ln
µ′

1/r
+ ln

αs/r

µ′

Infrared logarithms in the potential may be computed in the EFT solving the ADM problem.

◦ Appelquist Dine Muzinich PRD 17 (1978) 2074
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Infrared logarithms

lnαs in E0 signals the cancellation of contributions coming from soft and ultrasoft gluons:

lnαs = ln
µ′
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Infrared logarithms in the potential may be computed in the EFT solving the ADM problem.
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Two problems:
1)Bad convergence of the series due to large beta_0 terms

2) Large logs

The eft  cures both:
1) Renormalon subtracted scheme 

2) Renormalization group summation of the logs

up to N^3LL (↵4+n
s lnn ↵s).               N. B Garcia, Soto Vairo 2007, 2009, Pineda, Soto

Beneke 98, Hoang, Lee 99, Pineda 01, N.B. Pineda 
Soto, Vairo 09
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We present two determinations of the strong coupling ↵s. The first one is from the static energy
at three-loop accuracy, and may be considered an update of earlier determinations by some of us.
The new analysis includes new lattice data at smaller lattice spacings, and reaches distances as short
as 0.0237 fm. We present a comprehensive and detailed estimate of the error sources that contribute
to the uncertainty of the final result, ↵s(MZ) = 0.11660+0.00110

�0.00056. The second determination is based
on lattice data for the singlet free energy at finite temperature up to distances as small as 0.0081 fm,
from which we obtain ↵s(MZ) = 0.11638+0.00095

�0.00087.

I. INTRODUCTION

A precise determination of the strong coupling ↵s is of
key importance both for the theory of strong interactions,
which is determined by such fundamental parameter, and
for investigations of new physics beyond the Standard
Model. Cross section calculations at the Large Hadron
Collider, for example su↵er from the uncertainties re-
lated to our limited knowledge of ↵s. The last decades
have witnessed an impressive e↵ort in the ↵s extraction
from an ample range of physical observables with a broad
sweep of di↵erent methods. Notwithstanding all these ef-
forts, the Particle Data Book (PDG) world average value
for ↵s in 2018, ↵s(MZ) = 0.1181 ± 0.0011, has an over-
all uncertainty that has almost doubled with respect to
the PDG average in 2013, ↵s(MZ) = 0.1185± 0.0006 [1].
This is due to the fact that the uncertainty of several
determinations that enter the average is dominated by
errors of theoretical origin, which are often di�cult to
precisely assess. It is important therefore to use a vari-
ety of di↵erent ways to extract ↵s and to validate each
extraction at the best of the state of the art.

In this paper we aim at an improved determination of
↵s both by updating earlier extractions from the static
energy and by proposing a new method that involves the
singlet free energy.

The static energy is an observable up to an addi-
tive constant, and it is a function of the distance r be-
tween the static quark and the static antiquark. In the
limit of massless dynamical quarks, it depends only on
↵s. It can be calculated on the lattice for any distance

r =
p

x2 + y2 + z2, where x, y and z are integer multi-
ples of the lattice spacing. For short distance r it can be
calculated in perturbation theory in QCD as a function
of ↵s using nonrelativistic QCD e↵ective field theories
(EFT). Noteworthy, perturbation theory is accurate for
this quantity at three loops, and the tree-level result is
already sensitive to ↵s. The comparison between the per-
turbative expression and lattice data at distances small
enough to be accessible to perturbation theory is a good
way to obtain a precise determination of ↵s. For this
endeavor it is crucial to have lattice data covering an
interval of su�ciently small distances in order to be sen-
sitive to the minute details of the curvature of the static
energy, namely, with su�ciently fine lattice spacing. At
the present day, these lattices still pose a major chal-
lenge. In this paper we will use lattices [2] with an ex-
traordinarily fine lattice spacing a = 0.0249 fm to achieve
a systematically improved extraction of ↵s.

Additionally we exploit a new idea. One reason for
which it is challenging to reach such fine lattice spacings
in lattice QCD simulations with dynamical quarks is that
one has to simultaneously maintain the control over fi-
nite volume e↵ects arising from the propagation of the
lightest hadronic modes, namely, the Goldstone bosons,
at the pion scale. A lattice simulation at high enough
temperature avoids this infrared problem, and thus en-
ables reaching much finer lattice spacings using smaller
volumes. We use finite temperature lattices with un-
precedentedly fine lattice spacing a = 0.00848 fm [3]. The
singlet static free energy is again a function of the static
quark-antiquark distance and has been calculated on the
lattice [3] and perturbatively [4]. The comparison be-

ar
X

iv
:1

90
7.

11
74

7v
1 

 [h
ep

-la
t] 

 2
6 

Ju
l 2

01
9

in 2019 improved to 



Quarkonium Spectrum at mα5
s

En = 〈n|Vs(µ)|n〉 − i
g2

3Nc

∫ ∞

0

dt 〈n|reit(E
(0)
n −Ho)r|n〉 〈E(t)E(0)〉(µ)

D
(1)
s = α2

s (r)



1 +
2

3
(4CF + 2CA)

αs

π
ln rµ

ff

+ . . .

D
(2)
1,s = αs(r)



1 +
4

3
CA

αs

π
ln rµ

ff

+ . . . D
(2)
2,s = αs(r) + . . .

D
(2)
d,s = αs(r)



1 +
αs

π

»

2CF

3
+

17CA

3

–

ln mr +
16

3

αs

π

„

CA

2
− CF

«

ln rµ

ff

+ . . .

D
(2)
S2,s

= αs(r)

„

1 −
7CA

4

αs

π
ln mr

«

+ . . .

D
(2)
LS,s = αs(r)

„

1 −
2CA

3

αs

π
ln mr

«

+ . . . D
(2)
S12,s = αs(r)

“

1 − CA
αs

π
ln mr

”

+ . . .

mα5
s ln αs Brambilla Pineda Soto Vairo 99, Kniehl Penin 99

mα5
s Kniehl Penin Smirnov Steinhauser 02 NNLL Pineda 02

NNNLL Peset Pineda et al 2018,2019, Kiyo Sumino 2014, Beneke, Kiyo Schuler 05,08 

High-lying quarkonia away from threshold: 1/m potentials

• Singlet states described by the long tails of the potentials in pNRQCD:
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•Lattice calculations of the pNRQCD  potentials

•Exact relations among the potentials from the EFT

•QCD vacuum calculation of the potential (need only one assumption on the Wilson loop 
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High-lying quarkonia away from threshold: 1/m potentials
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•Lattice calculations of the pNRQCD  potentials
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QCD

(QQ̄)1 + Glueball

(QQ̄)1
(QQ̄)8G

hybrid

Strongly coupled pNRQCD: 

The degrees of freedoms now are  

with gluons at the  scale ΛQCD
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Static  NRQCD spectrum 
from lattice QCD

NRQCD states

Strongly coupled pNRQCD: 
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⇤

K is the angular momentum of the light degrees of 
freedom;same symmetry as the diatomic molecule 
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• A  pure potential description emerges from the EFT

• The potentials V = ReV + ImV

        
  from QCD in the matching: get spectra and decays 

•We obtain  the form of the nonperturbative potentials V in terms of generalized Wilson 
loops,  that are low energy pure gluonic correlators: all the flavour dependence is 

pulled out 
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High-lying quarkonia away from threshold: 1/m potentials

• Singlet states described by the long tails of the potentials in pNRQCD:

V = V0 +
1

m
V1 +

1

m2
(VSD + VV D)

•Lattice calculations of the pNRQCD  potentials

•Exact relations among the potentials from the EFT

•QCD vacuum calculation of the potential (need only one assumption on the Wilson loop 

Quarkonium singlet  potential 
and from this we obtain the  
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 QCD Spin dependent potentials  

-factorization: the NRQCD matching coefficients encode the physics at the large scale m, the potentials are given in 
terms of low energy nonperturbative Wilson loops. They depend only on the glue, only one 
lattice calculation to get the spectrum of charmonium bottomonium and Bc 

Pineda, Vairo 00

-the spin dependent potential has the usual structure with spin-orbit, tensor and  spin-spin terms. The spin-

orbit term has a confining contribution: they appear at order 1/m^2 

-the spin dependent potentials in the Schroedinger eq. give the multiplet spin structure



 Spin dependent potentials  

N. B., Martinez, vairo 2014 



 Spin dependent potentials  

Such data can distinguish different models for the dynamics 
of low energy QCD e.g. effective string model 

N. B., Martinez, vairo 2014 



Low energy  physics factorized in Wilson loops: can be 
used to probe the confinement mechanism  
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Exact relations from Poincare’  invariance

The EFT is still Poincare’ invariant-> this induces   relations 
among the potentials
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Constraint on the spin-independent potentials I

A lattice determination of V
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relations involving spin 
 independent potentials 
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1. FACTORIZATION OF THE INCLUSIVE QUARKONIUM

PRODUCTION CROSS SECTION

In heavy-quarkonium production in hard-scattering processes, two large momentum
scales appear: the heavy-quark mass m and the typical momentum transfer in the
hard scattering, which I will denote generically by pT . One would like to separate the
perturbative physics at these large momentum scales from the physics at smaller mo-
mentum scales that is associated with nonperturbative heavy-quarkonium bound-
state dynamics. It has been conjectured2 that, for the inclusive quarkonium pro-
duction cross section at pT ! m, one can achieve such a separation and that one
can write the cross section in the following factorized form:

σ(H) =
∑

n

Fn〈0|O
H
n |0〉. (1)

The Fn are “short-distance coefficients.” They are essentially the process-dependent
partonic hard-scattering cross sections convolved with the parton distributions. The
partonic hard-scattering cross sections depend only on the large scales m and pT ,
and they have an expansion in powers of αs. The quantities 〈0|OH

n (Λ)|0〉 are long-
distance matrix elements (LDMEs) that are formulated in terms of the effective field
theory nonrelativistic QCD (NRQCD). They give the probability for a heavy QQ̄
pair with a certain set of quantum numbers to evolve into a heavy quarkonium H .

1

NRQCD  factorization formula for quarkonium production 
valid for large p_T

 cross section

Bodwin Braaten Lepage 1995
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 short distance coefficients 
partonic hard scattering cross section  

convoluted with parton distribution

 long distance matrix elements 
(LDME) 

give the probability of a qqbar 
pair with certain quantum 

number to evolve into a final 
quarkonium H

they are vacuum expectation 
values of four fermion operators with 

color singlet and color octet 
contributions and a projection 
over quarkonium plus X in the 

middle
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convoluted with parton distribution

 long distance matrix elements 
(LDME) 

give the probability of a qqbar 
pair with certain quantum 

number to evolve into a final 
quarkonium H

they are vacuum expectation 
values of four fermion operators with 

color singlet and color octet 
contributions and a projection 
over quarkonium plus X in the 

middle

One problem is the proliferation of LDMEs:  
nonperturbative objects  

that cannot evaluated on the lattice   
and should be extracted from the data,  

they depend on the considered quarkonium state
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Factorization of LDMEs in pNRQCD : the NRQCD   LDMEs are factorized in terms of wave 
functions and universal nonperturbative correlators depending only on the glue

N. B.  Chung Muller Vairo 2002.07462, N.B. Chung Vairo 2007.07613

•The number of nonperturbative unknowns is reduced by half
•The nonperturbative unknowns are correlators of gluonic fields 

 that can be calculated on the lattice
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We compute the color singlet and color octet NRQCD long-distance matrix elements for inclusive
production of P -wave quarkonia based on the pNRQCD e↵ective field theory. This allows a determi-
nation of the color octet NRQCD matrix element that does not rely on measured cross section data,
which has not been possible so far. We make first pNRQCD predictions for inclusive hadroproduc-
tion of �bJ and �cJ at the LHC, which are in fair agreement with data. The formalism developed in
this work can also be applied to inclusive production processes of other species of heavy quarkonia.

Understanding the inclusive production mechanism of10

heavy quarkonia is one of the most challenging problems11

in heavy quarkonium physics [1, 2]. While the nonrela-12

tivistic QCD (NRQCD) e↵ective field theory [3, 4] had13

enormous success in heavy quarkonium phenomenology,14

a satisfactory description of inclusive production pro-15

cesses from first principles is still beyond reach. Much16

of the di�culty stems from our limited knowledge in the17

NRQCD long-distance matrix elements (LDMEs), which18

describe the nonperturbative evolution of the heavy19

quark Q and antiquark Q̄ into a quarkonium. First-20

principles determinations have not been possible for a21

class of important LDMEs that are associated with the22

QQ̄ in a color octet state. On the other hand, phe-23

nomenological determinations of the unknown LDMEs24

based on di↵erent choices of observables have lead to in-25

consistent sets of LDMEs, which have resulted in con-26

tradicting predictions [5]. It is therefore highly desirable27

to be able to compute the unknown LDMEs from first28

principles.29

The potential NRQCD (pNRQCD) approach [6–8] has30

been successfully applied to annihilation and exclusive31

electromagnetic production processes of heavy quarko-32

nia [9–11]. It has been anticipated that pNRQCD could33

also be used to describe inclusive production processes.34

In this Letter, we compute, based on pNRQCD, the35

NRQCD LDMEs that appear in the inclusive production36

cross section of P -wave quarkonia. Specifically, we con-37

sider production cross sections of �QJ (Q = c or b, J = 0,38

1, and 2) at leading order in the heavy-quark velocity v.39

The cross section is given in the NRQCD factorization40

formalism at leading order in v by [4]41

��QJ+X = (2J + 1)�
QQ̄(3P [1]

J )
hO

�Q0(3P [1]
0 )i42

+ (2J + 1)�
QQ̄(3S[8]

1 )
hO

�Q0(3S[8]
1 )i. (1)43

44

Here, we use spectroscopic notation for the angular mo-45

mentum state of the QQ̄, while the superscripts 1 and 846

denote the color state of the QQ̄. We have used heavy-47

quark spin symmetry to reduce the �QJ LDMEs into48

LDMEs for the �Q0 state. The �
QQ̄(3P [1]

J )
and �

QQ̄(3S[8]
1 )

49

are the perturbatively calculable short-distance coef-50

ficients (SDCs), and the LDMEs hO�b0(3P [1]
0 )i and51

hO
�b0(3S[8]

1 )i are defined by52

hO
�Q0(3P [1]

0 )i =
1

3
h⌦|�†(� i

2

 !
D · �) P�Q053

⇥  
†(� i

2

 !
D · �)�|⌦i, (2a)54

hO
�Q0(3S[8]

1 )i = h⌦|�†
�
i
T

a
 �ab

` P�Q055

⇥ �bc
`  

†
�
i
T

c
�|⌦i, (2b)56

57

where |⌦i is the QCD vacuum, and  and � are Pauli58

spinor fields that annihilate and create a heavy quark59

and antiquark, respectively. The covariant derivative60
 !
D is defined by �

† !D = �
†D � (D�)† . The op-61

erator P�Q0 = a
†
�Q0

a�Q0 is a projection onto a state62

consisting of a �Q0 at rest, where a
†
�Q0

is the creation63

operator for the �Q0 state. The path-ordered Wilson64

line along the spacetime direction ` defined by �` =65

P exp[�ig
R1
0 dx `·A

adj(`x)], where Aadj is the gluon field66

in the adjoint representation, ensures the gauge invari-67

ance of the color-octet LDME [12–14]. The direction `68

can be chosen arbitrarily.69

We work in the strong coupling regime, where mv &70

⇤QCD � mv
2. This condition is fulfilled by non-71

Coulombic, strongly coupled quarkonia, such as the �QJ .72

In order to compute the LDMEs in strongly coupled pN-73

RQCD, we make use of the quantum-mechanical pertur-74

bation theory (QMPT) where we formally expand the75

NRQCD Hamiltonian in inverse powers of the heavy76

quark mass m [10, 15]:77

HNRQCD = H
(0)
NRQCD +

1

m
H

(1)
NRQCD + . . . , (3)78

The eigenstates in the heavy quark-antiquark sector are79
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class of important LDMEs that are associated with the22

QQ̄ in a color octet state. On the other hand, phe-23

nomenological determinations of the unknown LDMEs24

based on di↵erent choices of observables have lead to in-25

consistent sets of LDMEs, which have resulted in con-26

tradicting predictions [5]. It is therefore highly desirable27

to be able to compute the unknown LDMEs from first28

principles.29

The potential NRQCD (pNRQCD) approach [6–8] has30

been successfully applied to annihilation and exclusive31

electromagnetic production processes of heavy quarko-32

nia [9–11]. It has been anticipated that pNRQCD could33

also be used to describe inclusive production processes.34

In this Letter, we compute, based on pNRQCD, the35

NRQCD LDMEs that appear in the inclusive production36

cross section of P -wave quarkonia. Specifically, we con-37

sider production cross sections of �QJ (Q = c or b, J = 0,38

1, and 2) at leading order in the heavy-quark velocity v.39

The cross section is given in the NRQCD factorization40

formalism at leading order in v by [4]41

��QJ+X = (2J + 1)�
QQ̄(3P [1]

J )
hO

�Q0(3P [1]
0 )i42

+ (2J + 1)�
QQ̄(3S[8]

1 )
hO

�Q0(3S[8]
1 )i. (1)43

44

Here, we use spectroscopic notation for the angular mo-45

mentum state of the QQ̄, while the superscripts 1 and 846

denote the color state of the QQ̄. We have used heavy-47

quark spin symmetry to reduce the �QJ LDMEs into48

LDMEs for the �Q0 state. The �
QQ̄(3P [1]

J )
and �

QQ̄(3S[8]
1 )

49

are the perturbatively calculable short-distance coef-50

ficients (SDCs), and the LDMEs hO�b0(3P [1]
0 )i and51

hO
�b0(3S[8]

1 )i are defined by52

hO
�Q0(3P [1]

0 )i =
1

3
h⌦|�†(� i

2

 !
D · �) P�Q053

⇥  
†(� i

2

 !
D · �)�|⌦i, (2a)54

hO
�Q0(3S[8]

1 )i = h⌦|�†
�
i
T

a
 �ab

` P�Q055

⇥ �bc
`  

†
�
i
T

c
�|⌦i, (2b)56

57

where |⌦i is the QCD vacuum, and  and � are Pauli58

spinor fields that annihilate and create a heavy quark59

and antiquark, respectively. The covariant derivative60
 !
D is defined by �

† !D = �
†D � (D�)† . The op-61

erator P�Q0 = a
†
�Q0

a�Q0 is a projection onto a state62

consisting of a �Q0 at rest, where a
†
�Q0

is the creation63

operator for the �Q0 state. The path-ordered Wilson64

line along the spacetime direction ` defined by �` =65

P exp[�ig
R1
0 dx `·A

adj(`x)], where Aadj is the gluon field66

in the adjoint representation, ensures the gauge invari-67

ance of the color-octet LDME [12–14]. The direction `68

can be chosen arbitrarily.69

We work in the strong coupling regime, where mv &70

⇤QCD � mv
2. This condition is fulfilled by non-71

Coulombic, strongly coupled quarkonia, such as the �QJ .72

In order to compute the LDMEs in strongly coupled pN-73

RQCD, we make use of the quantum-mechanical pertur-74

bation theory (QMPT) where we formally expand the75

NRQCD Hamiltonian in inverse powers of the heavy76

quark mass m [10, 15]:77

HNRQCD = H
(0)
NRQCD +

1

m
H

(1)
NRQCD + . . . , (3)78

The eigenstates in the heavy quark-antiquark sector are79
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r2, r0
1, and r0

2 act on the wavefunctions in eq. (2.18). The gluonic matrix elements can406

be computed as407

X

p 6=n

h0|T a
1�

†ab
` (0,x)|pi(0)

(0)
hp|gE1|ni(0)

(E(0)
n � E(0)

p )2
= �

X

p 6=n

Z
1

0
dt t(0)h0|T a

1�
†ab
` |pi(0)(0)hp|gE1(t)|ni

(0)
408

= �
1

2Nc

Z
1

0
dt t(0)h0|�†ab

` gEa
1 (t)|ni

(0), (3.14)409
410

where in the last line, we computed the color matrices tr(T a
1 T

c
1 ) = �ac/(2Nc)tr( c) by using411

the fact that both the states |0i and |ni have color indices that are proportional to c.412

Since the matrix element (0)
h0|�†ab

` gEa
1 (t)|ni

(0) does not contain any color matrices, the413

last line of eq. (3.14) vanishes unless n 2 S. This gives414

� V
O(1S

[8]
0 )

���
P -wave

= �Ncri
r�

(3)(r)rj
r0

E
ij

N2
cm

2
, (3.15)415

416

where the tensor E
ij is defined by417

E
ij =

X

n

Z
1

0
t dt

Z
1

0
t0 dt0(0)h0|�†ab

` gEa,i
1 (t)|ni(0)(0)hn|gEc,j

1 (t0)�†bc
` |0i(0)418

=

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,j(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.16)419

420

In the last line, we used tr( c)/Nc = 1, and we introduced the Schwinger lines �0(t, t0) =421

P exp[�ig
R t0

t d⌧Aadj
0 (⌧,0)] to restore the gauge invariance. The configurations of the adjoint422

Wilson lines in eq. (3.16) are given in the following way. The chromoelectric field at time t0423

is connected to the origin 0 via the Schwinger line �ec
0 (t0, 0), which then continues to infinity424

in the ` direction. Analogously, the chromoelectric field at time t is connected to the origin425

0 via the Schwinger line �†da
0 (0, t), which then continues to infinity in the ` direction. The426

orderings of gEe,j(t0)�ec
0 (t0, 0)�bc

` and �†ab
` �†da

0 (0, t)gEd,i(t) are opposite; for a suitable427

choice of the sign of `0, gEe,j(t0)�ec
0 (t0, 0)�bc

` is time ordered, and �†ab
` �†da

0 (0, t)gEd,i(t) is428

anti time ordered. Hence, eq. (3.16) can be interpreted as a cut diagram, which can be429

useful for perturbative QCD. We show this configuration of the Wilson lines graphically in430

figure 1.431

Now we can compute the color-octet matrix element h⌦|OhQ(1S[8]
0 )|⌦i. Since the prod-432

uct �(0)
1P1

(r)�(0)
1P1

⇤(r) is isotropic after summing over the polarizations of the 1P1 state, the433

differential operators ri
rr

j
r0 in eq. (3.15) can be replaced by 1

3�
ijrr ·rr0 . Then, we obtain434

h⌦|OhQ(1S[8]
0 )|⌦i = 3⇥

3Nc

2⇡
|R(0)0(0)|2

1

9Ncm2
E , (3.17)435

where E is a dimensionless gluonic correlator defined by436

E =
3

Nc

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,i(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.18)437

The correlator E corresponds to the isotropic part of E ij , which is given by Nc
9 �ijE . The438

factor 3/Nc in the definition of E has been chosen so that eq. (3.17) resembles the pNRQCD439
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where ⇤ is the scale at which E is renormalized. This, in turn, implies the following evolution533

equation for the NRQCD matrix elements534

d

d log⇤
hO

�QJ (3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�QJ (3P [1]
J )i. (3.33)535

The same evolution equation holds for hO
hQ(1S[8]

0 )i and hO
hQ(1P [1]

1 )i. Equation (3.33)536

agrees with the evolution equation derived from a perturbative calculation in NRQCD [6],537

and therefore the UV divergence in the one-loop correction to the color-octet matrix ele-538

ment is consistent with the pNRQCD expressions at one-loop level. Since loop corrections539

to NRQCD matrix elements are scaleless, UV poles cancel IR poles in the form of eq. (3.31),540

and hence, the one-loop infrared divergence in the color-octet matrix element is also con-541

sistent with our pNRQCD results.542

At two loops, explicit checks of the consistency of our pNRQCD results with NRQCD543

factorization can be inferred from the two-loop calculations in Refs. [16] and [17]. In544

Ref. [16], two-loop corrections to the infrared factor I2(p, q) that are associated with the545

gauge-completion Wilson lines were computed, which contribute to the infrard divergence of546

the matrix element hOQ(1S[8]
0 )i at order ↵2

s. This result was reproduced in Ref. [17] through547

explicit calculations of the matrix element hOQ(1S[8]
0 )i. Since the calculation of the infrared548

factor in Ref. [16] is equivalent to the calculation of infrared divergences in the contact terms549

V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

, our pNRQCD expressions for the color-octet matrix elements also550

have the same infrared divergences that are associated with the gauge-completion Wilson551

lines that are found in the calculations of Ref. [17].552

It is interesting to see that eq. (3.31) is the same as the order-↵s calculation of the553

correlator E3 defined in eq. (3.20), which appears in decay matrix elements. Indeed, the554

one-loop evolution equation in eq. (3.33) is the same as the one-loop evolution equation for555

the decay matrix elements that appear in inclusive decays of P -wave quarkonia [6]. This556

equality ceases to hold at two loops, because at this order, E receives contributions from557

the gauge-completion Wilson lines, which are absent in E3.558

An important issue in NRQCD factorization is whether the color-octet NRQCD matrix559

elements are independent on the direction of the gauge-completion Wilson lines, which is560

necessary in establishing the universality of the NRQCD matrix elements. While a general561

argument for the universality has been given in Ref. [21], an explicit verification has only562

been done at two-loop accuracy [16, 17]. In our results for the color-octet matrix elements,563

the dependence on the direction of the gauge-completion Wilson lines can come from the564

tensor E
ij in the contact terms. For the case of polarization-summed cross sections, where565

the polarization of the quarkonium in the final state is summed over, only the isotropic566

part of E ij , given by Nc
9 �ijE , contributes to the color-octet matrix elements, and therefore,567

the dependence on the direction of the gauge-completion Wilson lines disappear due to568

rotational symmetry. Hence, the pNRQCD expressions of the color-octet matrix elements569

support the universality of the NRQCD matrix elements for polarization-summed cross570

sections of P -wave quarkonia. On the other hand, for the case of polarized cross sections,571

the non-isotropic part of E ij can in principle contribute to the color-octet matrix element,572

and if such contributions are nonvanishing, the matrix elements can acquire dependence573
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where the sum over N contains all possible intermediate states, T and T̄ represent time493

ordering and anti time ordering, respectively, p is half the center-of-mass momentum of the494

QQ̄, and495

�p(�) = P exp


�ig

Z �

0
d�0 p ·Aadj(�0p)

�
, (3.29)496

497

is an adjoint Wilson line along p. In eq. (3.28) we make explicit the time ordering and498

anti time ordering, which was implicit in Ref. [16]. In eq. (3.28), a factor of q comes from499

each side of the cut in the squared amplitude, so that the infrared factor applies to the500

production of a color-singlet P -wave state. This result is obtained from standard methods501

in perturbative factorization, where eikonal approximations are employed that simplify the502

loop corrections gluons while preserving the infrared divergences. This factor includes the503

infrared divergences that come from the soft gluons of scale mv, but does not include the504

contributions from the scale mv2. Since this process corresponds to the production of a QQ̄505

in the color-octet 3S1 state, this divergence must match the infrared divergence in the color-506

octet matrix element h⌦|OQ(3S[8]
1 )|⌦i, when Q is replaced by a color-singlet QQ̄ state. This507

agreement has been confirmed explicitly through one-loop and partial two-loop calculations508

of the color-octet NRQCD matrix element in Ref. [17]; the two-loop calculations have only509

been done for the diagrams that involve the gauge-completion Wilson lines. Since the510

matrix element h⌦|OQ(3S[8]
1 )|⌦i appears in the NRQCD factorization formula at leading511

order in v, the same infrared divergence occurs in the operator h⌦|OQ(1S[8]
0 )|⌦i through512

heavy quark spin symmetry.513

It can be seen that at the rest frame of the QQ̄, where p = 0 and q0 = 0, �p(�p) is just514

the Schwinger line �0(0, t) = P exp[�ig
R t
0 d⌧A

adj
0 (⌧,0)] where t =

p
p2�, and pµq⌫Ga

⌫µ(�p)515

is given by the chromoelectric field as
p
p2qiEa i(t). Therefore, the infrared factor I2(p, q)516

in eq. (3.28) is given by517

E
ijqiqj , (3.30)518

519

multiplied by color and kinematical factors that are infrared finite. Here, the tensor E
ij is520

defined in eq. (3.16). We note that eq. (3.30) is equivalent to the contact terms V
O(1S

[8]
0 )

and521

V
O(3S

[8]
1 )

in Eqs. (3.15) and (3.21), respectively, when applied to a color-singlet QQ̄ state522

with relative momentum q. Hence, we expect our pNRQCD expressions for the color-octet523

matrix elements in Eqs. (3.17) and (3.25b) to have the same infrared divergences that are524

expected in NRQCD factorization. This is straightforward to check explicitly at one-loop525

accuracy. By computing the correlator E at order-↵s accuracy in dimensional regularization526

at d = 4� 2✏ spacetime dimensions, we obtain527

E = 6CF
↵s

⇡

✓
1

✏UV
�

1

✏IR

◆
+O(↵2

s), (3.31)528

529

where the subscripts UV and IR indicate the origin of the 1/✏ poles. The UV divergence is530

removed through renormalization, which gives the following evolution equation531

d

d log⇤
E(⇤) = 12CF

↵s

⇡
+O(↵2

s), (3.32)532
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using the two-loop formula with nf = 5 light quark flavors and ⇤(5)
QCD = 226 MeV. The606

calculation in Ref. [29] also includes resummed logarithms in pT /mc at leading logarithmic607

accuracy. The short-distance coefficients �
QQ̄(3P

[1]
J )

depend on the scheme and scale ⇤ at608

which the color-octet matrix element h⌦|O�cJ (3S[8]
1 )|⌦i is renormalized, which we identify as609

the renormalization scale for E . We choose this scale to be ⇤ = mc in the MS scheme, where610

mc = 1.5 GeV is the charm quark mass. We estimate the uncertainty in the short-distance611

coefficients to be 30% of the central values, which account for corrections of relative order612

v2 that we neglect. The variations of the scales µF for the parton distribution functions613

and the renormalization scale µR for ↵s, which affect the short-distance coefficients by614

less than 25% of the central values. We use the pNRQCD expressions for the matrix615

elements in Eqs. (3.25). We neglect the uncertainty of order 1/N2
c compared to other616

uncertainties. Note that the wavefunction at the origin cancels in the ratio r21. In order to617

compare with measurements, we compute the values of r21 multiplied by B�c2/B�c1 , where618

B�cJ = Br(�cJ ! J/ �) ⇥ Br(J/ ! µ+µ�). We compute B�cJ from measurements in619

Ref. [30]. Since the measurements of r21 are given as functions of the transverse momentum620

pJ/ T of the J/ , we compute pJ/ T from the transverse momentum pT of the �cJ from621

pJ/ T =
mJ/ 

m�cJ

pT , (3.38)622

which is valid when mJ/ ⇡ m�cJ . By performing a least-squares fit to the measured values623

of r21 ⇥B�c2/B�c1 by CMS [27] and ATLAS [28], we obtain624

E(⇤ = 1.5 GeV) = 1.97± 0.06, (3.39)625

with �2/d.o.f. = 1.6/10. This value is compatible within uncertainties with a previous626

determination in Ref. [19], which was obtained by comparing to �c1 and �c2 cross section627

measurements from ATLAS. Compared to the determination in Ref. [19], our determination628

does not depend on the value of the wavefunction at the origin |R(0)0(0)|2. We show our629

result for r21 compared to ATLAS and CMS data in figure . In the following sections, we630

use this value of E in eq. (3.39) to compute cross sections of �cJ and �bJ at the LHC.631

3.4 Production and polarization of �cJ632

We now compute the inclusive production cross sections of �cJ from proton-proton collisions633

at the LHC based on our results for the matrix elements in eqs. (3.25) and the determination634

of E in eq. (3.39). We use the same short-distance coefficients as we used in section 3.3,635

and we take the value of E at the scale ⇤ = 1.5 GeV in eq. (3.39). We determine the value636

of the P -wave charmonium wavefunction at the origin from two-photon decay rates of �c0637

and �c2. For consistency with our calculation of the cross sections, we use the NRQCD638

factorization formulas for the decay rates at leading orders in v, while we include order-↵s639

corrections to the short-distance coefficients. The pNRQCD expressions for the two-photon640

widths at leading order in v read [6, 13, 14]641

�(�c0 ! ��) =
6⇡e4c↵

2

m4
c


1 +

(3⇡2 � 28)

24
CF

↵s

⇡

�2
3Nc

2⇡
|R(0)0(0)|2, (3.40)642
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r2, r0
1, and r0

2 act on the wavefunctions in eq. (2.18). The gluonic matrix elements can406

be computed as407

X

p 6=n

h0|T a
1�

†ab
` (0,x)|pi(0)

(0)
hp|gE1|ni(0)

(E(0)
n � E(0)

p )2
= �

X

p 6=n

Z
1

0
dt t(0)h0|T a

1�
†ab
` |pi(0)(0)hp|gE1(t)|ni

(0)
408

= �
1

2Nc

Z
1

0
dt t(0)h0|�†ab

` gEa
1 (t)|ni

(0), (3.14)409
410

where in the last line, we computed the color matrices tr(T a
1 T

c
1 ) = �ac/(2Nc)tr( c) by using411

the fact that both the states |0i and |ni have color indices that are proportional to c.412

Since the matrix element (0)
h0|�†ab

` gEa
1 (t)|ni

(0) does not contain any color matrices, the413

last line of eq. (3.14) vanishes unless n 2 S. This gives414

� V
O(1S

[8]
0 )

���
P -wave

= �Ncri
r�

(3)(r)rj
r0

E
ij

N2
cm

2
, (3.15)415

416

where the tensor E
ij is defined by417

E
ij =

X

n

Z
1

0
t dt

Z
1

0
t0 dt0(0)h0|�†ab

` gEa,i
1 (t)|ni(0)(0)hn|gEc,j

1 (t0)�†bc
` |0i(0)418

=

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,j(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.16)419

420

In the last line, we used tr( c)/Nc = 1, and we introduced the Schwinger lines �0(t, t0) =421

P exp[�ig
R t0

t d⌧Aadj
0 (⌧,0)] to restore the gauge invariance. The configurations of the adjoint422

Wilson lines in eq. (3.16) are given in the following way. The chromoelectric field at time t0423

is connected to the origin 0 via the Schwinger line �ec
0 (t0, 0), which then continues to infinity424

in the ` direction. Analogously, the chromoelectric field at time t is connected to the origin425

0 via the Schwinger line �†da
0 (0, t), which then continues to infinity in the ` direction. The426

orderings of gEe,j(t0)�ec
0 (t0, 0)�bc

` and �†ab
` �†da

0 (0, t)gEd,i(t) are opposite; for a suitable427

choice of the sign of `0, gEe,j(t0)�ec
0 (t0, 0)�bc

` is time ordered, and �†ab
` �†da

0 (0, t)gEd,i(t) is428

anti time ordered. Hence, eq. (3.16) can be interpreted as a cut diagram, which can be429

useful for perturbative QCD. We show this configuration of the Wilson lines graphically in430

figure 1.431

Now we can compute the color-octet matrix element h⌦|OhQ(1S[8]
0 )|⌦i. Since the prod-432

uct �(0)
1P1

(r)�(0)
1P1

⇤(r) is isotropic after summing over the polarizations of the 1P1 state, the433

differential operators ri
rr

j
r0 in eq. (3.15) can be replaced by 1

3�
ijrr ·rr0 . Then, we obtain434

h⌦|OhQ(1S[8]
0 )|⌦i = 3⇥

3Nc

2⇡
|R(0)0(0)|2

1

9Ncm2
E , (3.17)435

where E is a dimensionless gluonic correlator defined by436

E =
3

Nc

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,i(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.18)437

The correlator E corresponds to the isotropic part of E ij , which is given by Nc
9 �ijE . The438

factor 3/Nc in the definition of E has been chosen so that eq. (3.17) resembles the pNRQCD439
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where ⇤ is the scale at which E is renormalized. This, in turn, implies the following evolution533

equation for the NRQCD matrix elements534

d

d log⇤
hO

�QJ (3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�QJ (3P [1]
J )i. (3.33)535

The same evolution equation holds for hO
hQ(1S[8]

0 )i and hO
hQ(1P [1]

1 )i. Equation (3.33)536

agrees with the evolution equation derived from a perturbative calculation in NRQCD [6],537

and therefore the UV divergence in the one-loop correction to the color-octet matrix ele-538

ment is consistent with the pNRQCD expressions at one-loop level. Since loop corrections539

to NRQCD matrix elements are scaleless, UV poles cancel IR poles in the form of eq. (3.31),540

and hence, the one-loop infrared divergence in the color-octet matrix element is also con-541

sistent with our pNRQCD results.542

At two loops, explicit checks of the consistency of our pNRQCD results with NRQCD543

factorization can be inferred from the two-loop calculations in Refs. [16] and [17]. In544

Ref. [16], two-loop corrections to the infrared factor I2(p, q) that are associated with the545

gauge-completion Wilson lines were computed, which contribute to the infrard divergence of546

the matrix element hOQ(1S[8]
0 )i at order ↵2

s. This result was reproduced in Ref. [17] through547

explicit calculations of the matrix element hOQ(1S[8]
0 )i. Since the calculation of the infrared548

factor in Ref. [16] is equivalent to the calculation of infrared divergences in the contact terms549

V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

, our pNRQCD expressions for the color-octet matrix elements also550

have the same infrared divergences that are associated with the gauge-completion Wilson551

lines that are found in the calculations of Ref. [17].552

It is interesting to see that eq. (3.31) is the same as the order-↵s calculation of the553

correlator E3 defined in eq. (3.20), which appears in decay matrix elements. Indeed, the554

one-loop evolution equation in eq. (3.33) is the same as the one-loop evolution equation for555

the decay matrix elements that appear in inclusive decays of P -wave quarkonia [6]. This556

equality ceases to hold at two loops, because at this order, E receives contributions from557

the gauge-completion Wilson lines, which are absent in E3.558

An important issue in NRQCD factorization is whether the color-octet NRQCD matrix559

elements are independent on the direction of the gauge-completion Wilson lines, which is560

necessary in establishing the universality of the NRQCD matrix elements. While a general561

argument for the universality has been given in Ref. [21], an explicit verification has only562

been done at two-loop accuracy [16, 17]. In our results for the color-octet matrix elements,563

the dependence on the direction of the gauge-completion Wilson lines can come from the564

tensor E
ij in the contact terms. For the case of polarization-summed cross sections, where565

the polarization of the quarkonium in the final state is summed over, only the isotropic566

part of E ij , given by Nc
9 �ijE , contributes to the color-octet matrix elements, and therefore,567

the dependence on the direction of the gauge-completion Wilson lines disappear due to568

rotational symmetry. Hence, the pNRQCD expressions of the color-octet matrix elements569

support the universality of the NRQCD matrix elements for polarization-summed cross570

sections of P -wave quarkonia. On the other hand, for the case of polarized cross sections,571

the non-isotropic part of E ij can in principle contribute to the color-octet matrix element,572

and if such contributions are nonvanishing, the matrix elements can acquire dependence573

– 16 –

where the sum over N contains all possible intermediate states, T and T̄ represent time493

ordering and anti time ordering, respectively, p is half the center-of-mass momentum of the494

QQ̄, and495

�p(�) = P exp


�ig

Z �

0
d�0 p ·Aadj(�0p)

�
, (3.29)496

497

is an adjoint Wilson line along p. In eq. (3.28) we make explicit the time ordering and498

anti time ordering, which was implicit in Ref. [16]. In eq. (3.28), a factor of q comes from499

each side of the cut in the squared amplitude, so that the infrared factor applies to the500

production of a color-singlet P -wave state. This result is obtained from standard methods501

in perturbative factorization, where eikonal approximations are employed that simplify the502

loop corrections gluons while preserving the infrared divergences. This factor includes the503

infrared divergences that come from the soft gluons of scale mv, but does not include the504

contributions from the scale mv2. Since this process corresponds to the production of a QQ̄505

in the color-octet 3S1 state, this divergence must match the infrared divergence in the color-506

octet matrix element h⌦|OQ(3S[8]
1 )|⌦i, when Q is replaced by a color-singlet QQ̄ state. This507

agreement has been confirmed explicitly through one-loop and partial two-loop calculations508

of the color-octet NRQCD matrix element in Ref. [17]; the two-loop calculations have only509

been done for the diagrams that involve the gauge-completion Wilson lines. Since the510

matrix element h⌦|OQ(3S[8]
1 )|⌦i appears in the NRQCD factorization formula at leading511

order in v, the same infrared divergence occurs in the operator h⌦|OQ(1S[8]
0 )|⌦i through512

heavy quark spin symmetry.513

It can be seen that at the rest frame of the QQ̄, where p = 0 and q0 = 0, �p(�p) is just514

the Schwinger line �0(0, t) = P exp[�ig
R t
0 d⌧A

adj
0 (⌧,0)] where t =

p
p2�, and pµq⌫Ga

⌫µ(�p)515

is given by the chromoelectric field as
p
p2qiEa i(t). Therefore, the infrared factor I2(p, q)516

in eq. (3.28) is given by517

E
ijqiqj , (3.30)518

519

multiplied by color and kinematical factors that are infrared finite. Here, the tensor E
ij is520

defined in eq. (3.16). We note that eq. (3.30) is equivalent to the contact terms V
O(1S

[8]
0 )

and521

V
O(3S

[8]
1 )

in Eqs. (3.15) and (3.21), respectively, when applied to a color-singlet QQ̄ state522

with relative momentum q. Hence, we expect our pNRQCD expressions for the color-octet523

matrix elements in Eqs. (3.17) and (3.25b) to have the same infrared divergences that are524

expected in NRQCD factorization. This is straightforward to check explicitly at one-loop525

accuracy. By computing the correlator E at order-↵s accuracy in dimensional regularization526

at d = 4� 2✏ spacetime dimensions, we obtain527

E = 6CF
↵s

⇡

✓
1

✏UV
�

1

✏IR

◆
+O(↵2

s), (3.31)528

529

where the subscripts UV and IR indicate the origin of the 1/✏ poles. The UV divergence is530

removed through renormalization, which gives the following evolution equation531

d

d log⇤
E(⇤) = 12CF

↵s

⇡
+O(↵2

s), (3.32)532
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using the two-loop formula with nf = 5 light quark flavors and ⇤(5)
QCD = 226 MeV. The606

calculation in Ref. [29] also includes resummed logarithms in pT /mc at leading logarithmic607

accuracy. The short-distance coefficients �
QQ̄(3P

[1]
J )

depend on the scheme and scale ⇤ at608

which the color-octet matrix element h⌦|O�cJ (3S[8]
1 )|⌦i is renormalized, which we identify as609

the renormalization scale for E . We choose this scale to be ⇤ = mc in the MS scheme, where610

mc = 1.5 GeV is the charm quark mass. We estimate the uncertainty in the short-distance611

coefficients to be 30% of the central values, which account for corrections of relative order612

v2 that we neglect. The variations of the scales µF for the parton distribution functions613

and the renormalization scale µR for ↵s, which affect the short-distance coefficients by614

less than 25% of the central values. We use the pNRQCD expressions for the matrix615

elements in Eqs. (3.25). We neglect the uncertainty of order 1/N2
c compared to other616

uncertainties. Note that the wavefunction at the origin cancels in the ratio r21. In order to617

compare with measurements, we compute the values of r21 multiplied by B�c2/B�c1 , where618

B�cJ = Br(�cJ ! J/ �) ⇥ Br(J/ ! µ+µ�). We compute B�cJ from measurements in619

Ref. [30]. Since the measurements of r21 are given as functions of the transverse momentum620

pJ/ T of the J/ , we compute pJ/ T from the transverse momentum pT of the �cJ from621

pJ/ T =
mJ/ 

m�cJ

pT , (3.38)622

which is valid when mJ/ ⇡ m�cJ . By performing a least-squares fit to the measured values623

of r21 ⇥B�c2/B�c1 by CMS [27] and ATLAS [28], we obtain624

E(⇤ = 1.5 GeV) = 1.97± 0.06, (3.39)625

with �2/d.o.f. = 1.6/10. This value is compatible within uncertainties with a previous626

determination in Ref. [19], which was obtained by comparing to �c1 and �c2 cross section627

measurements from ATLAS. Compared to the determination in Ref. [19], our determination628

does not depend on the value of the wavefunction at the origin |R(0)0(0)|2. We show our629

result for r21 compared to ATLAS and CMS data in figure . In the following sections, we630

use this value of E in eq. (3.39) to compute cross sections of �cJ and �bJ at the LHC.631

3.4 Production and polarization of �cJ632

We now compute the inclusive production cross sections of �cJ from proton-proton collisions633

at the LHC based on our results for the matrix elements in eqs. (3.25) and the determination634

of E in eq. (3.39). We use the same short-distance coefficients as we used in section 3.3,635

and we take the value of E at the scale ⇤ = 1.5 GeV in eq. (3.39). We determine the value636

of the P -wave charmonium wavefunction at the origin from two-photon decay rates of �c0637

and �c2. For consistency with our calculation of the cross sections, we use the NRQCD638

factorization formulas for the decay rates at leading orders in v, while we include order-↵s639

corrections to the short-distance coefficients. The pNRQCD expressions for the two-photon640

widths at leading order in v read [6, 13, 14]641

�(�c0 ! ��) =
6⇡e4c↵

2

m4
c


1 +

(3⇡2 � 28)

24
CF

↵s

⇡

�2
3Nc

2⇡
|R(0)0(0)|2, (3.40)642
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sections, as well as hc and hb production rates.

16

3

make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�b0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �ad

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages

3

quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order
in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�Q0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �†da

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�b0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �ad

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages

3

quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
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wavefunctions of the pNRQCD Hamiltonian. The lead-
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E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For
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tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
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The CO LDME hO
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in QMPT. Nonvanishing contributions come from next-
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Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is
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d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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We compute the color singlet and color octet NRQCD long-distance matrix elements for inclusive
production of P -wave quarkonia based on the pNRQCD e↵ective field theory. This allows a determi-
nation of the color octet NRQCD matrix element that does not rely on measured cross section data,
which has not been possible so far. We make first pNRQCD predictions for inclusive hadroproduc-
tion of �bJ and �cJ at the LHC, which are in fair agreement with data. The formalism developed in
this work can also be applied to inclusive production processes of other species of heavy quarkonia.

Understanding the inclusive production mechanism of10

heavy quarkonia is one of the most challenging problems11

in heavy quarkonium physics [1, 2]. While the nonrela-12

tivistic QCD (NRQCD) e↵ective field theory [3, 4] had13

enormous success in heavy quarkonium phenomenology,14

a satisfactory description of inclusive production pro-15

cesses from first principles is still beyond reach. Much16

of the di�culty stems from our limited knowledge in the17

NRQCD long-distance matrix elements (LDMEs), which18

describe the nonperturbative evolution of the heavy19

quark Q and antiquark Q̄ into a quarkonium. First-20

principles determinations have not been possible for a21

class of important LDMEs that are associated with the22

QQ̄ in a color octet state. On the other hand, phe-23

nomenological determinations of the unknown LDMEs24

based on di↵erent choices of observables have lead to in-25

consistent sets of LDMEs, which have resulted in con-26

tradicting predictions [5]. It is therefore highly desirable27

to be able to compute the unknown LDMEs from first28

principles.29

The potential NRQCD (pNRQCD) approach [6–8] has30

been successfully applied to annihilation and exclusive31

electromagnetic production processes of heavy quarko-32

nia [9–11]. It has been anticipated that pNRQCD could33

also be used to describe inclusive production processes.34

In this Letter, we compute, based on pNRQCD, the35

NRQCD LDMEs that appear in the inclusive production36

cross section of P -wave quarkonia. Specifically, we con-37

sider production cross sections of �QJ (Q = c or b, J = 0,38

1, and 2) at leading order in the heavy-quark velocity v.39

The cross section is given in the NRQCD factorization40

formalism at leading order in v by [4]41

��QJ+X = (2J + 1)�
QQ̄(3P [1]

J )
hO

�Q0(3P [1]
0 )i42

+ (2J + 1)�
QQ̄(3S[8]

1 )
hO

�Q0(3S[8]
1 )i. (1)43

44

Here, we use spectroscopic notation for the angular mo-45

mentum state of the QQ̄, while the superscripts 1 and 846

denote the color state of the QQ̄. We have used heavy-47

quark spin symmetry to reduce the �QJ LDMEs into48

LDMEs for the �Q0 state. The �
QQ̄(3P [1]

J )
and �

QQ̄(3S[8]
1 )

49

are the perturbatively calculable short-distance coef-50

ficients (SDCs), and the LDMEs hO�b0(3P [1]
0 )i and51

hO
�b0(3S[8]

1 )i are defined by52

hO
�Q0(3P [1]

0 )i =
1

3
h⌦|�†(� i

2

 !
D · �) P�Q053

⇥  
†(� i

2

 !
D · �)�|⌦i, (2a)54

hO
�Q0(3S[8]

1 )i = h⌦|�†
�
i
T

a
 �ab

` P�Q055

⇥ �bc
`  

†
�
i
T

c
�|⌦i, (2b)56

57

where |⌦i is the QCD vacuum, and  and � are Pauli58

spinor fields that annihilate and create a heavy quark59

and antiquark, respectively. The covariant derivative60
 !
D is defined by �

† !D = �
†D � (D�)† . The op-61

erator P�Q0 = a
†
�Q0

a�Q0 is a projection onto a state62

consisting of a �Q0 at rest, where a
†
�Q0

is the creation63

operator for the �Q0 state. The path-ordered Wilson64

line along the spacetime direction ` defined by �` =65

P exp[�ig
R1
0 dx `·A

adj(`x)], where Aadj is the gluon field66

in the adjoint representation, ensures the gauge invari-67

ance of the color-octet LDME [12–14]. The direction `68

can be chosen arbitrarily.69

We work in the strong coupling regime, where mv &70

⇤QCD � mv
2. This condition is fulfilled by non-71

Coulombic, strongly coupled quarkonia, such as the �QJ .72

In order to compute the LDMEs in strongly coupled pN-73

RQCD, we make use of the quantum-mechanical pertur-74

bation theory (QMPT) where we formally expand the75

NRQCD Hamiltonian in inverse powers of the heavy76

quark mass m [10, 15]:77

HNRQCD = H
(0)
NRQCD +

1

m
H

(1)
NRQCD + . . . , (3)78

The eigenstates in the heavy quark-antiquark sector are79
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P-WAVE PRODUCTION MATRIX ELEMENTS
▸ The dimensionless correlator     is defined in terms of 

chromoelectric fields gE with Wilson lines ! extending to 
infinity in the ! direction. 

▸     has a one-loop scale dependence that is consistent 
with the evolution equation for NRQCD matrix elements 

▸ In principle,     can be determined from lattice QCD.  
Since a lattice calculation is unavailable, we determine      
from measured "cJ cross section ratios to obtain 
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r2, r0
1, and r0

2 act on the wavefunctions in eq. (2.18). The gluonic matrix elements can406

be computed as407

X

p 6=n

h0|T a
1�

†ab
` (0,x)|pi(0)

(0)
hp|gE1|ni(0)

(E(0)
n � E(0)

p )2
= �

X

p 6=n

Z
1

0
dt t(0)h0|T a

1�
†ab
` |pi(0)(0)hp|gE1(t)|ni

(0)
408

= �
1

2Nc

Z
1

0
dt t(0)h0|�†ab

` gEa
1 (t)|ni

(0), (3.14)409
410

where in the last line, we computed the color matrices tr(T a
1 T

c
1 ) = �ac/(2Nc)tr( c) by using411

the fact that both the states |0i and |ni have color indices that are proportional to c.412

Since the matrix element (0)
h0|�†ab

` gEa
1 (t)|ni

(0) does not contain any color matrices, the413

last line of eq. (3.14) vanishes unless n 2 S. This gives414

� V
O(1S

[8]
0 )

���
P -wave

= �Ncri
r�

(3)(r)rj
r0

E
ij

N2
cm

2
, (3.15)415

416

where the tensor E
ij is defined by417

E
ij =

X

n

Z
1

0
t dt

Z
1

0
t0 dt0(0)h0|�†ab

` gEa,i
1 (t)|ni(0)(0)hn|gEc,j

1 (t0)�†bc
` |0i(0)418

=

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,j(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.16)419

420

In the last line, we used tr( c)/Nc = 1, and we introduced the Schwinger lines �0(t, t0) =421

P exp[�ig
R t0

t d⌧Aadj
0 (⌧,0)] to restore the gauge invariance. The configurations of the adjoint422

Wilson lines in eq. (3.16) are given in the following way. The chromoelectric field at time t0423

is connected to the origin 0 via the Schwinger line �ec
0 (t0, 0), which then continues to infinity424

in the ` direction. Analogously, the chromoelectric field at time t is connected to the origin425

0 via the Schwinger line �†da
0 (0, t), which then continues to infinity in the ` direction. The426

orderings of gEe,j(t0)�ec
0 (t0, 0)�bc

` and �†ab
` �†da

0 (0, t)gEd,i(t) are opposite; for a suitable427

choice of the sign of `0, gEe,j(t0)�ec
0 (t0, 0)�bc

` is time ordered, and �†ab
` �†da

0 (0, t)gEd,i(t) is428

anti time ordered. Hence, eq. (3.16) can be interpreted as a cut diagram, which can be429

useful for perturbative QCD. We show this configuration of the Wilson lines graphically in430

figure 1.431

Now we can compute the color-octet matrix element h⌦|OhQ(1S[8]
0 )|⌦i. Since the prod-432

uct �(0)
1P1

(r)�(0)
1P1

⇤(r) is isotropic after summing over the polarizations of the 1P1 state, the433

differential operators ri
rr

j
r0 in eq. (3.15) can be replaced by 1

3�
ijrr ·rr0 . Then, we obtain434

h⌦|OhQ(1S[8]
0 )|⌦i = 3⇥

3Nc

2⇡
|R(0)0(0)|2

1

9Ncm2
E , (3.17)435

where E is a dimensionless gluonic correlator defined by436

E =
3

Nc

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,i(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.18)437

The correlator E corresponds to the isotropic part of E ij , which is given by Nc
9 �ijE . The438

factor 3/Nc in the definition of E has been chosen so that eq. (3.17) resembles the pNRQCD439
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where ⇤ is the scale at which E is renormalized. This, in turn, implies the following evolution533

equation for the NRQCD matrix elements534

d

d log⇤
hO

�QJ (3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�QJ (3P [1]
J )i. (3.33)535

The same evolution equation holds for hO
hQ(1S[8]

0 )i and hO
hQ(1P [1]

1 )i. Equation (3.33)536

agrees with the evolution equation derived from a perturbative calculation in NRQCD [6],537

and therefore the UV divergence in the one-loop correction to the color-octet matrix ele-538

ment is consistent with the pNRQCD expressions at one-loop level. Since loop corrections539

to NRQCD matrix elements are scaleless, UV poles cancel IR poles in the form of eq. (3.31),540

and hence, the one-loop infrared divergence in the color-octet matrix element is also con-541

sistent with our pNRQCD results.542

At two loops, explicit checks of the consistency of our pNRQCD results with NRQCD543

factorization can be inferred from the two-loop calculations in Refs. [16] and [17]. In544

Ref. [16], two-loop corrections to the infrared factor I2(p, q) that are associated with the545

gauge-completion Wilson lines were computed, which contribute to the infrard divergence of546

the matrix element hOQ(1S[8]
0 )i at order ↵2

s. This result was reproduced in Ref. [17] through547

explicit calculations of the matrix element hOQ(1S[8]
0 )i. Since the calculation of the infrared548

factor in Ref. [16] is equivalent to the calculation of infrared divergences in the contact terms549

V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

, our pNRQCD expressions for the color-octet matrix elements also550

have the same infrared divergences that are associated with the gauge-completion Wilson551

lines that are found in the calculations of Ref. [17].552

It is interesting to see that eq. (3.31) is the same as the order-↵s calculation of the553

correlator E3 defined in eq. (3.20), which appears in decay matrix elements. Indeed, the554

one-loop evolution equation in eq. (3.33) is the same as the one-loop evolution equation for555

the decay matrix elements that appear in inclusive decays of P -wave quarkonia [6]. This556

equality ceases to hold at two loops, because at this order, E receives contributions from557

the gauge-completion Wilson lines, which are absent in E3.558

An important issue in NRQCD factorization is whether the color-octet NRQCD matrix559

elements are independent on the direction of the gauge-completion Wilson lines, which is560

necessary in establishing the universality of the NRQCD matrix elements. While a general561

argument for the universality has been given in Ref. [21], an explicit verification has only562

been done at two-loop accuracy [16, 17]. In our results for the color-octet matrix elements,563

the dependence on the direction of the gauge-completion Wilson lines can come from the564

tensor E
ij in the contact terms. For the case of polarization-summed cross sections, where565

the polarization of the quarkonium in the final state is summed over, only the isotropic566

part of E ij , given by Nc
9 �ijE , contributes to the color-octet matrix elements, and therefore,567

the dependence on the direction of the gauge-completion Wilson lines disappear due to568

rotational symmetry. Hence, the pNRQCD expressions of the color-octet matrix elements569

support the universality of the NRQCD matrix elements for polarization-summed cross570

sections of P -wave quarkonia. On the other hand, for the case of polarized cross sections,571

the non-isotropic part of E ij can in principle contribute to the color-octet matrix element,572

and if such contributions are nonvanishing, the matrix elements can acquire dependence573
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where the sum over N contains all possible intermediate states, T and T̄ represent time493

ordering and anti time ordering, respectively, p is half the center-of-mass momentum of the494

QQ̄, and495

�p(�) = P exp


�ig

Z �

0
d�0 p ·Aadj(�0p)

�
, (3.29)496

497

is an adjoint Wilson line along p. In eq. (3.28) we make explicit the time ordering and498

anti time ordering, which was implicit in Ref. [16]. In eq. (3.28), a factor of q comes from499

each side of the cut in the squared amplitude, so that the infrared factor applies to the500

production of a color-singlet P -wave state. This result is obtained from standard methods501

in perturbative factorization, where eikonal approximations are employed that simplify the502

loop corrections gluons while preserving the infrared divergences. This factor includes the503

infrared divergences that come from the soft gluons of scale mv, but does not include the504

contributions from the scale mv2. Since this process corresponds to the production of a QQ̄505

in the color-octet 3S1 state, this divergence must match the infrared divergence in the color-506

octet matrix element h⌦|OQ(3S[8]
1 )|⌦i, when Q is replaced by a color-singlet QQ̄ state. This507

agreement has been confirmed explicitly through one-loop and partial two-loop calculations508

of the color-octet NRQCD matrix element in Ref. [17]; the two-loop calculations have only509

been done for the diagrams that involve the gauge-completion Wilson lines. Since the510

matrix element h⌦|OQ(3S[8]
1 )|⌦i appears in the NRQCD factorization formula at leading511

order in v, the same infrared divergence occurs in the operator h⌦|OQ(1S[8]
0 )|⌦i through512

heavy quark spin symmetry.513

It can be seen that at the rest frame of the QQ̄, where p = 0 and q0 = 0, �p(�p) is just514

the Schwinger line �0(0, t) = P exp[�ig
R t
0 d⌧A

adj
0 (⌧,0)] where t =

p
p2�, and pµq⌫Ga

⌫µ(�p)515

is given by the chromoelectric field as
p
p2qiEa i(t). Therefore, the infrared factor I2(p, q)516

in eq. (3.28) is given by517

E
ijqiqj , (3.30)518

519

multiplied by color and kinematical factors that are infrared finite. Here, the tensor E
ij is520

defined in eq. (3.16). We note that eq. (3.30) is equivalent to the contact terms V
O(1S

[8]
0 )

and521

V
O(3S

[8]
1 )

in Eqs. (3.15) and (3.21), respectively, when applied to a color-singlet QQ̄ state522

with relative momentum q. Hence, we expect our pNRQCD expressions for the color-octet523

matrix elements in Eqs. (3.17) and (3.25b) to have the same infrared divergences that are524

expected in NRQCD factorization. This is straightforward to check explicitly at one-loop525

accuracy. By computing the correlator E at order-↵s accuracy in dimensional regularization526

at d = 4� 2✏ spacetime dimensions, we obtain527

E = 6CF
↵s

⇡

✓
1

✏UV
�

1

✏IR

◆
+O(↵2

s), (3.31)528

529

where the subscripts UV and IR indicate the origin of the 1/✏ poles. The UV divergence is530

removed through renormalization, which gives the following evolution equation531

d

d log⇤
E(⇤) = 12CF

↵s

⇡
+O(↵2

s), (3.32)532
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using the two-loop formula with nf = 5 light quark flavors and ⇤(5)
QCD = 226 MeV. The606

calculation in Ref. [29] also includes resummed logarithms in pT /mc at leading logarithmic607

accuracy. The short-distance coefficients �
QQ̄(3P

[1]
J )

depend on the scheme and scale ⇤ at608

which the color-octet matrix element h⌦|O�cJ (3S[8]
1 )|⌦i is renormalized, which we identify as609

the renormalization scale for E . We choose this scale to be ⇤ = mc in the MS scheme, where610

mc = 1.5 GeV is the charm quark mass. We estimate the uncertainty in the short-distance611

coefficients to be 30% of the central values, which account for corrections of relative order612

v2 that we neglect. The variations of the scales µF for the parton distribution functions613

and the renormalization scale µR for ↵s, which affect the short-distance coefficients by614

less than 25% of the central values. We use the pNRQCD expressions for the matrix615

elements in Eqs. (3.25). We neglect the uncertainty of order 1/N2
c compared to other616

uncertainties. Note that the wavefunction at the origin cancels in the ratio r21. In order to617

compare with measurements, we compute the values of r21 multiplied by B�c2/B�c1 , where618

B�cJ = Br(�cJ ! J/ �) ⇥ Br(J/ ! µ+µ�). We compute B�cJ from measurements in619

Ref. [30]. Since the measurements of r21 are given as functions of the transverse momentum620

pJ/ T of the J/ , we compute pJ/ T from the transverse momentum pT of the �cJ from621

pJ/ T =
mJ/ 

m�cJ

pT , (3.38)622

which is valid when mJ/ ⇡ m�cJ . By performing a least-squares fit to the measured values623

of r21 ⇥B�c2/B�c1 by CMS [27] and ATLAS [28], we obtain624

E(⇤ = 1.5 GeV) = 1.97± 0.06, (3.39)625

with �2/d.o.f. = 1.6/10. This value is compatible within uncertainties with a previous626

determination in Ref. [19], which was obtained by comparing to �c1 and �c2 cross section627

measurements from ATLAS. Compared to the determination in Ref. [19], our determination628

does not depend on the value of the wavefunction at the origin |R(0)0(0)|2. We show our629

result for r21 compared to ATLAS and CMS data in figure . In the following sections, we630

use this value of E in eq. (3.39) to compute cross sections of �cJ and �bJ at the LHC.631

3.4 Production and polarization of �cJ632

We now compute the inclusive production cross sections of �cJ from proton-proton collisions633

at the LHC based on our results for the matrix elements in eqs. (3.25) and the determination634

of E in eq. (3.39). We use the same short-distance coefficients as we used in section 3.3,635

and we take the value of E at the scale ⇤ = 1.5 GeV in eq. (3.39). We determine the value636

of the P -wave charmonium wavefunction at the origin from two-photon decay rates of �c0637

and �c2. For consistency with our calculation of the cross sections, we use the NRQCD638

factorization formulas for the decay rates at leading orders in v, while we include order-↵s639

corrections to the short-distance coefficients. The pNRQCD expressions for the two-photon640

widths at leading order in v read [6, 13, 14]641

�(�c0 ! ��) =
6⇡e4c↵

2

m4
c


1 +

(3⇡2 � 28)

24
CF

↵s

⇡

�2
3Nc

2⇡
|R(0)0(0)|2, (3.40)642
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P-WAVE PRODUCTION MATRIX ELEMENTS
▸ The dimensionless correlator     is defined in terms of 

chromoelectric fields gE with Wilson lines ! extending to 
infinity in the ! direction. 

▸     has a one-loop scale dependence that is consistent 
with the evolution equation for NRQCD matrix elements 

▸ In principle,     can be determined from lattice QCD.  
Since a lattice calculation is unavailable, we determine      
from measured "cJ cross section ratios to obtain 

17

r2, r0
1, and r0

2 act on the wavefunctions in eq. (2.18). The gluonic matrix elements can406

be computed as407

X

p 6=n

h0|T a
1�

†ab
` (0,x)|pi(0)

(0)
hp|gE1|ni(0)

(E(0)
n � E(0)

p )2
= �

X

p 6=n

Z
1

0
dt t(0)h0|T a

1�
†ab
` |pi(0)(0)hp|gE1(t)|ni

(0)
408

= �
1

2Nc

Z
1

0
dt t(0)h0|�†ab

` gEa
1 (t)|ni

(0), (3.14)409
410

where in the last line, we computed the color matrices tr(T a
1 T

c
1 ) = �ac/(2Nc)tr( c) by using411

the fact that both the states |0i and |ni have color indices that are proportional to c.412

Since the matrix element (0)
h0|�†ab

` gEa
1 (t)|ni

(0) does not contain any color matrices, the413

last line of eq. (3.14) vanishes unless n 2 S. This gives414

� V
O(1S

[8]
0 )

���
P -wave

= �Ncri
r�

(3)(r)rj
r0

E
ij

N2
cm

2
, (3.15)415

416

where the tensor E
ij is defined by417

E
ij =

X

n

Z
1

0
t dt

Z
1

0
t0 dt0(0)h0|�†ab

` gEa,i
1 (t)|ni(0)(0)hn|gEc,j

1 (t0)�†bc
` |0i(0)418

=

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,j(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.16)419

420

In the last line, we used tr( c)/Nc = 1, and we introduced the Schwinger lines �0(t, t0) =421

P exp[�ig
R t0

t d⌧Aadj
0 (⌧,0)] to restore the gauge invariance. The configurations of the adjoint422

Wilson lines in eq. (3.16) are given in the following way. The chromoelectric field at time t0423

is connected to the origin 0 via the Schwinger line �ec
0 (t0, 0), which then continues to infinity424

in the ` direction. Analogously, the chromoelectric field at time t is connected to the origin425

0 via the Schwinger line �†da
0 (0, t), which then continues to infinity in the ` direction. The426

orderings of gEe,j(t0)�ec
0 (t0, 0)�bc

` and �†ab
` �†da

0 (0, t)gEd,i(t) are opposite; for a suitable427

choice of the sign of `0, gEe,j(t0)�ec
0 (t0, 0)�bc

` is time ordered, and �†ab
` �†da

0 (0, t)gEd,i(t) is428

anti time ordered. Hence, eq. (3.16) can be interpreted as a cut diagram, which can be429

useful for perturbative QCD. We show this configuration of the Wilson lines graphically in430

figure 1.431

Now we can compute the color-octet matrix element h⌦|OhQ(1S[8]
0 )|⌦i. Since the prod-432

uct �(0)
1P1

(r)�(0)
1P1

⇤(r) is isotropic after summing over the polarizations of the 1P1 state, the433

differential operators ri
rr

j
r0 in eq. (3.15) can be replaced by 1

3�
ijrr ·rr0 . Then, we obtain434

h⌦|OhQ(1S[8]
0 )|⌦i = 3⇥

3Nc

2⇡
|R(0)0(0)|2

1

9Ncm2
E , (3.17)435

where E is a dimensionless gluonic correlator defined by436

E =
3

Nc

Z
1

0
t dt

Z
1

0
t0 dt0h⌦|�†ab

` �†da
0 (0, t)gEd,i(t)gEe,i(t0)�ec

0 (t0, 0)�bc
` |⌦i. (3.18)437

The correlator E corresponds to the isotropic part of E ij , which is given by Nc
9 �ijE . The438

factor 3/Nc in the definition of E has been chosen so that eq. (3.17) resembles the pNRQCD439
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where ⇤ is the scale at which E is renormalized. This, in turn, implies the following evolution533

equation for the NRQCD matrix elements534

d

d log⇤
hO

�QJ (3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�QJ (3P [1]
J )i. (3.33)535

The same evolution equation holds for hO
hQ(1S[8]

0 )i and hO
hQ(1P [1]

1 )i. Equation (3.33)536

agrees with the evolution equation derived from a perturbative calculation in NRQCD [6],537

and therefore the UV divergence in the one-loop correction to the color-octet matrix ele-538

ment is consistent with the pNRQCD expressions at one-loop level. Since loop corrections539

to NRQCD matrix elements are scaleless, UV poles cancel IR poles in the form of eq. (3.31),540

and hence, the one-loop infrared divergence in the color-octet matrix element is also con-541

sistent with our pNRQCD results.542

At two loops, explicit checks of the consistency of our pNRQCD results with NRQCD543

factorization can be inferred from the two-loop calculations in Refs. [16] and [17]. In544

Ref. [16], two-loop corrections to the infrared factor I2(p, q) that are associated with the545

gauge-completion Wilson lines were computed, which contribute to the infrard divergence of546

the matrix element hOQ(1S[8]
0 )i at order ↵2

s. This result was reproduced in Ref. [17] through547

explicit calculations of the matrix element hOQ(1S[8]
0 )i. Since the calculation of the infrared548

factor in Ref. [16] is equivalent to the calculation of infrared divergences in the contact terms549

V
O(1S

[8]
0 )

and V
O(3S

[8]
1 )

, our pNRQCD expressions for the color-octet matrix elements also550

have the same infrared divergences that are associated with the gauge-completion Wilson551

lines that are found in the calculations of Ref. [17].552

It is interesting to see that eq. (3.31) is the same as the order-↵s calculation of the553

correlator E3 defined in eq. (3.20), which appears in decay matrix elements. Indeed, the554

one-loop evolution equation in eq. (3.33) is the same as the one-loop evolution equation for555

the decay matrix elements that appear in inclusive decays of P -wave quarkonia [6]. This556

equality ceases to hold at two loops, because at this order, E receives contributions from557

the gauge-completion Wilson lines, which are absent in E3.558

An important issue in NRQCD factorization is whether the color-octet NRQCD matrix559

elements are independent on the direction of the gauge-completion Wilson lines, which is560

necessary in establishing the universality of the NRQCD matrix elements. While a general561

argument for the universality has been given in Ref. [21], an explicit verification has only562

been done at two-loop accuracy [16, 17]. In our results for the color-octet matrix elements,563

the dependence on the direction of the gauge-completion Wilson lines can come from the564

tensor E
ij in the contact terms. For the case of polarization-summed cross sections, where565

the polarization of the quarkonium in the final state is summed over, only the isotropic566

part of E ij , given by Nc
9 �ijE , contributes to the color-octet matrix elements, and therefore,567

the dependence on the direction of the gauge-completion Wilson lines disappear due to568

rotational symmetry. Hence, the pNRQCD expressions of the color-octet matrix elements569

support the universality of the NRQCD matrix elements for polarization-summed cross570

sections of P -wave quarkonia. On the other hand, for the case of polarized cross sections,571

the non-isotropic part of E ij can in principle contribute to the color-octet matrix element,572

and if such contributions are nonvanishing, the matrix elements can acquire dependence573
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where the sum over N contains all possible intermediate states, T and T̄ represent time493

ordering and anti time ordering, respectively, p is half the center-of-mass momentum of the494

QQ̄, and495

�p(�) = P exp


�ig

Z �

0
d�0 p ·Aadj(�0p)

�
, (3.29)496

497

is an adjoint Wilson line along p. In eq. (3.28) we make explicit the time ordering and498

anti time ordering, which was implicit in Ref. [16]. In eq. (3.28), a factor of q comes from499

each side of the cut in the squared amplitude, so that the infrared factor applies to the500

production of a color-singlet P -wave state. This result is obtained from standard methods501

in perturbative factorization, where eikonal approximations are employed that simplify the502

loop corrections gluons while preserving the infrared divergences. This factor includes the503

infrared divergences that come from the soft gluons of scale mv, but does not include the504

contributions from the scale mv2. Since this process corresponds to the production of a QQ̄505

in the color-octet 3S1 state, this divergence must match the infrared divergence in the color-506

octet matrix element h⌦|OQ(3S[8]
1 )|⌦i, when Q is replaced by a color-singlet QQ̄ state. This507

agreement has been confirmed explicitly through one-loop and partial two-loop calculations508

of the color-octet NRQCD matrix element in Ref. [17]; the two-loop calculations have only509

been done for the diagrams that involve the gauge-completion Wilson lines. Since the510

matrix element h⌦|OQ(3S[8]
1 )|⌦i appears in the NRQCD factorization formula at leading511

order in v, the same infrared divergence occurs in the operator h⌦|OQ(1S[8]
0 )|⌦i through512

heavy quark spin symmetry.513

It can be seen that at the rest frame of the QQ̄, where p = 0 and q0 = 0, �p(�p) is just514

the Schwinger line �0(0, t) = P exp[�ig
R t
0 d⌧A

adj
0 (⌧,0)] where t =

p
p2�, and pµq⌫Ga

⌫µ(�p)515

is given by the chromoelectric field as
p
p2qiEa i(t). Therefore, the infrared factor I2(p, q)516

in eq. (3.28) is given by517

E
ijqiqj , (3.30)518

519

multiplied by color and kinematical factors that are infrared finite. Here, the tensor E
ij is520

defined in eq. (3.16). We note that eq. (3.30) is equivalent to the contact terms V
O(1S

[8]
0 )

and521

V
O(3S

[8]
1 )

in Eqs. (3.15) and (3.21), respectively, when applied to a color-singlet QQ̄ state522

with relative momentum q. Hence, we expect our pNRQCD expressions for the color-octet523

matrix elements in Eqs. (3.17) and (3.25b) to have the same infrared divergences that are524

expected in NRQCD factorization. This is straightforward to check explicitly at one-loop525

accuracy. By computing the correlator E at order-↵s accuracy in dimensional regularization526

at d = 4� 2✏ spacetime dimensions, we obtain527

E = 6CF
↵s

⇡

✓
1

✏UV
�

1

✏IR

◆
+O(↵2

s), (3.31)528

529

where the subscripts UV and IR indicate the origin of the 1/✏ poles. The UV divergence is530

removed through renormalization, which gives the following evolution equation531

d

d log⇤
E(⇤) = 12CF

↵s

⇡
+O(↵2

s), (3.32)532
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using the two-loop formula with nf = 5 light quark flavors and ⇤(5)
QCD = 226 MeV. The606

calculation in Ref. [29] also includes resummed logarithms in pT /mc at leading logarithmic607

accuracy. The short-distance coefficients �
QQ̄(3P

[1]
J )

depend on the scheme and scale ⇤ at608

which the color-octet matrix element h⌦|O�cJ (3S[8]
1 )|⌦i is renormalized, which we identify as609

the renormalization scale for E . We choose this scale to be ⇤ = mc in the MS scheme, where610

mc = 1.5 GeV is the charm quark mass. We estimate the uncertainty in the short-distance611

coefficients to be 30% of the central values, which account for corrections of relative order612

v2 that we neglect. The variations of the scales µF for the parton distribution functions613

and the renormalization scale µR for ↵s, which affect the short-distance coefficients by614

less than 25% of the central values. We use the pNRQCD expressions for the matrix615

elements in Eqs. (3.25). We neglect the uncertainty of order 1/N2
c compared to other616

uncertainties. Note that the wavefunction at the origin cancels in the ratio r21. In order to617

compare with measurements, we compute the values of r21 multiplied by B�c2/B�c1 , where618

B�cJ = Br(�cJ ! J/ �) ⇥ Br(J/ ! µ+µ�). We compute B�cJ from measurements in619

Ref. [30]. Since the measurements of r21 are given as functions of the transverse momentum620

pJ/ T of the J/ , we compute pJ/ T from the transverse momentum pT of the �cJ from621

pJ/ T =
mJ/ 

m�cJ

pT , (3.38)622

which is valid when mJ/ ⇡ m�cJ . By performing a least-squares fit to the measured values623

of r21 ⇥B�c2/B�c1 by CMS [27] and ATLAS [28], we obtain624

E(⇤ = 1.5 GeV) = 1.97± 0.06, (3.39)625

with �2/d.o.f. = 1.6/10. This value is compatible within uncertainties with a previous626

determination in Ref. [19], which was obtained by comparing to �c1 and �c2 cross section627

measurements from ATLAS. Compared to the determination in Ref. [19], our determination628

does not depend on the value of the wavefunction at the origin |R(0)0(0)|2. We show our629

result for r21 compared to ATLAS and CMS data in figure . In the following sections, we630

use this value of E in eq. (3.39) to compute cross sections of �cJ and �bJ at the LHC.631

3.4 Production and polarization of �cJ632

We now compute the inclusive production cross sections of �cJ from proton-proton collisions633

at the LHC based on our results for the matrix elements in eqs. (3.25) and the determination634

of E in eq. (3.39). We use the same short-distance coefficients as we used in section 3.3,635

and we take the value of E at the scale ⇤ = 1.5 GeV in eq. (3.39). We determine the value636

of the P -wave charmonium wavefunction at the origin from two-photon decay rates of �c0637

and �c2. For consistency with our calculation of the cross sections, we use the NRQCD638

factorization formulas for the decay rates at leading orders in v, while we include order-↵s639

corrections to the short-distance coefficients. The pNRQCD expressions for the two-photon640

widths at leading order in v read [6, 13, 14]641

�(�c0 ! ��) =
6⇡e4c↵

2

m4
c


1 +

(3⇡2 � 28)

24
CF

↵s

⇡

�2
3Nc

2⇡
|R(0)0(0)|2, (3.40)642
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HEAVY QUARKONIUM PRODUCTION IN PNRQCD

P-WAVE PRODUCTION MATRIX ELEMENTS
▸ Color-singlet matrix element: we reproduce the known 

result in the vacuum-saturation approximation. 

▸ Color-octet matrix element: result is given in terms of the 
wavefunction and a universal gluonic correlator.  

▸     is a universal quantity that does not depend on quark 
flavor or radial excitation. Determination of     directly 
leads to determination of all !cJ and !bJ(nP) cross 
sections, as well as hc and hb production rates.

16

3

make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�b0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �ad

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages

3

quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-

tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order
in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�Q0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �†da

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
1 )i =

4CF↵s

3Nc⇡m2
hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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ing order wavefunctions can be computed by solving the
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tentials have been determined from the static energies
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n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and
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Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
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potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
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with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2
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approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
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0 )i and hO
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1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)
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�Q0(x1,x2) as discussed above.

For the CS LDME hO
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order in QMPT
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�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order

in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:
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(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is
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1 )i =

4CF↵s

3Nc⇡m2
hO
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where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages
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quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
ations. In the large Nc limit, the VEV of a Wilson loop
with additional disconnected gluon fields factorizes into
the VEV of the Wilson loop times the VEV of the addi-
tional gluon fields up to corrections of order 1/N2

c [23, 24].
If the slopes of the static potentials are the same for all
n in the large Nc limit, then in that limit the wavefunc-
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Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
�Q0(3P [1]

0 )i and hO
�Q0(3S[8]

1 )i in
strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
�Q0(x1,x2) as discussed above.

For the CS LDME hO
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0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]
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3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order
in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�Q0(3S[8]

1 )i =
3Nc
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(0)|2
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, (10)

where

E =
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Z 1
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` �†da

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is
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�Q0(3S[8]
1 )i =

4CF↵s
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hO

�Q0(3P [1]
0 )i, (13)

where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
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tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
Wilson loop in the presence of some additional, discon-
nected gluon fields. To our knowledge, there are no lat-
tice data available for the n 6= 0 static potentials. How-
ever, we expect that the disconnected gluon fields mostly
provide a constant shift to the potentials, for instance in
the form of a glueball mass, but do not significantly a↵ect
their slopes. This is also supported by large Nc consider-
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with additional disconnected gluon fields factorizes into
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approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).

Following the outlined procedure, we can compute the

production LDMEs hO
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strongly coupled pNRQCD. Furthermore, in the case
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where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
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Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =
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t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
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The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is
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where CF = (N2
c � 1)/(2Nc). Equation (13) agrees with

the evolution equation derived from a perturbative cal-
culation in NRQCD [7]. The agreement is a one-loop
consistency check of Eq. (10). At two loops however the
identification of E with E3 may not hold [8–11].
Equation (10) is our result for the CO LDME. The

result allows a first-principles determination of the CO
LDME, once E is known. The correlator E may be com-
puted in lattice QCD or it can be obtained from processes
involving heavy quarkonia.
We now compute the inclusive production cross sec-

tions of �cJ and �bJ(nP ) from proton-proton collisions
at the LHC based on our results for the LDMEs in
Eqs. (9) and (10). We use the value |R(0)0

�c0 (0)|
2 =

0.057 GeV5, which we obtain by comparing the mea-
sured two-photon decay rates of �c0 and �c2 in Ref. [25]
with the pNRQCD expressions at leading order in v
and at next-to-leading order (NLO) in ↵s [19]. Be-
cause two-photon decay rates of �bJ have not been

measured yet, we take for |R(0)0

�b0(nP )(0)|
2 the averages

3

quarkonia in pNRQCD in Refs. [17–19] and consists of
the following steps: (i) replace in the LDMEs the projec-
tor PQ(P=0) with the expressions (6) and (5); (ii) using
QMPT, and in particular Eqs. (3) and (4), express the

LDMEs in terms of |n;x1,x2i
(0) and E(0)

n (x1,x2); (iii)
make explicit the heavy quark and antiquark field con-
tent of the states |n;x1,x2i

(0) and eliminate the fields by
using Wick’s theorem; one makes use at this point of the
fact that the states in PQ(P=0) belong to the set S, which
constrains their color structure; (iv) rewrite the sum of
the matrix elements of the gluon fields on the states |⌦i
and |n;x1,x2i

(0) (evaluated at x1 � x2 = 0) in terms
of gluon field correlators; (v) identify �Q(n,P )(x1,x2) or
derivatives of them (evaluated at x1 � x2 = 0) with the
wavefunctions of the pNRQCD Hamiltonian. The lead-
ing order wavefunctions can be computed by solving the
corresponding Schrödinger equations, once the static po-
tentials have been determined from the static energies

E(0)
n typically obtained by lattice QCD methods.

The wavefunctions �(0)
Q(n)(x1,x2) depend on n and

may di↵er from the usual quarkonium wavefunctions

�(0)
Q (x1,x2) that correspond to the n = 0 case. For

n = 0, the static potential in h0 can be extracted from
the vacuum expectation value (VEV) of a static Wilson
loop [14, 20]. Similarly, for n 6= 0 and n 2 S, the static
potential in hn can be extracted from the VEV of a static
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c [23, 24].
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tions �(0)
Q(n)(x1,x2) are independent of n. Hence, we will

approximate the wavefunctions �(0)
Q(n)(x1,x2) with the

quarkonium wavefunction �(0)
Q (x1,x2) making an error

of at most O(1/N2
c ).
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production LDMEs hO
�Q0(3P [1]
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�Q0(3S[8]
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strongly coupled pNRQCD. Furthermore, in the case

of the CO LDME, we approximate �(0)
�Q0(n)

(x1,x2) ⇡

�(0)
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�Q0(3P [1]

0 )i, we obtain at leading
order in QMPT

hO
�Q0(3P [1]

0 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2, (9)

where R(0)
�Q0(r) is the radial wavefunction of �Q0 at lead-

ing order in the velocity expansion (R(0)0

�Q0(r) stands for
its derivative). This reproduces the result obtained in
the vacuum-saturation approximation in Ref. [7].

The CO LDME hO
�Q0(3S[8]

1 )i vanishes at leading order
in QMPT. Nonvanishing contributions come from next-
to-leading order in QMPT:

hO
�Q0(3S[8]

1 )i =
3Nc

2⇡
|R(0)0

�Q0
(0)|2

E

9Ncm2
, (10)

where

E =
3

Nc

Z 1

0
dt t

Z 1

0
dt0 t0

⇥ h⌦|�†ab
` �†da

0 (0, t)gEd,i(t)gEe,i(t0)�ec
0 (0, t0)�bc

` |⌦i,
(11)

Ea,i(t) being a chromoelectric field component computed
at the time t and at the space location 0, and �0(t, t0) =

P exp[�ig
R t0

t d⌧ Aadj
0 (⌧,0)] a Schwinger line. Note that

E is a purely gluonic quantity that does not depend on
the heavy quark flavor.
The expression for the CO LDME given in Eq. (10)

is very similar to the pNRQCD expression for the CO
LDME appearing at leading order in v in the decay of
�QJ into light hadrons [17, 19]. The only di↵erence is
that there the correlator E is replaced by the correlator

E3 =
1

2Nc

Z 1

0
dt t3 h⌦|gEa,i(t)�ab

0 (t, 0)gEb,i(0)|⌦i.

(12)
The two correlators would be the same if we could neglect
the contributions from the strings. At one loop, they have
the same logarithmic dependence on the renormalization
scale ⇤ and satisfy the same evolution equation. From
this [17], it follows that the one-loop evolution equation

for hO�Q0(3S[8]
1 )i is

d

d log⇤
hO

�Q0(3S[8]
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4CF↵s
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0 )i, (13)
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Figure 2. Ratio r21 of �c2 and �c1 cross sections at the LHC (
p
s = 7 TeV, |y| < 0.75) compared

with CMS [27] and ATLAS [28] measurements.
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where ec = 2/3 is the fractional charge of the charm quark, and ↵ is the QED coupling
constant. In the decay rates, we use ↵ = 1/137 reflecting the fact that the photons in
the final states are on shell, and use ↵s = 0.282, which is evaluated at the scale m�cJ/2.
We use mc = 1.5 GeV for consistency with the calculation of cross sections. By comparing
these formulas with the BESIII measurements of the decay rates [31], we obtain |R(0)0(0)|2 =

0.041 GeV5 for �c0, and |R(0)0(0)|2 = 0.073 GeV5 for �c2. For the calculation of the NRQCD
matrix elements, we take the average |R(0)0(0)|2 = 0.057 GeV5 as the central value, and we
take the uncertainty to be 30% of the central value, which reflects uncalculated corrections
of relative order v2.

Now we compute the cross sections for �c1 and �c2 using the short-distance coefficients
from Ref. [29] that we used to compute r21 in the previous section. We show our results
for the �c1 and �c2 cross sections in figure 3 against ATLAS data. Compared to a previous
pNRQCD calculation of the cross sections in Ref. [19], our results are almost unchanged,
because our determination of E is very close to the determination in Ref. [19], and we use
the same value of |R(0)0(0)|2.

We also compute the polarization of �c1 and �c2 produced at the LHC. We compute
the polarization parameters ��c1

✓ and ��c2
✓ , which are defined by

��cJ
✓ =

1� 3⇠�cJ

1 + ⇠�cJ

, (3.42)

where ⇠�cJ is the fraction of J/ produced with longitudinal polarization from decays of
�cJ . We use the hadron helicity frame to define the spin quantization axis of the J/ .
The polarized cross sections can be computed by using the short-distance coefficients from
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Figure 3. Production cross sections of �c2 and �c1 at the LHC (
p
s = 7 TeV, |y| < 0.75) compared

with ATLAS measurements [28].

Ref. for polarized production of �cJ and the relation in eq. (3.34) which follows from the
assumption that the NRQCD matrix elements are universal for polarized cross sections.
Our results for ��c1

✓ and ��c2
✓ are shown in figure 4 against the experimental constraints

from CMS [32].

3.5 Production of �bJ(nP )

We now compute the cross sections of �bJ(nP ) at the LHC. We first compute the the ratio
r21 for the �bJ(nP ) states. We compute the short-distance coefficients at NLO accuracy
using the FDCHQHP package [33]. We use the bottom quark mass mb = 4.75 GeV,
CTEQ6M parton distribution functions at the scale µF =

q
p2T + 4m2

b , and compute ↵s at

the same scale using the two-loop formula with nf = 5 light quark flavors and ⇤(5)
QCD =

226 MeV. Since the range of pT of the �bJ that we consider is not too large compared to the
mass of the �bJ states, we do not consider resumming the logarithms of pT /mb. We take the
renormalization scale ⇤ for the color-octet matrix element h⌦|O�bJ (nP )(3S[8]

1 )|⌦i to be mb.
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Figure 4. Polarization of �c2 and �c1 at the LHC (
p
s = 7 TeV, |y| < 0.75) averaged over the

range 8 GeV< pJ/ T <30 GeV, compared with experimental constraints from CMS [32].

We compute E at scale 4.75 GeV by using the one-loop renormalization-group-improved
formula

E(⇤) = E(⇤0) +
24CF

�0
log

↵s(⇤0)

↵s(⇤)
, (3.43)

where �0 = 11Nc/3� 2nf/3. We take into account the uncertainty in E , and estimate the
uncertainty from uncalculated corrections of order v2 by 10% of the central values.
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Figure 6. Feeddown fractions R�b(nP )
⌥(n0S) at the LHC (

p
s = 7 TeV, 2 < y < 4.5), compared with

the LHCb data [37]

based on the potential nonrelativistic QCD (pNRQCD) effective field theory. Our formalism
applies to strongly coupled quarkonia, which include excited charmonium and bottomonium
states. We obtain expressions of the LDMEs that are given by products of quarkonium
wavefunctions at the origin and universal gluonic correlators, analogously to the pNRQCD
expressions of decay LDMEs. The computation of the production LDMEs in this paper is
valid up to corrections of relative order 1/N2

c .

Based on the general formalism we have developed in section 2, we computed NRQCD
LDMEs for production of P -wave heavy quarkonia at leading nonvanishing orders in v

in section 3. For the case of color-singlet LDMEs, we reproduce the known results from
the vacuum-saturation approximation where the production LDMEs and decay LDMEs
are both given by quarkonium wavefunctions at the origin at leading orders in v. For the
color-octet LDMEs, we obtain expressions that are similar to the color-octet decay LDMEs,
except that we obtain a gluonic correlator E that is different from what we find in decay
LDMEs, due to the gauge-completion Wilson lines that are necessary in ensuring the gauge
invariance of the color-octet LDMEs. Our results confirm our previous calculation of the
P -wave LDMEs in Ref. [19], where we assumed heavy-quark spin symmetry to reduce the
number of independent LDMEs. In this work, we explicitly confirm the validity of heavy-
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we are currently 
investigating the  

J/psi case



additional scales  smaller than m can be integrated out combining with other EFTs

Example: quarkonium in thermal medium, T<m,  the thermal medium has scales T and 
m_d=gT=>  integrate out T produces Hard Thermal  EFT (HTL)  

N. B., Ghiglieri,Petreczky, Vairo 08 
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m
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V ∼ mv2

T
mD

◦ Brambilla Pineda Soto Vairo RMP 77(05)1423
We assume that bound states exist for

• T % m

• 〈1/r〉 ∼ mv >
∼

mD

We neglect smaller thermodynamical scales.
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if T > E the potential has thermal effects

Weak coupling

In the weak coupling regime:

• v ∼ αs " 1; valid for tightly bound states: Υ(1S), J/ψ, ...

• T # gT ∼ mD .

Effects due to the scale ΛQCD will not be considered.

Notice: 



The potential  V(r,T) dictates throught the Schroedinger equation the real time evolution  of the QQbar pair in 
the medium-> use pNRQCD to define and calculate it  

Landau damping 

ReVS (r,T)

Discovery from new EFT calculations:
Quarkonium potential has Real & Imaginary part 

octet transition

thermal breakup of a Q-Q ! 
color singlet into a color 
octet state and gluons

gluon self-energy, scattering 
of particles in the medium 

with space-like gluons
Brambilla, Vairo, Petreczky 2009 Laine, 2007
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Singlet-to-octet Landau damping

(gluo dissociation) (inelastic parton scattering) 
Laine et al 07, Escobedo Soto 07N.B Ghiglieri, Petreczky, Vairo 2008
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=> T effects can be  
different from screening

=> dissociation of 
quarkonium is driven  

by the imaginary parts of the 
potentials instead than 

by Debye screening  

 The EFT produces:

=> a technology to calculate systemically thermal energies 
 and widths: spectrum of quarkonium at finite T at alpha_s^5  



pNREFT is the lowest energy EFT for a single NR system but in the interaction between 
two NR systems more energy scales can be integrated out giving interaction potentials: 

WEFT the EFT for bound-state—bound state-interaction

Notice: 
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We have obtained the van der Waals potential also in the intermediate distance region 
 (limits for short and large distance reproduce London  and Casimir Polder) 

N.B., V. Shtabovenko, 
 J. Tarrus, A. Vairo 1704.03476
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Figure 6. Left panel: Sketch of the physical picture of the van der Waals interactions in the long-range regime. The distance
between the two atoms is much larger than the typical time interval in which the photons are exchanged. Right panel: Hierarchy
of scales and the corresponding EFTs in the long-range regime.

A. Matching WEFT′

To aid in the computation of the van der Waals potential we introduce WEFT′, an EFT for momenta much smaller
than the typical binding energies, but of the same order as the inverse distance between hydrogen atoms. WEFT′

follows from pNRQED by integrating out ultrasoft photons carrying energy and momentum of order mα2 and virtual
atomic states, whose energy is also of order mα2. The Lagrangian for WEFT′ in the one-atom sector is the same as
for WEFT, and is given in Eq. (10). We will now compute the two-atom sector of WEFT′.
Since we are integrating out photons and virtual atomic states carrying an energy of order mα2, and since the

energy scale mα2 is generated only in loops if the initial- and final-state atoms have the same quantum numbers, the
only tree-level contributions to consider are potentials taken over from pNRQED to WEFT′. The leading potential
from pNRQED is the contact interaction of Eq. (8), which gives

(W̃ ′)cont. = −
ds
m2

−
4dv
m2

〈n1|S|n1〉 · 〈n2|S|n2〉 . (39)

=+ (W ′)1loop

Figure 7. One-loop matching of the two hydrogen atom potentials of WEFT′. The pNRQED diagrams are on the left-hand
side and the WEFT′ one is on the right-hand side .

The dominant one-loop contributions to the two-atom potential of WEFT′ are given by the two-photon exchange
diagrams in the left-hand side of Fig. 7. The two photons are ultrasoft, which means that they carry a momentum
qµ that scales like q0 ∼ |q| ∼ mα2. The LO contribution, involving four electric-dipole vertices is of order α2/m2 in
momentum space (mα9√α in coordinate space according to the counting 1/R ∼ mα2√α). Subsequent contributions
are suppressed by powers of 1/(mα2 R)2 ∼ α. Furthermore, replacing an electric dipole coupling by a magnetic one
adds at least an extra α suppression.
As we will see in the next section, the Casimir-Polder potential is generated by the one-loop diagram with two-

photon exchange through the electric-polarizability seagull vertices of WEFT′ (fourth diagram in Fig. 8), and it is α2

suppressed with respect to the LO contribution. To match that precision we have to compute the one-loop diagrams
of Fig. 7 up to N2LO. The different contributions to the WEFT′ potential for S-wave states read in momentum space

(W̃ ′)1loopLO,E = −(d2 − 5d+ 6)
∑′

m1,m2

pE(n1,m1)pE(n2,m2)

∆E2
n1m1

−∆E2
n2m2

×∆En1m1
∆En2m2

[∆En1m1
J(∆En1m1

)−∆En2m2
J(∆En2m2

)] , (40)

(W̃ ′)1loopNLO,E = −(d− 2)(d2 − 8d+ 27)
k2

12

∑′

m1,m2

pE(n1,m1)pE(n2,m2)

∆E2
n1m1

−∆E2
n2m2

WEFT is matched to  pNREFT



pNREFT is the lowest energy EFT for a single NR system but in the interaction between 
two NR systems more energy scales can be integrated out giving interaction potentials: 

WEFT the EFT for bound-state—bound state-interaction

Notice: 

We have obtained the van der Waals potential also in the intermediate distance region 
 (limits for short and large distance reproduce London  and Casimir Polder) 

N.B., V. Shtabovenko, 
 J. Tarrus, A. Vairo 1704.03476

Van der Walls EFT

12

1/mα2

R

∼ mα2

∼ 1/R

∼ Q

E

WEFT

WEFT ′

pNRQED

Figure 6. Left panel: Sketch of the physical picture of the van der Waals interactions in the long-range regime. The distance
between the two atoms is much larger than the typical time interval in which the photons are exchanged. Right panel: Hierarchy
of scales and the corresponding EFTs in the long-range regime.

A. Matching WEFT′

To aid in the computation of the van der Waals potential we introduce WEFT′, an EFT for momenta much smaller
than the typical binding energies, but of the same order as the inverse distance between hydrogen atoms. WEFT′

follows from pNRQED by integrating out ultrasoft photons carrying energy and momentum of order mα2 and virtual
atomic states, whose energy is also of order mα2. The Lagrangian for WEFT′ in the one-atom sector is the same as
for WEFT, and is given in Eq. (10). We will now compute the two-atom sector of WEFT′.
Since we are integrating out photons and virtual atomic states carrying an energy of order mα2, and since the

energy scale mα2 is generated only in loops if the initial- and final-state atoms have the same quantum numbers, the
only tree-level contributions to consider are potentials taken over from pNRQED to WEFT′. The leading potential
from pNRQED is the contact interaction of Eq. (8), which gives

(W̃ ′)cont. = −
ds
m2

−
4dv
m2

〈n1|S|n1〉 · 〈n2|S|n2〉 . (39)

=+ (W ′)1loop

Figure 7. One-loop matching of the two hydrogen atom potentials of WEFT′. The pNRQED diagrams are on the left-hand
side and the WEFT′ one is on the right-hand side .

The dominant one-loop contributions to the two-atom potential of WEFT′ are given by the two-photon exchange
diagrams in the left-hand side of Fig. 7. The two photons are ultrasoft, which means that they carry a momentum
qµ that scales like q0 ∼ |q| ∼ mα2. The LO contribution, involving four electric-dipole vertices is of order α2/m2 in
momentum space (mα9√α in coordinate space according to the counting 1/R ∼ mα2√α). Subsequent contributions
are suppressed by powers of 1/(mα2 R)2 ∼ α. Furthermore, replacing an electric dipole coupling by a magnetic one
adds at least an extra α suppression.
As we will see in the next section, the Casimir-Polder potential is generated by the one-loop diagram with two-

photon exchange through the electric-polarizability seagull vertices of WEFT′ (fourth diagram in Fig. 8), and it is α2

suppressed with respect to the LO contribution. To match that precision we have to compute the one-loop diagrams
of Fig. 7 up to N2LO. The different contributions to the WEFT′ potential for S-wave states read in momentum space

(W̃ ′)1loopLO,E = −(d2 − 5d+ 6)
∑′

m1,m2

pE(n1,m1)pE(n2,m2)

∆E2
n1m1

−∆E2
n2m2

×∆En1m1
∆En2m2

[∆En1m1
J(∆En1m1

)−∆En2m2
J(∆En2m2

)] , (40)

(W̃ ′)1loopNLO,E = −(d− 2)(d2 − 8d+ 27)
k2

12

∑′

m1,m2

pE(n1,m1)pE(n2,m2)

∆E2
n1m1

−∆E2
n2m2

WEFT is matched to  pNREFT

N.B., G. Krein, J. Tarrus, A. Vairo 2015

 we obtained WEFT in QCD for 

Long distance van der Waals interaction in QCD

In QCD, more energy scales and intermediate EFTs are involved to match with WEFT:

∼ mv2 pNRQCD

∼ ΛQCD gWEFT

∼ mπ ∼ k χEFT

∼ k2/mφ WEFT

E

The matching to WEFT requires coupling the QCD bound state (quarkonium) with chiral

perturbation theory, the EFT for the would-be Goldstone bosons of QCD (pions).

The inverse of the pion mass sets the range of the QCD van der Waals interaction at

long distances (R ∼ 1/mπ) and m2
π/mφ sets the scale of the WEFT.

◦ Brambilla Krein Tarrus Vairo PRD 93 (2016) 054002

more scales 
to integrate out  

in QCD
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the Frontier of the NR bound state:


nR pairs and light degrees freedom: 
X, Y, Z exotics observed at Colliders

  BO (Born-Oppenheimer) EFT
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nR pairs in nonequilibrium 
evolution in a medium (QGp, Early 
Universe) that trigger decays and 

recombinations

  pNREFT plus Open Quantum System: Linblad equation
N.B;  Escobedo,  Soto,  Vairo. 1711.04515, 1612.07248; N.B.  Escobedo, Vairo, Vander Griend 1903.08063;  

N.B. Escobedo , Strickland, Vairo, Vander Griend, Weber, 2012.01240; Yao, Mehen 2009.02408, 1811.07027; Sharma 2020…
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nonequilibrium  evolution of quarkonium in a strongly coupled QGP

Quarkonium as a Coulombic bound state

The lowest quarkonium states (1S bottomonium and charmonium, 2S bottomonium) are

the most tightly bound. For these we assume the hierarchy of energy scales

M !
1

r
∼ Mαs ! T ∼ gT ! any other scale, v ∼ αs

This qualifies the bound state as Coulombic:

• quark-antiquark color singlet Hamiltonian = hs =
p2

M
−

4

3

αs

r

• quark-antiquark color octet Hamiltonian = ho =
p2

M
+

αs

6r

The octet potential describes an unbound quark-antiquark pair.

work in the hierarchy 
and in real time formalism

use a Coulombic quarkonium to test the strongly coupled plasma  



•  DWWWe describe  the evolution of singlet and octet quarkonium with the matrix density 
evolution in  an open quantum system using pNRQCD at finite T
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•  DWWWe describe  the evolution of singlet and octet quarkonium with the matrix density 
evolution in  an open quantum system using pNRQCD at finite TDensity matrices

• Subsystem: heavy quarks/quarkonium

• Environment: quark gluon plasma

We may define a density matrix in pNRQCD for the heavy quark-antiquark pair in a

singlet and octet configuration:

〈r′,R′|ρs(t′; t)|r,R〉 ≡ Tr{ρfull(t0)S†(t, r,R)S(t′, r′,R′)}

〈r′,R′|ρo(t′; t)|r,R〉
δab

8
≡ Tr{ρfull(t0)Oa†(t, r,R)Ob(t′, r′,R′)}

t0 ≈ 0.6 fm is the time formation of the plasma.

The system is in non-equilibrium because through interaction with the environment

(quark gluon plasma) singlet and octet quark-antiquark states continuously transform in

each other although the number of heavy quarks is conserved: Tr{ρs}+Tr{ρo} = 1.
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nonequilibrium  evolution of quarkonium in a strongly coupled QGP

Quarkonium as a Coulombic bound state

The lowest quarkonium states (1S bottomonium and charmonium, 2S bottomonium) are

the most tightly bound. For these we assume the hierarchy of energy scales

M !
1

r
∼ Mαs ! T ∼ gT ! any other scale, v ∼ αs

This qualifies the bound state as Coulombic:

• quark-antiquark color singlet Hamiltonian = hs =
p2

M
−

4

3

αs

r

• quark-antiquark color octet Hamiltonian = ho =
p2

M
+

αs

6r

The octet potential describes an unbound quark-antiquark pair.

work in the hierarchy 
and in real time formalism

use a Coulombic quarkonium to test the strongly coupled plasma  

the descriptions 
is fully quantum and 

nonabelian



Evolution equations I

... and differentiating over time we obtain the coupled evolution equations:

dρs(t; t)

dt
= −i[hs, ρs(t; t)]− Σs(t)ρs(t; t)− ρs(t; t)Σ

†
s(t) + Ξso(ρo(t; t), t)

dρo(t; t)

dt
= −i[ho, ρo(t; t)]− Σo(t)ρo(t; t)− ρo(t; t)Σ

†
o(t) + Ξos(ρs(t; t), t)

+Ξoo(ρo(t; t), t)

• The evolution equations are now valid for large time.

• The evolution equations are Markovian.
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• The evolution equations are now valid for large time.

• The evolution equations are Markovian.

Interpretation

• The self energies Σs and Σo provide the in-medium induced mass shifts, δms,o,

and widths, Γs,o, for the color-singlet and color-octet heavy quark-antiquark

systems respectively:

−iΣs,o(t) + iΣ†
s,o(t) = 2Re (−iΣs,o(t)) = 2δms,o(t)

Σs,o(t) + Σ†
s,o(t) = −2 Im (−iΣs,o(t)) = Γs,o(t)

• Ξso accounts for the production of singlets through the decay of octets, and Ξos

and Ξoo account for the production of octets through the decays of singlets and

octets respectively. There are two octet production mechanisms/octet

chromoelectric dipole vertices in the pNRQCD Lagrangian.

• The conservation of the trace of the sum of the densities, i.e., the conservation of

the number of heavy quarks, follows from

Tr
{

ρs(t; t)
(

Σs(t) + Σ†
s(t)

)}

= Tr {Ξos(ρs(t; t), t)}

Tr
{

ρo(t; t)
(

Σo(t) + Σ†
o(t)

)}

= Tr {Ξso(ρo(t; t), t) + Ξoo(ρo(t; t), t)}
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Heavy quark-antiquarks in a strongly coupled medium: T ! E

If E ! T ∼ mD the Lindblad equation for a strongly coupled plasma reads

dρ

dt
= −i[H, ρ] +

∑

i

(CiρC
†
i −

1

2
{C†

i Ci, ρ})

ρ =





ρs 0

0 ρo





H =





hs 0

0 ho



+
r2

2
γ(t)
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the sQGP is characterised by two nonperturbative parameters (transport 
coefficients) kappa and  gamma that must  be calculated on the lattice

κ

Low energy parameters may be determined by numerical calculations in lattice QCD.

κ is the heavy-quark momentum diffusion coefficient:

κ =
g2

18
Re

∫ +∞

−∞

ds 〈TEa,i(s,0)φab(s, 0)Eb,i(0,0)〉 =

0 1 2 3 4 5

κ / T
3

1αa

1αb

1βa

1βb

2αa

2αb

2βa

2βb

3a   

BGM

m
o

d
el

strategy (i)

strategy (ii)

T ~ 1.5 T
c

◦ Francis Kaczmarek Laine Neuhaus Ohno PRD 92 (2015) 116003
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γ

γ =
g2

18
Im

∫ +∞

−∞

ds 〈TEa,i(s,0)φab(s, 0)Eb,i(0,0)〉

γ is known only in perturbation theory:

γ = −4ζ(3)
αs

π
Tm2

D +
16

3
ζ(3)α2

sT
3

A value that at leading order is negative (−7 ! γ/T 3 ! −4.5 for αs(π × 300MeV)).

◦ Brambilla Ghiglieri Petreczky Vairo PRD 78 (2008) 014017
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Nuclear modification factor

We compute the nuclear modification factor RAA:

RAA(nS) =
〈n,q|ρs(tF ; tF )|n,q〉
〈n,q|ρs(0; 0)|n,q〉

Nuclear modification factor

We compute the nuclear modification factor RAA:

RAA(nS) =
〈n,q|ρs(tF ; tF )|n,q〉
〈n,q|ρs(0; 0)|n,q〉

nonequilibrium  evolution of quarkonium in medium:  nuclear modification factor R_AA 

N.B. Escobedo , Strickland, Vairo, Vander Griend, Weber, 2012.01240

R_AA of singlet  Bottomonium in comparison to ALICE, ATLAS and CMS data, left plot bands from variation in kappa,  
right plot variation in gamma —> we can use R_AA to learn about  the QGP!
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Figure 10: RAA of singlet S-wave states versus Npart taking into account excited state feed
down. The bands shown in the left and right panels correspond to the variations detailed
in the caption of figure 6. The data points are from the ALICE [98], ATLAS [99], and CMS
[94] collaborations. The experimental error bars were obtained by adding statistical and
systematic uncertainties in quadrature.

⌥(3S) ! µ
+
µ
�, which are ⇡ 2.5%, 1.9%, and 2.2%, respectively [92], one obtains

hd�[⌥(1S),⌥(2S),⌥(3S)]/dyiy = {57.6, 19, 6.8} nb. (6.5)

For the �b cross sections, we make use of the measurements of ref. [95] from which,
together with �[⌥(1S)] and the ratios �[�bj(nP )]/�[�bj0(nP )], all six of the necessary �b

cross sections can be calculated. We take the values of the R ratio from the lowest pT

bins of tables 5 and 6 of ref. [95] (measured at
p
s = 7 TeV and

p
s = 8 TeV, respectively)

and extrapolate to
p
s = 5 TeV. Assuming �[�b2(nP )]/�[�b1(nP )] = 1.176 [96] for both

the 1P and 2P states (which is consistent with available experimental data [97]), we use
eq. (1) of ref. [95] to extract �[�bj(nP )] for j, n = 1, 2. Less is known about the �[�b0(nP )]

cross-sections. Based on theoretical expectations [96], we take the �b0 cross sections to be
1/4 of the average of the �[�b1(nP )] and �[�b2(nP )] cross-sections. This gives

hd�[�b0(1P ),�b1(1P ),�b2(1P )]/dyiy = {3.72, 13.69, 16.1} nb, (6.6)
hd�[�b0(2P ),�b1(2P ),�b2(2P )]/dyiy = {3.27, 12.0, 14.15} nb. (6.7)

To compute the effect of final-state feed down in AA collisions, we first construct a
vector ~NQGP containing the numbers of each state produced at the end of each simulation
(survival probability ⇥hNbin(b)i ⇥ ~�direct). We then multiply the result by the same feed
down matrix used for pp feed down, i.e. ~Nfinal = F ~NQGP. The use of the same feed down
matrix for both pp and AA collisions is related to the fact that feed down occurs on a
time scale that is much longer than the QGP lifetime. After the feed down is complete, we
compute the post feed down RAA for each state by dividing the final number of each state
produced by the average number of binary collisions in the sampled centrality class times
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Figure 10: RAA of singlet S-wave states versus Npart taking into account excited state feed
down. The bands shown in the left and right panels correspond to the variations detailed
in the caption of figure 6. The data points are from the ALICE [98], ATLAS [99], and CMS
[94] collaborations. The experimental error bars were obtained by adding statistical and
systematic uncertainties in quadrature.
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These results and approach could be applied to the study of the non equilibrium evolution 
of dark matter annihilation and formation in the early universe and after 
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BOEFT: EFT for nonrelativistic pairs and light d.o.f.

Consider bound states of two nonrelativistic particles and some light d.o.f., e.g.,

molecules/quarkonium hybrids (QQ̄g states)or tetraquarks (QQ̄qq̄ states):

• electron/gluon fields change adiabatically in the presence of heavy quarks/nuclei.

The heavy quarks/nuclei interaction may be described at leading order in the

non-relativistic expansion by an effective potential Vκ between static sources,

where κ labels different excitations of the light d.o.f.

• a plethora of states can be built on each of the potentials Vκ by solving the

corresponding Schrödinger equation.

This picture goes also under the name of Born-Oppenheimer approximation. Starting

from pNRQED/pNRQCD the Born-Oppenheimer approximation can be made rigorous

and cast into a suitable nonrelativistic EFT called Born–Oppenheimer EFT (BOEFT).

◦ Brambilla Krein Tarrus Vairo PRD 97 (2018) 016016
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H+
2 -like molecule spectrum

In H+
2 -like molecules excitations of the electronic cloud are separated from each other

by a gap of order mα2, while vibrational modes of the nucleus have an energy of order

mα2
√

m/M , which is much smaller than mα2; m = mass of e, M = mass of nucleus.

EFT for quarkonium hybrids Hybrid spectrum Spin-dependent potential EFT for tetraquarks Summary and outlook
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hybrids 

Scales in exotic quarkonium
Two distinct components

I Heavy quark Q, Q̄ pair (heavy d.o.f) and a gluon and light-quark excitation (light
d.o.f).

Characteristic Scales

I Heavy-quarks are non-relativistic mQ ∫ �QCD.
I Two components with very di�erent dynamical time scales �QCD ∫ mQv2.

ú Light d.o.f state Elight ≥ �QCD.
ú Heavy-quark binding EQ ≥ mQv2 (v π 1 relative velocity).
ú Adiabatic expansion, Born-Oppenheimer approximation in atomic physics. L. Gri�ths,

C. Michael, P. Rakow Phys.Lett.129B (1983); K.. Juge, J. Kuti, C. Morningstar Nucl.Phys.Proc.Suppl.63 (1998);
E. Braaten, C. Langmack, D. Smith Phys.Rev.D90 (2014); C. Meyer, E. Swanson Prog.Part.Nucl.Phys.82 (2015)...
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Schrödinger equation for EΠu and EΣ−
u

hybrids

The LO e.o.m. for the fields Ψ†

1+−λ
are a set of coupled Schrödinger equations:

i∂0Ψ1+−λ =

[

(

−
∇2

r

m
+ V

(0)
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δλλ′ −
∑
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1+−λλ′

]

Ψκλ′

The eigenvalues EN give the masses MN of the states as MN = 2m+ EN .
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)
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∇2
r

m
+ Cnad

1+−λλ′

with Cnad
1+−λλ′ = r̂i†λ

[

∇2
r

m
, r̂iλ′

]

called the nonadiabatic coupling.
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Spectrum: general consideration

• The Schrödinger equation mixes states with the same parity.

A consequence is Λ-doubling, i.e., the lifting of degeneracy between states with

opposite parity. This happens also in molecular physics, however, there Λ-doubling

is a subleading effect, while it is a LO effect in the quarkonium hybrid spectrum.

• The eigenstates are organized in the multiplets H1, H2, ... . Neglecting

off-diagonal terms, the multiplets H1 and H2 would be degenerate.

Multiplet T JPC(S = 0) JPC(S = 1) EΓ

H1 1 1−− (0, 1, 2)−+ E
Σ−

u
, EΠu

H2 1 1++ (0, 1, 2)+− EΠu

H3 0 0++ 1+− E
Σ−

u

H4 2 2++ (1, 2, 3)+− E
Σ−

u
, EΠu

T is the sum of the orbital angular momentum of the quark-antiquark pair and the

gluonic angular momentum; T = 0 state turns out not to be the lowest mass state.

◦ Braaten PRL 111 (2013) 162003

Braaten Langmack Smith PRD 90 (2014) 014044

we can calculate the  
structure of the hybrids 

multiplets



Gluelump mass: nonperturbative  
parameter calculated on the lattice 

with an error of about 800 MeV

Quarkonium hybrid states vs experiments I
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◦ Berwein Brambilla Tarrus Vairo PRD 92 (2015) 114019

updated in Brambilla Eidelman Hanhart Nefediev Shen

Thomas Vairo Yuan arXiv:1907.11747

the bands  
come from  the  
uncertainty in 

the lattice  
determination of 

the gluelump  
masses

neutral exotics 
charmonium  

states



Hybrid spin-dependent potentials at order 1/m and 1/m2

V
(1)

1+−λλ′ SD
(r) = VSK(r)

(

r̂i†λ Kij r̂jλ′

)

· S

+ VSK b(r)
[(

r · r̂†
λ

)(

riKij r̂jλ′

)

· S +
(

riKij r̂j†λ

)

· S (r · r̂λ′ )
]

V
(2)

1+−λλ′ SD
(r) = V

(2)
LS a(r)

(

r̂i†λ L r̂iλ′

)

· S + V
(2)
LS b(r)r̂

i†
λ

(

LiSj + SiLj) r̂jλ′

+ V
(2)
LS c(r) [r̂λ · r (p× S) · r̂λ′ + r̂λ · (p× S) r̂λ′ · r]

+ V
(2)
S2 (r)S2δλλ′ + V

(2)
S12 a(r)S12δλλ′ + V

(2)
S12 b(r)r̂

i†
λ r̂jλ′

(

Si
1S

j
2 + Si

2S
j
1

)

(

Kij
)k

= iεikj is the angular momentum of the spin one gluons

and L is the orbital angular momentum of the heavy-quark-antiquark pair.

Differently from the quarkonium case, the hybrid potential gets a first contribution already

at order Λ2
QCD/m. The corresponding operator does not contribute at LO to matrix

elements of quarkonium states as its projection on quark-antiquark color singlet states

vanishes. Hence, spin splittings are remarkably less suppressed in heavy quarkonium

hybrids than in heavy quarkonia.
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• The non perturbative part of the potentials depends on six nonperturbative 
correlators that could be calculated on the lattice directly
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Charmonium Hybrids  Multiplets H_1 

height of the boxes is an estimate of the uncertainty:  
estimated by the parametric size of higher order corrections, m alpha_s^5  

for the perturbative part, powers of Lambda_qcd/m for the nonperturbative part, plus the statistical 
error on the fit

Power counting: we include  terms up to order  
Lambda^3/m^2 and m v^4 to the spin splittings

lattice data from 

with a pion of about 240 MeV
We  fit  the nonperturbative correlators on the  

lattice data: violet boxes are the nonperturbative  
contributions

the  perturbative part  produces a 
pattern opposite to the lattice   
and to ordinary quarkonia —> 

discrepancy can be reconciled thanks  
to the nonperturbative parts, 

especially the one at order 1/m  (note  
that all models are inspired to the 

perturbative part..)
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blue EFT predictions, 
violet actual lattice calculation
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exotics, bound states of two onia 

It allows  to define objects of great phenomenological interest like the potentials at zero and finite 
temperature and gives a scheme for the calculations of energies and decays      

The alliance of pNRQCD  with lattice and  with  other EFTs  plays a key role 



Outlook
 pNREFT  gives us a powerful tool to address  NR bound and threshold states in QFT   
In QCD, pNRQCD  makes quarkonium a  precious probe of strong interaction
It allows to  perform systematic higher order calculations on bound state, to factorize and study the 

nonperturbative effects and the relation between perturbative and nonperturbative effects (e.g. 
renormalons/condensates). Factorization allows  model independent predictions and direct lattice 

calculation of low energy quantities

With Open Quantum Systems  It offers us a framework  to study the nonequilibrium  evolution  
of NR states: allows a diagnostic of the QGP in terms of two nonperturbative transport 
coefficients with a clear QFT definition; it allows to use lattice equilibrium calculation for non 

equilibrium studies

 It gives a  novel framework to explore complex NR strongly interacting systems:  the X Y Z 
exotics, bound states of two onia 

It allows  to define objects of great phenomenological interest like the potentials at zero and finite 
temperature and gives a scheme for the calculations of energies and decays      

The alliance of pNRQCD  with lattice and  with  other EFTs  plays a key role 

pNREFT is a flexible and versatile  tool that could be applied to the realm of atomic,  condensed matter, BSM…. 
any physics wherever NR states play a role 
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Static energies for tetraquarks (schematic):

Courtesy J. Tarrús Castellà
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one can imagine a situation of this type where the BOEFT comprehends all the different phenomenological models in different 
dynamical regions 

Lattice calculations of these objects are needed: we started such calculations in our TUMQCD collaboration


