Early time gluon fields in relativistic heavy ion collisions

M.E. Carrington
Brandon University, Manitoba, Canada

Collaborators: Alina Czajka, Stanisław Mrówczyński

May 04, 2022

outline:

1. introduction
first phase produced in a heavy ion collision

- called a glasma

2. motivation
provides initial conditions for subsequent hydro phase
3. structure of the calculation

ColourGlassCondensate effective field theory approach
4. results:
4.1 isotropization
4.2 azimuthal asymmetries
4.3 angular momentum
4.4 momentum broadening of hard probes
5. conclusions

introduction

drawing of stages of a heavy ion collision

CGC = high energy density largely gluonic matter

- associated with wavefunction of a high energy hadron
- initial state in high energy hadronic collisions after collision CGC fields are transformed into glasma fields
- initially longitudinal color electric and magnetic fields
space-time diagram

collision axis is the z-axis
\rightarrow incoming nuclei move along the $x^{ \pm}=(t \pm z) / \sqrt{2}$ axes collision at the origin post-collision region is the forward light cone

motivation

goal: describe early time ($\tau \leq 1 \mathrm{fm}$) dynamics of HIC

- evolution of system during this early stage not well understood
- importance: initial conditions for subsequent hydro evolution more generally: want to understand transition between early-time dynamics \longrightarrow hydro phase

1. microscropic theory of non-abelian gauge fields
= far from equilibrium
2. macroscopic effective theory

- based on universal conservation laws
- valid close to equilibrium

MEC, Czajka, Mrówczyński
arXiv:2012.03042; 2105.05327; 2112.0681; 2202.00357

Colour Glass Condensate (CGC) effective theory

method is based on a separation of scales between

1. valence partons with large nucleon momentum fraction (x)
2. gluon fields with small x and large occupation numbers

- gluons are in the saturation regime
- distributions are controlled by the saturation scale Q_{s} dynamics of gluon fields determined from classical YM equation
\rightarrow source provided by the valence partons

method - notation

light-cone coordinates $x^{ \pm}=(t \pm z) / \sqrt{2}$
Milne coordinates $\tau=\sqrt{2 x^{+} x^{-}}=\sqrt{t^{2}-z^{2}}$ and $\eta=\ln \left(x^{+} / x^{-}\right) / 2=\ln ((t+z) /(t-z))$.

$$
\begin{aligned}
\text { gauge: } & A_{\text {milne }}^{\mu}=\theta(\tau)\left(0, \alpha\left(\tau, \vec{x}_{\perp}\right), \vec{\alpha}_{\perp}\left(\tau, \vec{x}_{\perp}\right)\right) \\
\text { sources: } & J^{\mu}(x)=J_{1}^{\mu}(x)+J_{2}^{\mu}(x) \\
& J_{1}^{\mu}(x)=\delta^{\mu+} g \rho_{1}\left(x^{-}, \vec{x}_{\perp}\right) \text { and } J_{2}^{\mu}(x)=\delta^{\mu-} g \rho_{2}\left(x^{+}, \vec{x}_{\perp}\right)
\end{aligned}
$$

ansatz:

$$
\begin{aligned}
& A^{+}(x)=\Theta\left(x^{+}\right) \Theta\left(x^{-}\right) x^{+} \alpha\left(\tau, \vec{x}_{\perp}\right) \\
& A^{-}(x)=-\Theta\left(x^{+}\right) \Theta\left(x^{-}\right) x^{-} \alpha\left(\tau, \vec{x}_{\perp}\right) \\
& A^{i}(x)=\Theta\left(x^{+}\right) \Theta\left(x^{-}\right) \alpha_{\perp}^{i}\left(\tau, \vec{x}_{\perp}\right)+\Theta\left(-x^{+}\right) \Theta\left(x^{-}\right) \beta_{1}^{i}\left(x^{-}, \vec{x}_{\perp}\right)+\Theta\left(x^{+}\right) \Theta\left(-x^{-}\right) \beta_{2}^{i}\left(x^{+}, \vec{x}_{\perp}\right)
\end{aligned}
$$

step 1: solve YM equation in the pre-collision region

$$
\left[D_{\mu}, F^{\mu \nu}\right]=J^{\nu} \quad \text { with } F_{\mu \nu}=\frac{i}{g}\left[D_{\mu}, D_{\nu}\right] \text { and } D_{\mu}=\partial_{\mu}-i g A_{\mu}
$$

$\rho_{1}\left(x^{+}, \vec{x}_{\perp}\right) \rightarrow \beta_{1}^{i}\left(x^{-}, \vec{x}_{\perp}\right)$ and $\rho_{2}\left(x^{+}, \vec{x}_{\perp}\right) \rightarrow \beta_{2}^{i}\left(x^{+}, \vec{x}_{\perp}\right)$
for the first ion:

$$
\begin{aligned}
& \beta_{1}^{i}\left(x^{-}, \vec{x}_{\perp}\right)=\frac{i}{g} U_{1}^{\dagger}\left(x^{-}, \vec{x}_{\perp}\right) \partial^{i} U_{1}\left(x^{-}, \vec{x}_{\perp}\right) \\
& U_{1}\left(x^{-}, \vec{x}_{\perp}\right)=\mathcal{P} \exp \left[i g \int_{-\infty}^{x^{-}} d z^{-} \Lambda_{1}\left(z^{-}, \vec{x}_{\perp}\right)\right] \\
& \Lambda_{1}\left(x^{-}, \vec{x}_{\perp}\right)=\frac{1}{2 \pi} \int d^{2} z_{\perp} K_{0}\left(m\left(\vec{x}_{\perp}-\vec{z}_{\perp}\right)\right) \rho_{1}\left(x^{-}, \vec{z}_{\perp}\right)
\end{aligned}
$$

K_{0} is a modified Bessel function similar expression for second ion physics:

1. $\rho_{1}\left(x^{-}, \vec{x}_{\perp}\right)$ is independent of the light-cone time x^{+}

- the static approximation

2. small width across light cone will be taken to 0
step 2: boundary conditions

$$
\begin{aligned}
& \alpha_{\perp}^{i}\left(0, \vec{x}_{\perp}\right)=\alpha_{\perp}^{i(0)}\left(\vec{x}_{\perp}\right)=\lim _{w \rightarrow 0}\left(\beta_{1}^{i}\left(x^{-}, \vec{x}_{\perp}\right)+\beta_{2}^{i}\left(x^{+}, \vec{x}_{\perp}\right)\right) \\
& \alpha\left(0, \vec{x}_{\perp}\right)=\alpha^{(0)}\left(\vec{x}_{\perp}\right)=-\frac{i g}{2} \lim _{w \rightarrow 0}\left[\beta_{1}^{i}\left(x^{-}, \vec{x}_{\perp}\right), \beta_{2}^{i}\left(x^{+}, \vec{x}_{\perp}\right)\right]
\end{aligned}
$$

step 3: glasma fields (at early times) with proper time expansion

$$
\alpha\left(\tau, \vec{x}_{\perp}\right)=\alpha\left(0, \vec{x}_{\perp}\right)+\tau \alpha^{(1)}\left(\vec{x}_{\perp}\right)+\tau^{2} \alpha^{(2)}\left(\vec{x}_{\perp}\right)+\cdots
$$

and similarly for $\alpha_{\perp}^{i}\left(\tau, \vec{x}_{\perp}\right) \ldots$ (dimensionless small parameter is $\left.\tilde{\tau}=\tau Q_{s}\right)$ coefs of expansion: require vector potential satisfies sourceless YM eqn

$$
\left[D_{\mu}, F^{\mu \nu}\right]=0 \text { with } F_{\mu \nu}=\frac{i}{g}\left[D_{\mu}, D_{\nu}\right] \quad \text { and } \quad D_{\mu}=\partial_{\mu}-i g A_{\mu}
$$

$\rightarrow \alpha^{(n)}\left(\vec{x}_{\perp}\right)$ and $\vec{\alpha}_{\perp}^{(n)}\left(\vec{x}_{\perp}\right)$ in terms of $\alpha\left(0, \vec{x}_{\perp}\right)$ and $\vec{\alpha}_{\perp}\left(0, \vec{x}_{\perp}\right)$
R. J. Fries, J. I. Kapusta and Y. Li, Nucl. Phys. A 774, 861 (2006).
summary of method:

$$
\underbrace{\rho^{n}\left(x^{ \pm}, \vec{x}_{\perp}\right)}_{\text {valence parton sources }} \rightarrow \underbrace{\beta^{n}\left(x^{ \pm}, \vec{x}_{\perp}\right)}_{\text {CGC pre-collision fields }} \rightarrow \underbrace{\alpha\left(0, \vec{x}_{\perp}\right)}_{\text {initial glasma fields (boost invariant) }} \rightarrow \underbrace{\alpha\left(\tau, \vec{x}_{\perp}\right)}_{\text {glasma fields }}
$$

next: colour charge distributions are not known

- assume Gaussian distribution of colour charges in each nucleus
- a product of sources is replace by its average over this distro an average over a Gaussian distribution of independent random variables
\rightarrow sum over the averages of all possible pairs (Wick's theorem)
idea of CGC: local fluctuations \propto surface colour charge density μ

$$
\left\langle\rho_{1}\left(x^{-}, \vec{x}_{\perp}\right) \rho_{1}\left(y^{-}, \vec{y}_{\perp}\right)\right\rangle \propto g^{2} \mu_{1}\left(\vec{x}_{\perp}\right) \delta\left(x^{-}-y^{-}\right) \delta^{2}\left(\vec{x}_{\perp}-\vec{y}_{\perp}\right)
$$

analogous expressions for the second ion
glasma graph approximation \longrightarrow
result for correlator of 2 potentials: $\left(\vec{R}=\frac{1}{2}\left(\vec{x}_{\perp}+\vec{y}_{\perp}\right), \vec{r}=\vec{x}_{\perp}-\vec{y}_{\perp}\right)$

$$
\begin{aligned}
& \delta_{a b} B^{i j}\left(\vec{x}_{\perp}, \vec{y}_{\perp}\right) \equiv \lim _{w \rightarrow 0}\left\langle\beta_{a}^{i}\left(x^{-}, \vec{x}_{\perp}\right) \beta_{b}^{j}\left(y^{-}, \vec{y}_{\perp}\right)\right\rangle \\
& \lim _{r \rightarrow 0} B^{i j}\left(\vec{x}_{\perp}, \vec{y}_{\perp}\right)=\delta^{i j} g^{2} \frac{\mu(\vec{R})}{8 \pi}\left(\ln \left(\frac{Q_{s}^{2}}{m^{2}}+1\right)-\frac{Q_{s}^{2}}{Q_{s}^{2}+m^{2}}\right)+\cdots
\end{aligned}
$$

infra-red regulator $m \sim \Lambda_{\mathrm{QCD}} \sim 0.2 \mathrm{GeV}$ ultra-violet regulator $=$ saturation scale $=Q_{s}=2 \mathrm{GeV}$
dots indicate we have kept terms to 2 nd order in grad expansion of $\mu(\vec{R})$
J. Jalilian-Marian, A. Kovner, L. McLerran, H. Weigert, Phys. Rev. D 55, 5414 (1997)
H. Fujii, K. Fukushima, Y. Hidaka, Phys. Rev. C 79, 024909 (2009)
G. Chen, R. Fries, J. Kapusta, Y. Li, Phys. Rev. C 92, 064912 (2015)

surface charge density μ

must specify the form of the surface colour charge density $\mu\left(\vec{x}_{\perp}\right)$

- 2-dimensional projection of a Woods-Saxon potential
$\mu\left(\vec{x}_{\perp}\right)=\left(\frac{A}{207}\right)^{1 / 3} \frac{\bar{\mu}}{2 a \log \left(1+e^{R_{A} / a}\right)} \int_{-\infty}^{\infty} d z \frac{1}{1+\exp \left[\left(\sqrt{\left(\vec{x}_{\perp}\right)^{2}+z^{2}}-R_{A}\right) / a\right]}$
R_{A} and $a=$ radius and skin thickness of nucleus mass number A $r_{0}=1.25 \mathrm{fm}, a=0.5 \mathrm{fm} \rightarrow$ when $A=207$ gives
$R_{A}=r_{0} A^{1 / 3}=7.4 \mathrm{fm}$
normalization: $\mu(\overrightarrow{0})=\bar{\mu}=Q_{s}^{2} / g^{4}$ lead nucleus
$g^{2} \sqrt{\bar{\mu}}=$ McLerran-Venugopalan (MV) scale
proportional to Q_{s} - exact value not determined with CGC approach
** numerical results for $\mathcal{E} \ldots$ are order of magnitude estimates ratios of different elements of the energy momentum tensor
\rightarrow will have much weaker dependence on the MV scale.

gradient expansion

the parameter that we assume small is $\delta=\frac{\left|\nabla^{i} \mu(\vec{R})\right|}{m \mu(\vec{R})}$

derivatives are appreciable only in a very small region at the edges
non-zero impact parameter (non-central collisions)
expand $\mu_{1 / 2}\left(\vec{z}_{\perp}\right)$ around ave coord $\vec{R} \mp \vec{b} / 2$

summary of method:

YM eqn with average over gaussian distributed valence sources
\rightarrow correlators of pre-collision fields
\rightarrow glasma field correlators (b. conds, sourceless YM eqn, τ exp)
\rightarrow correlators of glasma chromodynamic \vec{E} and \vec{B} fields
\Rightarrow observables
we work to order τ^{5} or τ^{6} and study

1. isotropization of transverse/longitudinal pressures
2. azimuthal momentum distribution and spatial eccentricity
3. angular momentum
4. momentum broadening of hard probes
comment: many numerical approaches to study initial dynamics our method is fully analytic

- allows control over different approximations and sources of errors
- can be systematically extended
- it has limitations (classical / no fluctuations of positions of nucleons)

isotropization

at $\tau=0^{+}$the energy-momentum tensor has the diagonal form

$$
T(\tau=0)=\left(\begin{array}{cccc}
\mathcal{E}_{0} & 0 & 0 & 0 \\
0 & -\mathcal{E}_{0} & 0 & 0 \\
0 & 0 & \mathcal{E}_{0} & 0 \\
0 & 0 & 0 & \mathcal{E}_{0}
\end{array}\right)
$$

\rightarrow the longitudinal pressure is large and negative

- system is far from equilibrium
if the system approaches equilibrium as it evolves:
- the longitudinal pressure must grow
- transverse pressure must decrease ($T_{\mu \nu}$ is traceless)
to compare longitudinal and transverse pressures $\left(\tilde{\tau} \equiv \tau Q_{s}\right)$

$$
A_{T L} \equiv \frac{3\left(p_{T}-p_{L}\right)}{2 p_{T}+p_{L}}
$$

J. Jankowski, S. Kamata, M. Martinez and M. Spaliński, Phys. Rev. D 104, 074012 (2021).
in equilibrium ($p_{L}=p_{T}=\mathcal{E} / 3$) $\longrightarrow A_{T L}=0$

$R=5 \mathrm{fm}, \eta=0$ and $b=0$.
faster isotropization with smaller impact parameter
\rightarrow increased region of overlap

reaction plane defined by collision axis and impact parameter $\phi=0$ is in reaction plane
$\phi=\pi / 2$ is perpendicular to reaction plane

$A_{T L}$ at order τ^{6}
$\tau=0.04 \mathrm{fm}$ (left panel)
$\tau=0.045 \mathrm{fm}$ (centre panel)
$\tau=0.05 \mathrm{fm}$ (right panel)
the axes show R_{x} and R_{y} in fm

dependence on confinement and saturation scales

the correlator $\left\langle\beta_{a}^{i}\left(x^{-}, \vec{x}_{\perp}\right) \beta_{b}^{j}\left(y^{-}, \vec{y}_{\perp}\right)\right\rangle$
depends on two regulators: m (infra-red) and Q_{s} (ultra-violet)

- physically related to confinement / saturation scales
\rightarrow constraints on how to choose them
we used: $m=0.2 \mathrm{GeV}$ and $Q_{s}=2.0 \mathrm{Gev}$ - standard choices
- want results \approx independent of these numbers
- especially since the two scales are pretty close together
$A_{T L}$ at order τ^{6} as a function of time
3 different values of Q_{s} with $m=0.2 \mathrm{GeV}$ (left)
3 different values of m with $Q_{s}=2.0 \mathrm{GeV}$ (right)
$R=5 \mathrm{fm}, b=0$ and $\eta=0$ at order τ^{6}
\Rightarrow dependence on these scales is weak

Radial Flow

transverse momentum flow vector $=T_{i 0}$ (trans. Poynting vector) radial flow of the expanding glasma $=$ radial projection $P \equiv \hat{R}_{i} T_{i 0}$ $\phi=\pi / 2$ is perpendicular to the reaction plane

- at lowest order P increases linearly with time
- including higher order contros $\rightarrow P$ slows as system expands
- order τ^{5} shows flattening up to about $\tilde{\tau}=0.5$
\rightarrow indicates the limit of validity of the τ expansion

Azimuthal asymmetry

in a non-central collision - initial spatial asymmetry relativistic collision \rightarrow spatial asymmetries rapidly decrease \rightarrow anisotropic momentum flow can develop only in the first fm / c

- sensitive to system properties very early in its evolution
- provides direct information about the early stages of the system

$$
\begin{aligned}
& \varphi\left(\vec{x}_{\perp}\right)=\tan ^{-1}\left(\frac{T^{0 y}\left(\vec{x}_{\perp}\right)}{T^{0 x}\left(\vec{x}_{\perp}\right)}\right) \\
& W\left(\vec{x}_{\perp}\right) \equiv \sqrt{\left(T^{0 x}\left(\vec{x}_{\perp}\right)\right)^{2}+\left(T^{0 y}\left(\vec{x}_{\perp}\right)\right)^{2}} \\
& P(\phi) \equiv \frac{1}{\Omega} \int d^{2} \vec{x}_{\perp} \delta\left(\phi-\varphi\left(\vec{x}_{\perp}\right)\right) W\left(\vec{x}_{\perp}\right), \quad \Omega \equiv \int d^{2} \vec{x}_{\perp} W\left(\vec{x}_{\perp}\right) \\
& P(\phi)=\frac{1}{2 \pi}\left(1+2 \sum_{n=1}^{\infty} v_{n} \cos (n \phi)\right) \\
& v_{n}=\int_{0}^{2 \pi} d \phi \cos (n \phi) P(\phi)
\end{aligned}
$$

used $\eta=0.5$ and $\tau=0.04 \mathrm{fm}$.
v_{2} and v_{3} are \sim experimental values
v_{1} is bigger than expected
note: usually assumed anisotropy develops mostly during hydro evolution \rightarrow our results for all three Fourier coefficients are large
comment:
experimentally: impact parameter / reaction plane not known exactly our calculation does not correspond exactly to what is measured

- spatial deviations from azimuthal symmetry

$$
\varepsilon_{n}=-\frac{\int d^{2} \vec{R}|\vec{R}| \cos (n \phi) \mathcal{E}(\vec{R})}{\int d^{2} \vec{R}|\vec{R}| \mathcal{E}(\vec{R})} \text { with } \phi=\tan ^{-1}\left(R_{y} / R_{x}\right)
$$

where $\mathcal{E}(\vec{R})$ denotes the energy density

$\tau=0.04 \mathrm{fm}$ and $\eta=0 \quad$ [normalized to 1 at $b=0.5 \mathrm{fm}$]
\rightarrow correlation btwn spatial asymmetry introduced by the initial geometry and anisotropy of azimuthal momentum distribution
these correlations \sim characteristic of onset of hydrodynamic behaviour

angular momentum

define tensor $M^{\mu \nu \lambda}=T^{\mu \nu} R^{\lambda}-T^{\mu \lambda} R^{\nu}$ with $R^{\mu}=(\tau, \eta, \vec{R})$
$\nabla_{\mu} M^{\mu \nu \lambda}=0 \rightarrow$ conserved charges $J^{\nu \lambda}=\int_{\Sigma} d^{3} y \sqrt{|\gamma|} n_{\mu} M^{\mu \nu \lambda}$

- n^{μ} is a unit vector perpendicular to the hypersurface Σ
- γ is the induced metric on this hypersurface
- $d^{3} y$ is the corresponding volume element
$n^{\mu}=(1,0,0,0)$ in Milne coordinates
$\rightarrow J^{\nu \lambda}$ defined on a hypersurface of constant τ
Pauli-Lubanski vector: $L_{\mu}=-\frac{1}{2} \epsilon_{\mu \alpha \beta \gamma} J^{\alpha \beta} u^{\gamma}$
result: angular momentum per unit rapidity (symmetric collision)

$$
\frac{d L^{y}}{d \eta}=-\tau^{2} \int d^{2} \vec{R} R^{x} T^{0 z}
$$

result:

ions moving in $+/-z$ dirns displaced in $+/-x$ dirns $\rightarrow L_{y}$ is negative
warning: dominant contro to \vec{L} from regions farthest from collision centre $=$ regions gradient expansion is least trusted \rightarrow error bars large
comparison:
$L_{y} \sim 10^{5}$ at RHIC energies for initial system of colliding ions
J. H. Gao, S. W. Chen, W. t. Deng, Z. T. Liang, Q. Wang and X. N. Wang

- even larger at LHC energies
F. Becattini, F. Piccinini and J. Rizzo, Phys. Rev. C 77, 024906 (2008).
idea: initial rapid rotation of glasma
\rightarrow could be observed via polarization of final state hadrons
- large $\vec{L} \&$ spin-orbit coupling \rightarrow alignment of spins with \vec{L}
many experimental searches for this polarization
- effect of a few percent observed at RHIC
- at LHC result consistent with zero
- difficult to measure . . .
F. Becattini, M.A. Lisa, Ann. Rev. Nucl. Part. Sci. 70, 395 (2020).
these results are consistent our calculation:
glasma carries only tiny imprint of the \vec{L} of the intial state \rightarrow majority of the angular momentum is carried by valence quarks

hard probes - momentum broadening

idea:
hard probes produced via hard interactions at earliest phase of HIC

- propagate through the evolving medium
- suppression of high- p_{T} probes (jet quenching)
\Rightarrow signal of formation of QGP
- deconfined state of matter $=$ significant braking of hard partons heavy quarks:
- rare constituents of the quark-gluon plasma
- external and clean probes of the medium

EL and MB of hard probes / equilibrium plasma studied extensvely

- contro from pre-equilibrium phases has been largely ignored however, see for example:
Ruggieri, Das et al, Phys. Rev. D 98, 094024 (2018)
Boguslavski, Kurkela, Lappi, Peuron, JHEP 09, 077 (2020)
Ipp, Müller, Schuh, Phys. Lett. B 810, 135810 (2020)
physics: frequent small \vec{p} exchanges btwn probe and glasma fields \rightarrow transport equation in Fokker-Planck form
- describes interactions of hard probe interacting with glasma fields

$$
\left(\mathcal{D}-\nabla_{p}^{\alpha} X^{\alpha \beta}(\vec{v}) \nabla_{p}^{\beta}-\nabla_{p}^{\alpha} Y^{\alpha}(\vec{v})\right) n(t, \vec{x}, \vec{p})=0
$$

notation: $\alpha \in(1,2,3)$
$n(t, \vec{x}, \vec{p})=$ distribution function of heavy quarks
$\vec{v}=\vec{p} / E_{\vec{p}}=\vec{p} / \sqrt{p^{2}+m_{Q}^{2}}=$ velocity of heavy quark
$\mathcal{D} \equiv \frac{\partial}{\partial t}+\vec{v} \cdot \vec{\nabla}=$ material derivative (drift term)
Y^{α} related to collisional energy loss
$X^{\alpha \beta}$ related to momentum broadening
St. Mrówczyński, Eur. Phys. J. A 54, 43 (2018).

$$
\begin{aligned}
\hat{q} & =\frac{1}{v}\left(\delta^{\alpha \beta}-\frac{v^{\alpha} v^{\beta}}{v^{2}}\right) \frac{\left\langle\Delta p^{\alpha} \Delta p^{\beta}\right\rangle}{\Delta t} \\
& =\frac{2}{v}\left(\delta^{\alpha \beta}-\frac{v^{\alpha} v^{\beta}}{v^{2}}\right) X^{\alpha \beta}(\vec{v}) \\
X^{\alpha \beta}(\vec{v}) & \equiv \frac{1}{2 N_{c}} \int_{0}^{t} d t^{\prime} \operatorname{Tr}\left[\left\langle\mathcal{F}^{\alpha}(t, \vec{x}) \mathcal{F}^{\beta}\left(t-t^{\prime}, \vec{x}-\vec{v} t^{\prime}\right)\right\rangle\right]
\end{aligned}
$$

colour Lorentz force: $\overrightarrow{\mathcal{F}}(t, \vec{x}) \equiv g(\vec{E}(t, \vec{x})+\vec{v} \times \vec{B}(t, \vec{x}))$

$$
\begin{aligned}
X^{\alpha \beta}(\mathbf{v})= & \frac{g^{2}}{2 N_{c}} \int_{0}^{t} d t^{\prime}\left[\left\langle E_{a}^{\alpha}(t, \vec{x}) E_{a}^{\beta}\left(t-t^{\prime}, \vec{y}\right)\right\rangle+\epsilon^{\beta \gamma \gamma^{\prime}} v^{\gamma}\left\langle E_{a}^{\alpha}(t, \vec{x}) B_{a}^{\gamma^{\prime}}\left(t-t^{\prime}, \vec{y}\right)\right\rangle\right. \\
& \left.+\epsilon^{\alpha \gamma \gamma^{\prime}} v^{\gamma}\left\langle B_{a}^{\gamma^{\prime}}(t, \vec{x}) E_{a}^{\beta}\left(t-t^{\prime}, \vec{y}\right)\right\rangle+\epsilon^{\alpha \gamma \gamma^{\prime}} \epsilon^{\beta \delta \delta^{\prime}} v^{\gamma} v^{\delta}\left\langle B_{a}^{\gamma^{\prime}}(t, \mathbf{x}) B_{a}^{\delta^{\prime}}\left(t-t^{\prime}, \vec{y}\right)\right\rangle\right]
\end{aligned}
$$

where $\vec{y}=\vec{x}-\vec{v} t^{\prime}$.
note: combination of two approaches

1. medium that the hard probe interacts with is a glasma
\rightarrow described with CGC effective theory with proper time expansion ** description is valid only at very early times
2. FP eqn describes interactions of hard probe with glasma fields
** valid at times long enough that collision terms saturate
\Rightarrow conflict btwn assumptions that set these two time scales also:

- FP description requires gradient expansion type approximations
- our CGC approach assumes boost invariance
** can all these conditions can be satisfied simultaneously?
result: \hat{q} as a function of τ at different orders in the expansion

key: saturation regime appears before τ expansion breaks down caution:
figure above obtained for $v_{\perp}=v$
calculation works less well when $v_{\|} \neq 0$
reason: at very early times glasma fields represented as longitudinal flux tubes

λ_{\perp} can be inferred the 2-point correlator
\hat{q} built up during time probe is in domain of correlated fields at zeroth order this time is determined by
- transverse correlation length
- orientation and magnitude of the probe's velocity
\rightarrow saturation is faster if $v_{\|}=0$
note: probe's velocity also enters through the Lorentz force

fifth and fourth order results for increasing $v_{\|}$
- saturation is less pronounced as $v_{\|}$increases

impact of the glasma on jet quenching

radiative Eloss/length of probe traversing medium of length L \propto total accumulated transverse momentum broadening

$$
\Delta p_{T}^{2}=\int_{0}^{L} d t \hat{q}(t)
$$

our calculation gives $\hat{q}_{\text {max }}=6 \mathrm{GeV}^{2} / \mathrm{fm}$
compare with equilibrium values:
hard quark of $p_{T}>40 \mathrm{GeV} \longrightarrow 2<\hat{q} / T^{3}<4$

- inferred from experimental data S. Cao et al. [JETSCAPE], Phys. Rev. C 104, 024905 (2021).
$\hat{q}=3 T^{3}$ and $450>T>150 \mathrm{MeV} \rightarrow(0.05<\hat{q}<1.0) \mathrm{GeV}^{2} / \mathrm{fm}$
\Rightarrow equilibrium value of \hat{q} is much smaller
but $\tau_{\text {life }}$ of pre-equilibrium phase $<1 \mathrm{fm} / \mathrm{c}$
\rightarrow contro of pre-equilibrium phase to jet quenching usually ignored
schematic representation of the time dependence of \hat{q}

1. rapid growth to $\hat{q}_{\max } \approx 6 \mathrm{GeV}^{2} / \mathrm{fm}$ at $t_{\text {max }} \approx 0.06 \mathrm{fm}$

- this is a rough description of our result
- no saturation region because of time scales

2. decrease from $t_{\max } \rightarrow t_{0}$ - not captured by our calculation

- is reproduced by the simulations
A. Ipp, D. I. Müller and D. Schuh, Phys. Lett. B 810, 135810 (2020)

$$
\left.\rightarrow \Delta p_{T}^{2}\right|^{\text {non }-\mathrm{eq}}=\int_{0}^{t_{0}} d t \hat{q}(t)=\frac{1}{2} \hat{q}_{\max } t_{0}+\frac{1}{2} \hat{q}_{0}\left(t_{0}-t_{\max }\right)
$$

3. assume hydro evolution from t_{0}

- using 1d boost invariant hydrodynamics
$\hat{q}=3 T^{3}$ with $T=T_{0}\left(\frac{t_{0}}{t}\right)^{1 / 3}$ and

$$
\left.\Delta p_{T}^{2}\right|^{\mathrm{eq}}=\int_{t_{0}}^{L} d t \hat{q}(t)=3 T_{0}^{3} t_{0} \ln \frac{L}{t_{0}}
$$

values:
$t_{0}=0.6 \mathrm{fm}, T_{0}=0.45 \mathrm{GeV}$
C. Shen, U. Heinz, P. Huovinen and H. Song, Phys. Rev. C 84, 044903 (2011)
$L=10 \mathrm{fm}$

$$
\text { result: } \frac{\Delta p_{T}^{2}[\text { non-equib }]}{\Delta p_{T}^{2}[\text { equib }]} \approx 0.93
$$

rough estimate that depends on values of parameters chosen - but result is not very sensitive to values of shape of peak
\Rightarrow glasma plays an important role in jet quenching

scale dependence

Q_{s} between 1.9 (bottom) and 2.1 (top) GeV with ratio Q_{s} / m fixed - one sees that the dependence is fairly weak

boost and translation invariance

calculation of \hat{q} is formulated in Minkowski space

- assumes at least approximate translation invariance
but used correlators of electric and magnetic fields obtained from an boost invariant ansatz for the vector potential
check of consistency:
previous result was $z=\eta=0$ (red line) \hat{q} as a function of τ for three values of η

conclusions

1. developed an efficient method to calculate correlators of electric and magnetic fields using a CGC approach and a proper time expansion
2. 6th order τ expansion can be trusted to about $\tau=0.05 \mathrm{fm}$
3. correlation btwn elliptic flow coef $v_{2} /$ spatial eccentricity - spatial asymmetry introduced by initial geometry is effectively transmitted to azimuthal distribution of gluon momentum field
\rightsquigarrow indication of the onset of hydrodynamics.
4. most of the angular momentum of the intial system not transmitted to glasma

- contradicts picture of a rapidly rotating initial glasma state

5. glasma plays an important role in jet quenching
