Early time gluon fields in relativistic heavy ion collisions

M.E. Carrington
Brandon University, Manitoba, Canada

Collaborators: Alina Czajka, Stanisław Mrówczyński

May 04, 2022

outline:

- introduction
 first phase produced in a heavy ion collision

 called a glasma
- motivation provides initial conditions for subsequent hydro phase
- structure of the calculation ColourGlassCondensate effective field theory approach
- 4. results:
 - 4.1 isotropization
 - 4.2 azimuthal asymmetries
 - 4.3 angular momentum
 - 4.4 momentum broadening of hard probes
- conclusions

introduction

drawing of stages of a heavy ion collision

 $\mathsf{CGC} = \mathsf{high} \ \mathsf{energy} \ \mathsf{density} \ \mathsf{largely} \ \mathsf{gluonic} \ \mathsf{matter}$

- associated with wavefunction of a high energy hadron
- initial state in high energy hadronic collisions

after collision CGC fields are transformed into glasma fields

- initially longitudinal color electric and magnetic fields

space-time diagram

collision axis is the z-axis \rightarrow incoming nuclei move along the $x^{\pm}=(t\pm z)/\sqrt{2}$ axes collision at the origin post-collision region is the forward light cone

motivation

goal: describe early time ($au \leq 1$ fm) dynamics of HIC

- evolution of system during this early stage not well understood
- importance: initial conditions for subsequent hydro evolution

more generally: want to understand transition between early-time dynamics \longrightarrow hydro phase

- 1. microscropic theory of non-abelian gauge fields
- = far from equilibrium
- 2. macroscopic effective theory
- based on universal conservation laws
- valid close to equilibrium

MEC, Czajka, Mrówczyński arXiv:2012.03042; 2105.05327; 2112.0681; 2202.00357

Colour Glass Condensate (CGC) effective theory

method is based on a separation of scales between

- 1. valence partons with large nucleon momentum fraction (x)
- 2. gluon fields with small x and large occupation numbers
- gluons are in the saturation regime
- distributions are controlled by the saturation scale \mathcal{Q}_s

dynamics of gluon fields determined from classical YM equation

 \rightarrow source provided by the valence partons

method - notation

light-cone coordinates $x^\pm=(t\pm z)/\sqrt{2}$ Milne coordinates $\tau=\sqrt{2x^+x^-}=\sqrt{t^2-z^2}$ and $\eta=\ln(x^+/x^-)/2=\ln((t+z)/(t-z))$.

gauge:
$$A_{\mathrm{milne}}^{\mu} = \theta(\tau) \big(0, \alpha(\tau, \vec{\mathrm{x}}_{\perp}), \vec{\alpha}_{\perp}(\tau, \vec{\mathrm{x}}_{\perp}) \big)$$

sources: $J^{\mu}(x) = J_1^{\mu}(x) + J_2^{\mu}(x)$

$$J_1^{\mu}(x) = \delta^{\mu +} g \rho_1(x^-, \vec{x}_{\perp}) \text{ and } J_2^{\mu}(x) = \delta^{\mu -} g \rho_2(x^+, \vec{x}_{\perp})$$

ansatz:
$$A^+(x) = \Theta(x^+)\Theta(x^-)x^+\alpha(\tau,\vec{x}_\perp)$$

$$A^{-}(x) = -\Theta(x^{+})\Theta(x^{-})x^{-}\alpha(\tau, \vec{x}_{\perp})$$

$$A^{i}(x) = \Theta(x^{+})\Theta(x^{-})\alpha_{\perp}^{i}(\tau, \vec{x}_{\perp}) + \Theta(-x^{+})\Theta(x^{-})\beta_{1}^{i}(x^{-}, \vec{x}_{\perp}) + \Theta(x^{+})\Theta(-x^{-})\beta_{2}^{i}(x^{+}, \vec{x}_{\perp})$$

step 1: solve YM equation in the pre-collision region

$$[D_\mu,F^{\mu\nu}]=J^\nu \quad \text{with} \ \ F_{\mu\nu}=\frac{i}{g}[D_\mu,D_\nu] \quad \text{and} \quad D_\mu=\partial_\mu-i\mathrm{g}\mathrm{A}_\mu$$

 $\rho_1(x^+, \vec{x}_\perp) \to \beta_1^i(x^-, \vec{x}_\perp)$ and $\rho_2(x^+, \vec{x}_\perp) \to \beta_2^i(x^+, \vec{x}_\perp)$ for the first ion:

$$\begin{split} \beta_1^i(x^-, \vec{x}_\perp) &= \frac{i}{g} U_1^\dagger(x^-, \vec{x}_\perp) \partial^i U_1(x^-, \vec{x}_\perp) \\ U_1(x^-, \vec{x}_\perp) &= \mathcal{P} \mathrm{exp} \big[i g \int_{-\infty}^{x^-} dz^- \Lambda_1(z^-, \vec{x}_\perp) \big] \\ \Lambda_1(x^-, \vec{x}_\perp) &= \frac{1}{2\pi} \int d^2 z_\perp \, K_0(m(\vec{x}_\perp - \vec{z}_\perp)) \, \rho_1(x^-, \vec{z}_\perp) \end{split}$$

 K_0 is a modified Bessel function similar expression for second ion

physics:

- $\overline{1. \rho_1(x^-, \vec{x}_\perp)}$ is independent of the light-cone time x^+
- the static approximation
- 2. small width across light cone will be taken to 0

step 2: boundary conditions

$$\begin{split} &\alpha_{\perp}^{i}(\mathbf{0},\vec{x}_{\perp}) = \alpha_{\perp}^{i(0)}(\vec{x}_{\perp}) = \lim_{\mathbf{w} \to \mathbf{0}} \left(\beta_{1}^{i}(\mathbf{x}^{-},\vec{x}_{\perp}) + \beta_{2}^{i}(\mathbf{x}^{+},\vec{x}_{\perp})\right) \\ &\alpha(\mathbf{0},\vec{x}_{\perp}) = \alpha^{(0)}(\vec{x}_{\perp}) = -\frac{ig}{2}\lim_{\mathbf{w} \to \mathbf{0}} \left[\beta_{1}^{i}(\mathbf{x}^{-},\vec{x}_{\perp}), \beta_{2}^{i}(\mathbf{x}^{+},\vec{x}_{\perp})\right] \end{split}$$

step 3: glasma fields (at early times) with proper time expansion

$$\alpha(\tau, \vec{x}_{\perp}) = \alpha(0, \vec{x}_{\perp}) + \tau \alpha^{(1)}(\vec{x}_{\perp}) + \tau^2 \alpha^{(2)}(\vec{x}_{\perp}) + \cdots$$

and similarly for $\alpha_{\perp}^{i}(\tau,\vec{x}_{\perp})$... (dimensionless small parameter is $\tilde{\tau}=\tau Q_{s}$) coefs of expansion: require vector potential satisfies sourceless YM eqn

$$[D_\mu,F^{\mu
u}]=0$$
 with $F_{\mu
u}=rac{i}{g}[D_\mu,D_
u]$ and $D_\mu=\partial_\mu-igA_\mu$

 $ightarrow lpha^{(n)}(ec x_\perp)$ and $ec lpha^{(n)}_\perp(ec x_\perp)$ in terms of $lpha(0,ec x_\perp)$ and $ec lpha_\perp(0,ec x_\perp)$

R. J. Fries, J. I. Kapusta and Y. Li, Nucl. Phys. A 774, 861 (2006).

summary of method:

$$\underbrace{\rho^n(x^\pm,\vec{x}_\perp)}_{\text{static valence parton sources}} \rightarrow \underbrace{\beta^n(x^\pm,\vec{x}_\perp)}_{\text{CGC pre-collision fields}} \rightarrow \underbrace{\alpha(0,\vec{x}_\perp)}_{\text{initial glasma fields (boost invariant)}} \rightarrow \underbrace{\alpha(\tau,\vec{x}_\perp)}_{\text{glasma fields}}$$

next: colour charge distributions are not known

- assume Gaussian distribution of colour charges in each nucleus
- a product of sources is replace by its average over this distro
- an average over a Gaussian distribution of independent random variables
- → sum over the averages of all possible pairs (Wick's theorem)

idea of CGC: local fluctuations \propto surface colour charge density μ

$$\langle \rho_1(x^-,\vec{x}_\perp)\rho_1(y^-,\vec{y}_\perp)\rangle \propto g^2\,\mu_1(\vec{x}_\perp)\delta(x^--y^-)\delta^2(\vec{x}_\perp-\vec{y}_\perp)$$

analogous expressions for the second ion

glasma graph approximation \longrightarrow

result for correlator of 2 potentials: $(\vec{R} = \frac{1}{2}(\vec{x}_{\perp} + \vec{y}_{\perp}), \vec{r} = \vec{x}_{\perp} - \vec{y}_{\perp})$

$$\delta_{ab}B^{ij}(\vec{x}_{\perp},\vec{y}_{\perp}) \equiv \lim_{\mathrm{w} \to 0} \langle \beta_{a}^{i}(x^{-},\vec{x}_{\perp})\beta_{b}^{j}(y^{-},\vec{y}_{\perp}) \rangle$$

$$\lim_{r \to 0} B^{ij}(\vec{x}_{\perp}, \vec{y}_{\perp}) = \delta^{ij} g^2 \frac{\mu(\vec{R})}{8\pi} \left(\ln \left(\frac{Q_s^2}{m^2} + 1 \right) - \frac{Q_s^2}{Q_s^2 + m^2} \right) + \cdots$$

infra-red regulator $m\sim \Lambda_{\rm QCD}\sim 0.2~{\rm GeV}$ ultra-violet regulator = saturation scale = $Q_{\rm s}=2~{\rm GeV}$

dots indicate we have kept terms to 2nd order in grad expansion of $\mu(\vec{R})$

J. Jalilian-Marian, A. Kovner, L. McLerran, H. Weigert, Phys. Rev. D 55, 5414 (1997)

H. Fujii, K. Fukushima, Y. Hidaka, Phys. Rev. C 79, 024909 (2009)

G. Chen, R. Fries, J. Kapusta, Y. Li, Phys. Rev. C 92, 064912 (2015)

surface charge density μ

must specify the form of the surface colour charge density $\mu(\vec{x}_\perp)$ - 2-dimensional projection of a Woods-Saxon potential

$$\mu(\vec{x}_{\perp}) = \left(\frac{A}{207}\right)^{1/3} \frac{\bar{\mu}}{2a \log(1 + e^{R_A/a})} \int_{-\infty}^{\infty} dz \frac{1}{1 + \exp\left[\left(\sqrt{(\vec{x}_{\perp})^2 + z^2} - R_A\right)/a\right]}$$

 R_A and a= radius and skin thickness of nucleus mass number A $r_0=1.25$ fm, a=0.5 fm \to when A=207 gives $R_A=r_0A^{1/3}=7.4$ fm

normalization: $\mu(\vec{0}) = \bar{\mu} = Q_s^2/g^4$ lead nucleus $g^2\sqrt{\bar{\mu}} =$ McLerran-Venugopalan (MV) scale proportional to Q_s - exact value not determined with CGC approach

** numerical results for \mathcal{E} ... are order of magnitude estimates ratios of different elements of the energy momentum tensor \rightarrow will have much weaker dependence on the MV scale.

gradient expansion

the parameter that we assume small is $\delta = \frac{|\nabla^i \mu(\vec{R})|}{m \mu(\vec{R})}$

derivatives are appreciable only in a very small region at the edges non-zero impact parameter (non-central collisions) expand $\mu_{1/2}(\vec{z}_\perp)$ around ave coord $\vec{R} \mp \vec{b}/2$

summary of method:

YM eqn with average over gaussian distributed valence sources

- ightarrow correlators of pre-collision fields
- ightarrow glasma field correlators (b. conds, sourceless YM eqn, au exp)
- ightarrow correlators of glasma chromodynamic $ec{E}$ and $ec{B}$ fields
- \Rightarrow observables

we work to order au^5 or au^6 and study

- 1. isotropization of transverse/longitudinal pressures
- 2. azimuthal momentum distribution and spatial eccentricity
- 3. angular momentum
- 4. momentum broadening of hard probes

comment: many numerical approaches to study initial dynamics our method is fully analytic

- allows control over different approximations and sources of errors
- can be systematically extended
- it has limitations (classical / no fluctuations of positions of nucleons)

isotropization

at $au=0^+$ the energy-momentum tensor has the diagonal form

$$\mathcal{T}(au=0)=\left(egin{array}{cccc} \mathcal{E}_0 & 0 & 0 & 0 \ 0 & -\mathcal{E}_0 & 0 & 0 \ 0 & 0 & \mathcal{E}_0 & 0 \ 0 & 0 & 0 & \mathcal{E}_0 \end{array}
ight)$$

- → the longitudinal pressure is large and negative
- system is far from equilibrium

if the system approaches equilibrium as it evolves:

- the longitudinal pressure must grow
- transverse pressure must decrease ($T_{\mu\nu}$ is traceless)

to compare longitudinal and transverse pressures ($ilde{ au} \equiv au Q_{
m s}$)

$$A_{TL} \equiv \frac{3(p_T - p_L)}{2p_T + p_L}$$

J. Jankowski, S. Kamata, M. Martinez and M. Spaliński, Phys. Rev. D 104, 074012 (2021). in equilibrium $(p_I=p_T=\mathcal{E}/3)\longrightarrow A_{TI}=0$

R=5 fm, $\eta=0$ and b=0.

faster isotropization with smaller impact parameter \rightarrow increased region of overlap

reaction plane defined by collision axis and impact parameter $\phi = 0$ is in reaction plane

 $\phi = \pi/2$ is perpendicular to reaction plane

 A_{TL} at order au^6

 $\tau =$ 0.04 fm (left panel)

au= 0.045 fm (centre panel)

au= 0.05 fm (right panel)

the axes show R_x and R_y in fm

dependence on confinement and saturation scales

the correlator $\langle \beta_a^i(x^-, \vec{x}_\perp) \beta_b^j(y^-, \vec{y}_\perp) \rangle$

depends on two regulators: m (infra-red) and Q_s (ultra-violet)

- physically related to confinement / saturation scales
- \rightarrow constraints on how to choose them

we used: m = 0.2 GeV and $Q_s = 2.0$ Gev - standard choices

- want results \approx independent of these numbers
- especially since the two scales are pretty close together

 A_{TL} at order τ^6 as a function of time 3 different values of Q_s with m=0.2 GeV (left) 3 different values of m with $Q_s=2.0$ GeV (right) R=5 fm, b=0 and $\eta=0$ at order τ^6 \Rightarrow dependence on these scales is weak

Radial Flow

transverse momentum flow vector $=T_{i0}$ (trans. Poynting vector) radial flow of the expanding glasma = radial projection $P\equiv\hat{R}_iT_{i0}$ $\phi=\pi/2$ is perpendicular to the reaction plane

- at lowest order *P* increases linearly with time
- including higher order contros $\rightarrow P$ slows as system expands
- order au^5 shows flattening up to about $ilde{ au}=0.5$
- ightarrow indicates the limit of validity of the au expansion

Azimuthal asymmetry

in a non-central collision - initial spatial asymmetry relativistic collision \rightarrow spatial asymmetries rapidly decrease \rightarrow anisotropic momentum flow can develop only in the first fm/c

- sensitive to system properties very early in its evolution
- provides direct information about the early stages of the system

$$\begin{split} &\varphi(\vec{x}_{\perp}) = \tan^{-1}\left(\frac{T^{0y}(\vec{x}_{\perp})}{T^{0x}(\vec{x}_{\perp})}\right) \\ &W(\vec{x}_{\perp}) \equiv \sqrt{\left(T^{0x}(\vec{x}_{\perp})\right)^2 + \left(T^{0y}(\vec{x}_{\perp})\right)^2} \\ &P(\phi) \equiv \frac{1}{\Omega} \int d^2 \vec{x}_{\perp} \; \delta(\phi - \varphi(\vec{x}_{\perp})) \; W(\vec{x}_{\perp}), \quad \Omega \equiv \int d^2 \vec{x}_{\perp} \; W(\vec{x}_{\perp}) \\ &P(\phi) = \frac{1}{2\pi} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos(n\phi)\right) \\ &v_n = \int_0^{2\pi} d\phi \; \cos(n\phi) \, P(\phi) \end{split}$$

used $\eta=0.5$ and $\tau=0.04$ fm. v_2 and v_3 are \sim experimental values v_1 is bigger than expected

note: usually assumed anisotropy develops mostly during hydro evolution \to our results for all three Fourier coefficients are large

comment:

experimentally: impact parameter / reaction plane not known exactly our calculation does not correspond exactly to what is measured

• spatial deviations from azimuthal symmetry

$$arepsilon_n = -rac{\int d^2 ec{R} |ec{R}| \cos(n\phi) \mathcal{E}(ec{R})}{\int d^2 ec{R} |ec{R}| \mathcal{E}(ec{R})} \quad ext{with} \quad \phi = an^{-1} (R_y/R_x)$$

where $\mathcal{E}(\vec{R})$ denotes the energy density

- $\tau = 0.04$ fm and $\eta = 0$ [normalized to 1 at b = 0.5 fm]
- \rightarrow correlation btwn spatial asymmetry introduced by the initial geometry and anisotropy of azimuthal momentum distribution

these correlations \sim characteristic of onset of hydrodynamic behaviour

angular momentum

define tensor $M^{\mu\nu\lambda}=T^{\mu\nu}R^{\lambda}-T^{\mu\lambda}R^{\nu}$ with $R^{\mu}=(au,\eta,ec{R})$

 $abla_\mu M^{\mu
u\lambda}=0
ightarrow ext{conserved charges } J^{
u\lambda}=\int_\Sigma d^3y \sqrt{|\gamma|} n_\mu M^{\mu
u\lambda}$

- \emph{n}^{μ} is a unit vector perpendicular to the hypersurface Σ
- $\boldsymbol{\gamma}$ is the induced metric on this hypersurface
- d^3y is the corresponding volume element

 $\emph{n}^{\mu}=\left(1,0,0,0\right)$ in Milne coordinates

 $ightarrow~J^{
u\lambda}$ defined on a hypersurface of constant au

Pauli-Lubanski vector: $L_{\mu}=-rac{1}{2}\epsilon_{\mulphaeta\gamma}J^{lphaeta}u^{\gamma}$

result: angular momentum per unit rapidity (symmetric collision)

$$\frac{dL^y}{d\eta} = -\tau^2 \int d^2 \vec{R} \, R^x T^{0z}$$

result:

ions moving in +/-z dirns displaced in +/-x dirns $\to L_y$ is negative

warning: dominant contro to \vec{L} from regions farthest from collision centre = regions gradient expansion is least trusted \rightarrow error bars large

comparison:

$L_y \sim 10^5$ at RHIC energies for initial system of colliding ions

J. H. Gao, S. W. Chen, W. t. Deng, Z. T. Liang, Q. Wang and X. N. Wang

- even larger at LHC energies

F. Becattini, F. Piccinini and J. Rizzo, Phys. Rev. C 77, 024906 (2008).

idea: initial rapid rotation of glasma

- \rightarrow could be observed via polarization of final state hadrons
- large $ec{L}$ & spin-orbit coupling ightarrow alignment of spins with $ec{L}$

many experimental searches for this polarization

- effect of a few percent observed at RHIC
- at LHC result consistent with zero
- difficult to measure . . .

F. Becattini, M.A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020).

these results are consistent our calculation: glasma carries only tiny imprint of the \vec{L} of the intial state

ightarrow majority of the angular momentum is carried by valence quarks

hard probes - momentum broadening

idea:

hard probes produced via hard interactions at earliest phase of HIC

- propagate through the evolving medium
- suppression of high- p_T probes (jet quenching)
- \Rightarrow signal of formation of QGP
- deconfined state of matter = significant braking of hard partons

heavy quarks:

- rare constituents of the quark-gluon plasma
- external and clean probes of the medium

EL and MB of hard probes / equilibrium plasma studied extensvely

• contro from pre-equilibrium phases has been largely ignored however, see for example:

Ruggieri, Das et al, Phys. Rev. D 98, 094024 (2018)

Boguslavski, Kurkela, Lappi, Peuron, JHEP 09, 077 (2020)

Ipp, Müller, Schuh, Phys. Lett. B 810, 135810 (2020)

physics: frequent small \vec{p} exchanges between probe and glasma fields \rightarrow transport equation in Fokker-Planck form

- describes interactions of hard probe interacting with glasma fields

$$\left(\mathcal{D} - \nabla_{p}^{\alpha} X^{\alpha\beta}(\vec{v}) \nabla_{p}^{\beta} - \nabla_{p}^{\alpha} Y^{\alpha}(\vec{v})\right) n(t, \vec{x}, \vec{p}) = 0$$

notation: $\alpha \in (1, 2, 3)$

 $n(t, \vec{x}, \vec{p}) =$ distribution function of heavy quarks $\vec{v} = \vec{p}/E_{\vec{p}} = \vec{p}/\sqrt{p^2 + m_Q^2} =$ velocity of heavy quark $\mathcal{D} \equiv \frac{\partial}{\partial t} + \vec{v} \cdot \vec{\nabla} =$ material derivative (drift term)

 Y^{α} related to collisional energy loss

 $X^{\alpha\beta}$ related to momentum broadening

St. Mrówczyński, Eur. Phys. J. A 54, 43 (2018).

$$\begin{split} \hat{q} &= \frac{1}{v} \Big(\delta^{\alpha\beta} - \frac{v^{\alpha}v^{\beta}}{v^{2}} \Big) \frac{\langle \Delta p^{\alpha} \Delta p^{\beta} \rangle}{\Delta t} \\ &= \frac{2}{v} \Big(\delta^{\alpha\beta} - \frac{v^{\alpha}v^{\beta}}{v^{2}} \Big) X^{\alpha\beta} (\vec{v}) \\ X^{\alpha\beta} (\vec{v}) &\equiv \frac{1}{2N_{c}} \int_{0}^{t} dt' \operatorname{Tr} \big[\langle \mathcal{F}^{\alpha}(t, \vec{x}) \mathcal{F}^{\beta}(t - t', \vec{x} - \vec{v}t') \rangle \big] \end{split}$$

colour Lorentz force: $\vec{\mathcal{F}}(t, \vec{x}) \equiv g \left(\vec{\mathcal{E}}(t, \vec{x}) + \vec{v} \times \vec{\mathcal{B}}(t, \vec{x}) \right)$

$$\begin{split} X^{\alpha\beta}(\mathbf{v}) &= \frac{g^2}{2N_c} \int_0^t dt' \Big[\big\langle E_a^\alpha(t,\vec{x}) E_a^\beta(t-t',\vec{y}) \big\rangle + \epsilon^{\beta\gamma\gamma'} v^\gamma \big\langle E_a^\alpha(t,\vec{x}) B_a^{\gamma'}(t-t',\vec{y}) \big\rangle \\ &+ \epsilon^{\alpha\gamma\gamma'} v^\gamma \big\langle B_a^{\gamma'}(t,\vec{x}) E_a^\beta(t-t',\vec{y}) \big\rangle + \epsilon^{\alpha\gamma\gamma'} \epsilon^{\beta\delta\delta'} v^\gamma v^\delta \big\langle B_a^{\gamma'}(t,x) B_a^{\delta'}(t-t',\vec{y}) \big\rangle \Big] \end{split}$$

where $\vec{v} = \vec{x} - \vec{v}t'$.

note: combination of two approaches

- 1. medium that the hard probe interacts with is a glasma
- → described with CGC effective theory with proper time expansion ** description is valid only at very early times
- 2. FP eqn describes interactions of hard probe with glasma fields
- ** valid at times long enough that collision terms saturate
- \Rightarrow conflict btwn assumptions that set these two time scales
- also:
- FP description requires gradient expansion type approximations
- our CGC approach assumes boost invariance
- ** can all these conditions can be satisfied simultaneously?

result: \hat{q} as a function of au at different orders in the expansion

key: saturation regime appears before au expansion breaks down caution:

figure above obtained for $v_\perp = v$ calculation works less well when $v_\parallel \neq 0$

reason: at very early times glasma fields represented as longitudinal flux tubes

λ_{\perp} can be inferred the 2-point correlator

 \hat{q} built up during time probe is in domain of correlated fields at zeroth order this time is determined by

- transverse correlation length
- orientation and magnitude of the probe's velocity
- ightarrow saturation is faster if $u_{\parallel}=0$

note: probe's velocity also enters through the Lorentz force

fifth and fourth order results for increasing $v_{||}$ - saturation is less pronounced as $v_{||}$ increases

impact of the glasma on jet quenching

radiative Eloss/length of probe traversing medium of length $L \propto$ total accumulated transverse momentum broadening

$$\Delta p_T^2 = \int_0^L dt \hat{q}(t)$$

our calculation gives $\hat{q}_{\rm max} = 6 \ {\rm GeV^2/fm}$

compare with equilibrium values:

hard quark of $p_T > 40$ GeV \longrightarrow $2 < \hat{q}/T^3 < 4$

- inferred from experimental data S. Cao et al. [JETSCAPE], Phys. Rev. C 104, 024905 (2021).

 $\hat{q} = 3T^3$ and $450 > T > 150 \text{ MeV} \rightarrow (0.05 < \hat{q} < 1.0) \text{ GeV}^2/\text{fm}$ \Rightarrow equilibrium value of \hat{q} is much smaller

 $\underline{\text{but}}\ \tau_{\text{life}}$ of pre-equilibrium phase $<1\ \text{fm/c}$

ightarrow contro of pre-equilibrium phase to jet quenching usually ignored

schematic representation of the time dependence of \hat{q}

- 1. rapid growth to $\hat{q}_{\rm max} \approx 6~{\rm GeV^2/fm}$ at $t_{\rm max} \approx 0.06~{\rm fm}$
- this is a rough description of our result
- no saturation region because of time scales
- 2. decrease from $t_{\rm max} o t_0$ not captured by our calculation
- is reproduced by the simulations

A. Ipp, D. I. Müller and D. Schuh, Phys. Lett. B 810, 135810 (2020)

$$ightarrow \left. \Delta p_T^2
ight|^{
m non-eq} = \int_0^{t_0} dt \ \hat{q}(t) = rac{1}{2} \hat{q}_{
m max} t_0 + rac{1}{2} \hat{q}_0 (t_0 - t_{
m max})$$

3. assume hydro evolution from t_0

- using 1d boost invariant hydrodynamics

$$\hat{q}=3\,T^3$$
 with $T=T_0\Big(rac{t_0}{t}\Big)^{1/3}$ and

$$\Delta p_T^2 \Big|^{\text{eq}} = \int_{t_0}^L dt \, \hat{q}(t) = 3 \, T_0^3 \, t_0 \, \ln \frac{L}{t_0}$$

values:

$$t_0 = 0.6 \text{ fm}, T_0 = 0.45 \text{ GeV}$$

C. Shen, U. Heinz, P. Huovinen and H. Song, Phys. Rev. C 84, 044903 (2011)

L=10 fm

result:
$$\frac{\Delta p_T^2 [\text{non-equib}]}{\Delta p_T^2 [\text{equib}]} \approx 0.93$$

rough estimate that depends on values of parameters chosen – but result is not very sensitive to values of shape of peak

scale dependence

 $Q_{\rm s}$ between 1.9 (bottom) and 2.1 (top) GeV with ratio $Q_{\rm s}/m$ fixed - one sees that the dependence is fairly weak

boost and translation invariance

calculation of \hat{q} is formulated in Minkowski space

- assumes at least approximate translation invariance

but used correlators of electric and magnetic fields obtained from an boost invariant ansatz for the vector potential

check of consistency:

previous result was $z = \eta = 0$ (red line)

 \hat{q} as a function of τ for three values of η

conclusions

- developed an efficient method to calculate correlators of electric and magnetic fields using a CGC approach and a proper time expansion
- 2. 6th order τ expansion can be trusted to about $\tau = 0.05$ fm
- 3. correlation btwn elliptic flow coef v_2 / spatial eccentricity
 - spatial asymmetry introduced by initial geometry is effectively transmitted to azimuthal distribution of gluon momentum field
 - → indication of the onset of hydrodynamics.
- 4. most of the angular momentum of the intial system not transmitted to glasma
 - contradicts picture of a rapidly rotating initial glasma state
- 5. glasma plays an important role in jet quenching

