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and its normalization is chosen such that, upon replacing the SU(3) transformations with

an Abelian U(1) transformation, the QED Lagrangian is recovered.2 The CP odd term,
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is irrelevant for most of QCD phenomenology as the experimental value of its corresponding

strength, characterized by the parameter ⌥̄, is unexpectedly close to zero, ⌥̄ ⇥ 10�9.3 Nf

denotes the number of quark flavors (up, down, strange, etc.), and ⇧µ⌦�⇥ is the fully anti-

symmetric Levi-Civita tensor.

The Lagrange density of QCD, neglecting the CP-odd contribution and taking into

account di⌥erent quark flavor sectors, can be written in the explicit form,
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where F
i
µ⌦  ⇢µA

i
⌦ � ⇢⌦A

i
µ. The striking feature of this Lagrange density is the self inter-

actions among gluons which makes the vacuum of the theory nontrivial compared to QED.

This is not a surprise as in any non-Abelian gauge theory, the gauge field A
i
µ carries a char-

acteristic charge (color in the case of QCD) corresponding to the internal space of the gauge

group, and must be able to interact with other charged members of the gauge multiplet.

The other feature of the QCD Lagrange density is that the coupling of gauge fields to the

quark fields cannot be arbitrary and is constrained by the Lie algebra of the group to be the

same among quarks with di⌥erent colors and from di⌥erent families, and should match that

of self-gluon couplings. This is again in contrast with QED where, although the interaction

Lagrangian has a universal form, di⌥erent matter fields can couple to the EM field with

di⌥erent strengths, characterized by their distinct electric charges.

The two important properties of QCD, asymptotic freedom and color confinement, can

be deduced from an analytical approach based on perturbation theory. The former, as is a

2This also justifies the factor of 1
ig in the definition of Gµ⌥ as it would result in the usual normalization

of the kinetic term of gluons.

3The convention used for the normalization of this term ensures that, in the absence of massive quarks,

the contribution from such term vanishes upon setting ⌃̄ = 2�, where � is the parameter of the U(1)A
transformation, q � ei�⇤5 , whose current, Jµ

5 ⌅ q̄⇤µ⇤5q, is anomalous.

QCD is a SU(3) gauge theory augmented with several flavors of massive quarks:

Features: 

i) There are only                input parameters plus QED coupling. Fix them 
by few quantities and all nuclear physics is predicted (in principle)! 

ii) QCD is asymptotically free and exhibits confinement.

1 +Nf
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WHAT CAN WE DO AT LOW ENERGIES?

LQCD[q, q̄, A;mq,�s]
Z

d4x ! a4
X

n

LLQCD[q, q̄, U [A];mqa,�]

Extrapolate to infinite volume 
and zero lattice spacing 

Uµ(x, x+ nµa)

q(x+ nµa)

q̄(x)

Solve it nonperturbatively: Lattice 
QCD



LATTICE QCD COMBINED WITH EFFECTIVE FIELD THEORIES IS ON 
TRACK TO DELIVER RESULTS ON IMPORTANT QUANTITIES IN NUCLEAR 
AND HIGH-ENERGY PHYSICS.

A recent review on low-energy nuclear physics from lattice QCD: ZD et al (NPLQCD), arXiv:2008.11160 [hep-lat], 
accepted to Physics Reports.



Beane, et al. (NPLQCD), Phys.Rev. D87 (2013), Phys.Rev. C88 (2013)

A MILESTONE: NUCLEI FROM QCD IN A WORLD WITH HEAVIER QUARKS 
THAN THOSE IN NATURE
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The nuclear matrix element determining the pp ! de+⌫ fusion cross section and the Gamow-Teller
matrix element contributing to tritium �-decay are calculated with lattice Quantum Chromodynam-
ics (QCD) for the first time. Using a new implementation of the background field method, these
quantities are calculated at the SU(3)-flavor–symmetric value of the quark masses, corresponding
to a pion mass of m⇡ ⇠ 806 MeV. The Gamow-Teller matrix element in tritium is found to be
0.979(03)(10) at these quark masses, which is within 2� of the experimental value. Assuming that
the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange cur-
rents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the
calculated pp ! de+⌫ transition matrix element leads to a fusion cross section at the physical quark
masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial
counterterm of pionless e↵ective field theory is determined to be L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3

at a renormalization scale set by the physical pion mass, also in agreement with the accepted phe-
nomenological range. This work concretely demonstrates that weak transition amplitudes in few-
nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom
and opens the way for subsequent investigations of many important quantities in nuclear physics.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

Weak nuclear processes play a central role in many set-
tings, from the instability of the neutron to the dynam-
ics of core-collapse supernova. In this work, the results
of the first lattice Quantum Chromodynamics (LQCD)
calculations of two such processes are presented, namely
the pp ! de+⌫e fusion process and tritium �-decay. The
pp ! de+⌫ process is centrally important in astrophysics
as it is primarily responsible for initiating the proton-
proton fusion chain reaction that provides the dominant
energy production mechanism in stars like the Sun. Sig-
nificant theoretical e↵ort has been expended in refining
calculations of the pp ! de+⌫ cross section at the ener-
gies relevant to solar burning, and progress continues to
be made with a range of techniques [1–10], as summarized
in Ref. [11]. This process is related to the ⌫d ! nne+

neutrino breakup reaction [12–14], relevant to the mea-
surement of neutrino oscillations at the Sudbury Neu-
trino Observatory (SNO) [15, 16], and to the muon cap-
ture reaction, µ�d ! nn⌫µ, which is the focus of cur-
rent investigation in the MuSun experiment [17]. The

second process studied in this work, tritium �-decay, is
a powerful tool for investigating the weak interactions
of the Standard model and plays an important role in
the search for new physics. The super-allowed process
3H !

3He e�⌫̄ is theoretically clean and is the simplest
semileptonic weak decay of a nuclear system. In con-
trast to pp fusion, this decay has been very precisely
studied in the laboratory (see Ref. [18] for a review)
and provides important constraints on the antineutrino
mass [19]. Tritium �-decay is also potentially sensitive to
sterile neutrinos [20, 21] and to interactions not present
in the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical con-
trol as this is a super-allowed process, the Gamow-Teller
(GT) contribution (axial current) is somewhat more chal-
lenging to address than the Fermi (F) contribution (vec-
tor current). Improved constraints on multi-body con-
tributions to the GT matrix element will translate into
reduced uncertainties in predictions for decay rates of
larger nuclei and are a first step towards understanding



Titan supercomputer, Oak Ridge National Laboratory, USA

THIS STUDY TOOK ABOUT TWO YEARS AND A FEW HUNDRED MILLION 
CPU HOURS ON THE LARGEST SUPERCOMPUTERS IN THE U.S.!



A SINGLE-WEAK PROCESS
pp ! de+⌫e
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Savage, ZD et al, Phys.Rev.Lett.119,062002(2017).



QCD input Few-body EFT interactionsMany-body calculations of nuclei and hypernuclei
Many-body calculations of nuclei and hypernuclei
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MATCHING QCD TO STUDIES OF HEAVIER ISOTOPES

Barnea et al Phys. Rev. Lett. 114, 052501 
(2015), Contessi et al, Phys. Lett. B772 (2017).
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Beane, et al. (NPLQCD), Phys.Rev. D87 (2013)



Supports NP
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Slide content courtesy of Martin Savage.

LATTICE GAUGE THEORY IS SUPPORTING A MULTI-BILLION DOLLAR 
EXPERIMENTAL PROGRAM!



THREE FEATURES MAKE LATTICE QCD CALCULATIONS OF NUCLEI HARD:

i) The complexity of systems grows factorially with 
the number of quarks.

iii) Excitation energies of nuclei are much smaller than 
the QCD scale.

ii) There is a severe signal-to-noise 
degradation.

Detmold and Orginos (2013)
Detmold and Savage (2010)
Doi and Endres (2013)

Paris (1984) and Lepage (1989)
Wagman and Savage (2017, 2018)

Beane at al (NPLQCD) (2009)
Beane, Detmold, Orginos, Savage (2011)
ZD (2018)
Briceno, Dudek and Young (2018)



i) Studies of nuclear isotopes, dense matter, and phase diagram of QCD…
both with lattice QCD and with ab initio nuclear many-body methods.

Source: The Facility for Antiproton and Ion Research (FAIR),GSI, Darmstadt, Germany.

LQCD ! LQCD � iµ
X

f

q̄f�
0qf

Path integral formulation:

e�S[U,q,q̄]

with a complex action:

ADDITIONALLY THE SIGN PROBLEM FORBIDS:



ii) Real-time dynamics of matter in heavy-ion collisions or after Big Bang…

…and a wealth of dynamical response functions, transport properties, 
hadron distribution functions, and non-equilibrium physics of QCD.

eiS[U,qq̄]

Path integral formulation:

U(t) = e�iHt

Hamiltonian evolution:

ADDITIONALLY THE SIGN PROBLEM FORBIDS:



AN OPPORTUNITY TO EXPLORE NEW PARADIGMS 
AND NEW TECHNOLOGIES IN SIMULATION: 

QUANTUM SIMULATION?



ADDITIONALLY THE SIGN PROBLEM FORBIDS:QUANTUM SIMULATION FOR NUCLEAR AND HIGH-ENERGY PHYSICS: WHAT IT IMPLIES.



ADDITIONALLY THE SIGN PROBLEM FORBIDS:

Quantum simulation amounts to leveraging a quantum system that can be controlled to study 
another quantum systems that is more elusive, experimentally or computationally.

ICRAR/University of Amsterdam

https://wahl.wp.st-andrews.ac.uk/ 
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ADDITIONALLY THE SIGN PROBLEM FORBIDS:

Quantum simulation amounts to leveraging a quantum system that can be controlled to study 
another quantum systems that is more elusive, experimentally or computationally.

ICRAR/University of Amsterdam

https://wahl.wp.st-andrews.ac.uk/ 

IQOQI Innsbruck/Harald Ritsch

?
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QUANTUM SIMULATION FOR NUCLEAR AND HIGH-ENERGY PHYSICS: WHAT IT IMPLIES.



ADDITIONALLY THE SIGN PROBLEM FORBIDS:A RANGE OF QUANTUM SIMULATORS WITH VARING CAPACITY AND CAPABILITY IS AVAILABLE!

C. CHIU/HARVARD 
UNIVERSITY

UNIVERSITY OF MARYLAND



SOME SIMILARITIES BUT MAJOR DIFFERENCESSOME SIMILARITIES BUT MAJOR DIFFERENCES

Starting from the nucelar Hamiltonian 

More complex Hamiltonian, itself unknown 
with arbitrary accuracy, short, intermediate, 
and long-range interactions, three and multi-
body interactions, pions (bosons) and other 
hadrons can become dynamical.

SOME SIMILARITIES BUT MAJOR DIFFERENCES WITH 
CONDENSED MATTER AND CHEMISTRY PROBLEMS



SOME SIMILARITIES BUT MAJOR DIFFERENCES

Starting from the Standard Model 

Both bosonic and fermionic DOF are 
dynamical and coupled, exhibit both global 
and local (gauge) symmetries, relativistic 
hence particle number not conserved, vacuum 
state nontrivial in strongly interacting theories.

SOME SIMILARITIES BUT MAJOR DIFFERENCESSOME SIMILARITIES BUT MAJOR DIFFERENCES WITH 
CONDENSED MATTER AND CHEMISTRY PROBLEMS



Theory developments

Algorithmic developments

Implementation and benchmark

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES INVOLVES:
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QUANTUM SIMULATION OF QUANTUM FIELD THEORIES INVOLVES:



Martinez, Muschik, Schindler, Nigg, Erhard, Heyl, Hauke, 
Dalmonte, Monz, Zoller, Blatt, Nature 534, 516-519 (2016)

Trapped ions, 4 qubits

e+

e�

e+

e�IMPLEMENTATION AND BENCHMARK: DIGITAL EXAMPLES
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Nguyen, Shaw, Zhu, Huerta Alderete, ZD, Linke (2020)
Lu, Klco, Lukens, Morris, Bansal, Ekström, Hagen, Papenbrock, 
Weiner, Savage, Lougovski, Phys. Rev. A 100, 012320 (2019)

Martinez, Muschik, Schindler, Nigg, Erhard, Heyl, Hauke, 
Dalmonte, Monz, Zoller, Blatt, Nature 534, 516-519 (2016) Klco, Dumitrescu, McCaskey, Morris, Pooser, Sanz, Solano, 

Lougovski, Savage, Phys. Rev. A 98, 032331 (2018)

IBM, 2 qubits

Trapped ions, 4 qubits

Trapped ions, 4 qubits

Quantum 
Frequency 
Processor, 8 
fermion sites
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e�IMPLEMENTATION AND BENCHMARK: DIGITAL EXAMPLES



Theory developments

Algorithmic developments

Implementation and benchmark

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES INVOLVES:
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U.-J. Wiese: Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories

charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.

788 C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org
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Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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Suppressing the link index xy, the various operators obey
the commutation relations

[La, Lb] = 2i fabc Lc, [Ra, Rb] = 2i fabc Rc,

[La, Rb] = 0, [La, U] = −λaU, [Ra, U] = Uλa. (29)

Operators associated with different links commute
with each other. The Hermitean generators of SU(N)
obey the commutation relation [λa, λb] = 2i fabcλ

c, where
fabc are the structure constants of the SU(N) algebra
and Trλaλb = 2δab. By construction, the Hamiltonian
of Eq. (28) is gauge invariant, i.e. it commutes with
the infinitesimal generators of SU(N) gauge transfor-
mations

Ga
x = ψ i†

x λa
i jψ

j
x +

∑

k

(
La

x,x+k̂ + Ra
x−k̂,x

)
,

[
Ga

x, Gb
y

]
= 2iδxy fabcGc

x. (30)

Again, physical states |$〉 are gauge invariant and must
obey the Gauss law Ga

x|$〉 = 0. A general SU(N) gauge
transformation, %x = exp(iαa

xλ
a), is represented by the

unitary transformation V =
∏

x exp(iαa
x Ga

x), which acts
as

ψ ′
x = V †ψxV = %xψx, ψ†

x
′ = V †ψ†

x V = ψ†
x%

†
x,

U′
xy = V †Uxy V = %xUxy%

†
y. (31)

In Wilson’s lattice gauge theory, the commutation re-
lations of Eq. (29) are realized in an infinite-dimensional
Hilbert space per link. In fact, every link is analogous to
a quantum mechanical “particle” moving in the group
space SU(N), with L2

xy + R2
xy representing the corre-

sponding Laplacian.
In an SU(2) gauge theory the various operators can

be represented by harmonic oscillators [97] (also known
as prepotentials) using bosonic creation and annihila-
tion operators ai†

x,±k and ai
x,±k, which carry a color index

i ∈ {1, 2}. The bosonic operators are associated with the
left and right ends of a link and are labeled by a lattice
point x and a link direction ±k, and one can write

La
xy = ai†

x,+σ a
i ja

j
x,+, Ra

xy = ai†
y,−σ a

i ja
j
y,−,

Uxy = 1
Nxy

(
a2†

x,+ a1
x,+

−a1†
x,+ a2

x,+

) (
a1†

y,− a2†
y,−

a2
y,− −a1

y,−

)

= 1
Nxy

(
a2†

x,+a1†
y,− + a1

x,+a2
y,− a2†

x,+a2†
y,− − a1

x,+a1
y,−

−a1†
x,+a1†

y,− + a2
x,+a2

y,− −a1†
x,+a2†

y,− − a2
x,+a1

y,−

)

.

(32)

Here Nxy = ai†
x,+ai

x,+ = ai†
y,−ai

y,− counts the number of
bosons, which is the same at both ends of the link.
The link operator Uxy changes the number of bosons by
two, by either creating or annihilating a boson on each
end of a link. Since the link Hilbert space is infinite-
dimensional, the total number of bosons can be arbi-
trarily large. In SU(3) gauge theory the construction is
much more involved [98]. Instead of two, it involves four
species of colored bosons per link, which span a Hilbert
space that is larger than the one of the gauge theory. In
order to correct for this, the link operators are no longer
constructed as boson bilinears, but as polynomials of a
higher degree. Even then, the commutation relations of
Eq. (29) are satisfied only in the gauge theory subspace of
the bosonic Hilbert space, and it is not obvious how to re-
strict oneself to that subspace. While there are construc-
tions for quantum simulators using SU(2) prepotentials
[74, 75], it is difficult to imagine that the SU(3) prepoten-
tials of [98] can be implemented in ultracold matter.

Up to now, we have defined the theory on a lattice
with non-zero lattice spacing a, whose inverse 1

a serves as
an ultraviolet momentum cut-off. Ultimately, we want to
take the continuum limit a → 0. This is done by properly
adjusting the bare coupling constant g . We may fix the
overall energy scale by putting t = 1. When we set m = 0,
we are in the chiral limit of massless quarks, which will
lead to a massless Goldstone pion. The bare gauge cou-
pling g is then adjusted in order to take the continuum
limit. This can be done by considering any dimension-
ful physical quantity, for example, the nucleon mass. The
nucleon mass Mn = E1 − E0 is the energy difference be-
tween the ground states of HQCD in the baryon number
1 and 0 sectors. Let us consider the nucleon mass in lat-
tice units, i.e. Mna, as a function of g . Due to the prop-
erty of asymptotic freedom, in the g → 0 limit the nu-
cleon mass behaves as Mna ∼ exp(−β0/g 2), where β0 > 0
is the leading coefficient of the QCD β-function. Keeping
the physical quantity Mn fixed and sending g → 0, one
approaches the continuum limit a → 0. We have thus
traded the dimensionless bare coupling constant g for
a dimensionful physical scale — in this case Mn. In this
process of dimensional transmutation, the scale invari-
ance of the QCD Lagrangian in the massless chiral limit is
explicitly broken by the ultraviolet regulator 1

a . It should
be pointed out that massless QCD does not predict the
value of any dimensionful scale like the nucleon mass.
After all, the nucleon mass, e.g. in units of kilograms, re-
lies on a man-made convention, and essentially reduces
to the question how many protons and neutrons were
deposited near Paris, when the kilogram was defined a
long time ago. However, once an overall energy scale,
e.g. Mn, has been picked, QCD predicts the values of
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charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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Suppressing the link index xy, the various operators obey
the commutation relations

[La, Lb] = 2i fabc Lc, [Ra, Rb] = 2i fabc Rc,

[La, Rb] = 0, [La, U] = −λaU, [Ra, U] = Uλa. (29)

Operators associated with different links commute
with each other. The Hermitean generators of SU(N)
obey the commutation relation [λa, λb] = 2i fabcλ

c, where
fabc are the structure constants of the SU(N) algebra
and Trλaλb = 2δab. By construction, the Hamiltonian
of Eq. (28) is gauge invariant, i.e. it commutes with
the infinitesimal generators of SU(N) gauge transfor-
mations

Ga
x = ψ i†

x λa
i jψ

j
x +

∑

k

(
La

x,x+k̂ + Ra
x−k̂,x

)
,

[
Ga

x, Gb
y

]
= 2iδxy fabcGc

x. (30)

Again, physical states |$〉 are gauge invariant and must
obey the Gauss law Ga

x|$〉 = 0. A general SU(N) gauge
transformation, %x = exp(iαa

xλ
a), is represented by the

unitary transformation V =
∏

x exp(iαa
x Ga

x), which acts
as

ψ ′
x = V †ψxV = %xψx, ψ†

x
′ = V †ψ†

x V = ψ†
x%

†
x,

U′
xy = V †Uxy V = %xUxy%

†
y. (31)

In Wilson’s lattice gauge theory, the commutation re-
lations of Eq. (29) are realized in an infinite-dimensional
Hilbert space per link. In fact, every link is analogous to
a quantum mechanical “particle” moving in the group
space SU(N), with L2

xy + R2
xy representing the corre-

sponding Laplacian.
In an SU(2) gauge theory the various operators can

be represented by harmonic oscillators [97] (also known
as prepotentials) using bosonic creation and annihila-
tion operators ai†

x,±k and ai
x,±k, which carry a color index

i ∈ {1, 2}. The bosonic operators are associated with the
left and right ends of a link and are labeled by a lattice
point x and a link direction ±k, and one can write

La
xy = ai†

x,+σ a
i ja

j
x,+, Ra

xy = ai†
y,−σ a

i ja
j
y,−,

Uxy = 1
Nxy

(
a2†

x,+ a1
x,+

−a1†
x,+ a2

x,+

) (
a1†

y,− a2†
y,−

a2
y,− −a1

y,−

)

= 1
Nxy

(
a2†

x,+a1†
y,− + a1

x,+a2
y,− a2†

x,+a2†
y,− − a1

x,+a1
y,−

−a1†
x,+a1†

y,− + a2
x,+a2

y,− −a1†
x,+a2†

y,− − a2
x,+a1

y,−

)

.

(32)

Here Nxy = ai†
x,+ai

x,+ = ai†
y,−ai

y,− counts the number of
bosons, which is the same at both ends of the link.
The link operator Uxy changes the number of bosons by
two, by either creating or annihilating a boson on each
end of a link. Since the link Hilbert space is infinite-
dimensional, the total number of bosons can be arbi-
trarily large. In SU(3) gauge theory the construction is
much more involved [98]. Instead of two, it involves four
species of colored bosons per link, which span a Hilbert
space that is larger than the one of the gauge theory. In
order to correct for this, the link operators are no longer
constructed as boson bilinears, but as polynomials of a
higher degree. Even then, the commutation relations of
Eq. (29) are satisfied only in the gauge theory subspace of
the bosonic Hilbert space, and it is not obvious how to re-
strict oneself to that subspace. While there are construc-
tions for quantum simulators using SU(2) prepotentials
[74, 75], it is difficult to imagine that the SU(3) prepoten-
tials of [98] can be implemented in ultracold matter.

Up to now, we have defined the theory on a lattice
with non-zero lattice spacing a, whose inverse 1

a serves as
an ultraviolet momentum cut-off. Ultimately, we want to
take the continuum limit a → 0. This is done by properly
adjusting the bare coupling constant g . We may fix the
overall energy scale by putting t = 1. When we set m = 0,
we are in the chiral limit of massless quarks, which will
lead to a massless Goldstone pion. The bare gauge cou-
pling g is then adjusted in order to take the continuum
limit. This can be done by considering any dimension-
ful physical quantity, for example, the nucleon mass. The
nucleon mass Mn = E1 − E0 is the energy difference be-
tween the ground states of HQCD in the baryon number
1 and 0 sectors. Let us consider the nucleon mass in lat-
tice units, i.e. Mna, as a function of g . Due to the prop-
erty of asymptotic freedom, in the g → 0 limit the nu-
cleon mass behaves as Mna ∼ exp(−β0/g 2), where β0 > 0
is the leading coefficient of the QCD β-function. Keeping
the physical quantity Mn fixed and sending g → 0, one
approaches the continuum limit a → 0. We have thus
traded the dimensionless bare coupling constant g for
a dimensionful physical scale — in this case Mn. In this
process of dimensional transmutation, the scale invari-
ance of the QCD Lagrangian in the massless chiral limit is
explicitly broken by the ultraviolet regulator 1

a . It should
be pointed out that massless QCD does not predict the
value of any dimensionful scale like the nucleon mass.
After all, the nucleon mass, e.g. in units of kilograms, re-
lies on a man-made convention, and essentially reduces
to the question how many protons and neutrons were
deposited near Paris, when the kilogram was defined a
long time ago. However, once an overall energy scale,
e.g. Mn, has been picked, QCD predicts the values of
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charge − 1
3 e), while neutrons consist of one u-quark and

two d-quarks. In addition, protons and neutrons con-
tain a fluctuating number of gluons and quark-anti-
quark pairs. The non-Abelian vector potential, Gµ(x) =
ig Ga

µ(x)T a, describing the gluons is constructed from
real-valued fields Ga

µ(x) multiplying the N2 − 1 traceless
Hermitean generators T a of SU(N) — the group of uni-
tary N × N matrices with determinant 1. In the real world
the number of colors is N = 3. For N = 2 the genera-
tors T a = 1

2 σ a are given by the Pauli matrices, while for
N = 3 they are given by the Gell-Mann matrices T a =
1
2 λa. Here g is the strong coupling constant, i.e. the non-
Abelian analog of the elementary electric charge e. The
non-Abelian covariant derivative takes the form

Dµ = ∂µ + Gµ(x) ⇒

Dµi j = ∂µδi j + Gµi j (x) = ∂µδi j + ig Ga
µ(x)T a

i j , (25)

and the gluon field strength tensor is given by

Gµν(x) = ∂µGν(x) − ∂νGµ(x) + [Gµ(x), Gν(x)]. (26)

Unlike photons, which are electrically neutral, gluons
carry color charge. This manifests itself in the non-
Abelian commutator term in Gµν(x), which is absent in
QED. The QCD Lagrangian is invariant under color gauge
transformations &(x) ∈ SU(N) of the quark and gluon
fields

ψ f (x)′ = &(x)ψ f (x) ⇒ ψ f i(x)′ = &i j (x)ψ f j (x),

Gµ(x)′ = &(x)[Gµ(x) + ∂µ]&(x)† ⇒

Gµν(x)′ = &(x)Gµν(x)&(x)†. (27)

It should be pointed out that, unlike Fµν in Abelian gauge
theories, the non-Abelian field strength Gµν is not gauge
invariant. The gluon field couples to the color index i of
the quark field ψ f i(x), but does not distinguish between
quarks of different flavors f , which differ only in their
masses m f .

Quarks and anti-quarks are distinguished by their
baryon numbers B = ± 1

N . In the real world (with N =
3) three quarks form a baryon (e.g. a proton or neu-
tron), while three anti-quarks from an anti-baryon (e.g.
an anti-proton or anti-neutron). Under the global U(1)B

baryon number symmetry the quark fields transform as
ψ f i(x)′ = exp(iα)ψ f i(x), which leaves LQCD invariant. In
the absence of quark masses, i.e. for m f = 0, the QCD
Lagrangian has a global SU(Nf )L × SU(Nf )R chiral sym-
metry acting separately on the left- and right-handed
quark and anti-quark fields. At low temperature, chi-
ral symmetry is spontaneously broken to its vector sub-

group SU(Nf )L=R, known as isospin for Nf = 2. The or-
der parameter for this symmetry breaking is the chiral
condensate 〈ψψ〉 = 〈0|

∑
f,i ψ

f,i
(x)ψ f,i(x)|0〉. Here |0〉 is

the QCD vacuum state, the lowest energy eigenstate in
the sector with baryon number B = 0. According to the
Goldstone theorem, the spontaneous breakdown of chi-
ral symmetry gives rise to N2

f − 1 Goldstone bosons — 3
pions in the Nf = 2 case. In the real world, the masses mu

and md of the up and down quarks are small, but non-
zero, which turns the pions into light, but not exactly
massless, pseudo-Goldstone bosons. Besides the pions,
the QCD spectrum contains other mesons (states with
baryon number B = 0 that contain an equal number of
quarks and anti-quarks), as well as baryon resonances
that decay into nucleons (protons or neutrons) and pi-
ons. Most important, the QCD spectrum does not con-
tain states of isolated quarks or gluons, which are instead
permanently confined inside hadrons.

4.2 Lattice QCD

The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form

HQCD = −t
∑

〈xy〉
sxy

(
ψ†

xUxyψy + ψ†
yU†

xyψx
)
+ m

∑

x

sxψ
†
xψx

+ g 2

2

∑

〈xy〉

(
L2

xy + R2
xy

)
− 1

4g 2

∑

!
Tr

(
U! + U†

!
)

.

(28)

Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ

†
xUxyψy = ψ i

x
†Ui j

xyψ
j

y . As in the Abelian
case, the plaquette product U! = UwxUxyU†

zyU†
wz repre-

sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
with the left and right end of the link xy. These non-
Abelian analogs of Exy are operators that take appropri-
ate derivatives with respect to the matrix elements of Uxy.
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tain states of isolated quarks or gluons, which are instead
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The standard formulation of lattice QCD is due to Wilson.
He represented the gluon field by parallel transporter
N × N unitary matrices Uxy of determinant 1, that take
values in the non-Abelian color gauge group SU(N), and
are associated with the link connecting nearest neigh-
bor lattice sites x and y. While Wilson originally con-
structed the theory in the Lagrangian formulation, it was
soon expressed by Kogut and Susskind in the Hamilto-
nian formulation [96]. In close analogy to lattice QED,
again using staggered fermions, the lattice QCD Hamil-
tonian takes the form
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Here we are using one “flavor” of staggered fermions with
mass m. Due to fermion doubling, in the continuum limit
this will give rise to multiple fermion species. We have
suppressed the color indices, which in a hopping term
would appear as ψ
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sents the color magnetic field. The color electric field is
described by the flux operators Lxy and Rxy, associated
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ate derivatives with respect to the matrix elements of Uxy.

788 C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimwww.ann-phys.org

Fermion 
mass

Fermion hopping term Energy of color 
electric field

Energy of color 
magnetic field

Kogut and Susskind formulation:

Gi
x| ({q(i)x })i = q(i)x | ({q(i)x })iGenerator of infinitesimal 

gauge transformation

Review
Article

Ann. Phys. (Berlin) 525, No. 10–11 (2013)

Suppressing the link index xy, the various operators obey
the commutation relations

[La, Lb] = 2i fabc Lc, [Ra, Rb] = 2i fabc Rc,

[La, Rb] = 0, [La, U] = −λaU, [Ra, U] = Uλa. (29)

Operators associated with different links commute
with each other. The Hermitean generators of SU(N)
obey the commutation relation [λa, λb] = 2i fabcλ

c, where
fabc are the structure constants of the SU(N) algebra
and Trλaλb = 2δab. By construction, the Hamiltonian
of Eq. (28) is gauge invariant, i.e. it commutes with
the infinitesimal generators of SU(N) gauge transfor-
mations

Ga
x = ψ i†

x λa
i jψ

j
x +

∑

k

(
La

x,x+k̂ + Ra
x−k̂,x

)
,

[
Ga

x, Gb
y

]
= 2iδxy fabcGc

x. (30)

Again, physical states |$〉 are gauge invariant and must
obey the Gauss law Ga

x|$〉 = 0. A general SU(N) gauge
transformation, %x = exp(iαa

xλ
a), is represented by the

unitary transformation V =
∏

x exp(iαa
x Ga

x), which acts
as

ψ ′
x = V †ψxV = %xψx, ψ†

x
′ = V †ψ†

x V = ψ†
x%

†
x,

U′
xy = V †Uxy V = %xUxy%

†
y. (31)

In Wilson’s lattice gauge theory, the commutation re-
lations of Eq. (29) are realized in an infinite-dimensional
Hilbert space per link. In fact, every link is analogous to
a quantum mechanical “particle” moving in the group
space SU(N), with L2

xy + R2
xy representing the corre-

sponding Laplacian.
In an SU(2) gauge theory the various operators can

be represented by harmonic oscillators [97] (also known
as prepotentials) using bosonic creation and annihila-
tion operators ai†

x,±k and ai
x,±k, which carry a color index

i ∈ {1, 2}. The bosonic operators are associated with the
left and right ends of a link and are labeled by a lattice
point x and a link direction ±k, and one can write

La
xy = ai†

x,+σ a
i ja

j
x,+, Ra

xy = ai†
y,−σ a

i ja
j
y,−,

Uxy = 1
Nxy

(
a2†

x,+ a1
x,+

−a1†
x,+ a2

x,+

) (
a1†

y,− a2†
y,−

a2
y,− −a1

y,−

)

= 1
Nxy

(
a2†

x,+a1†
y,− + a1

x,+a2
y,− a2†

x,+a2†
y,− − a1

x,+a1
y,−

−a1†
x,+a1†

y,− + a2
x,+a2

y,− −a1†
x,+a2†

y,− − a2
x,+a1

y,−

)

.

(32)

Here Nxy = ai†
x,+ai

x,+ = ai†
y,−ai

y,− counts the number of
bosons, which is the same at both ends of the link.
The link operator Uxy changes the number of bosons by
two, by either creating or annihilating a boson on each
end of a link. Since the link Hilbert space is infinite-
dimensional, the total number of bosons can be arbi-
trarily large. In SU(3) gauge theory the construction is
much more involved [98]. Instead of two, it involves four
species of colored bosons per link, which span a Hilbert
space that is larger than the one of the gauge theory. In
order to correct for this, the link operators are no longer
constructed as boson bilinears, but as polynomials of a
higher degree. Even then, the commutation relations of
Eq. (29) are satisfied only in the gauge theory subspace of
the bosonic Hilbert space, and it is not obvious how to re-
strict oneself to that subspace. While there are construc-
tions for quantum simulators using SU(2) prepotentials
[74, 75], it is difficult to imagine that the SU(3) prepoten-
tials of [98] can be implemented in ultracold matter.

Up to now, we have defined the theory on a lattice
with non-zero lattice spacing a, whose inverse 1

a serves as
an ultraviolet momentum cut-off. Ultimately, we want to
take the continuum limit a → 0. This is done by properly
adjusting the bare coupling constant g . We may fix the
overall energy scale by putting t = 1. When we set m = 0,
we are in the chiral limit of massless quarks, which will
lead to a massless Goldstone pion. The bare gauge cou-
pling g is then adjusted in order to take the continuum
limit. This can be done by considering any dimension-
ful physical quantity, for example, the nucleon mass. The
nucleon mass Mn = E1 − E0 is the energy difference be-
tween the ground states of HQCD in the baryon number
1 and 0 sectors. Let us consider the nucleon mass in lat-
tice units, i.e. Mna, as a function of g . Due to the prop-
erty of asymptotic freedom, in the g → 0 limit the nu-
cleon mass behaves as Mna ∼ exp(−β0/g 2), where β0 > 0
is the leading coefficient of the QCD β-function. Keeping
the physical quantity Mn fixed and sending g → 0, one
approaches the continuum limit a → 0. We have thus
traded the dimensionless bare coupling constant g for
a dimensionful physical scale — in this case Mn. In this
process of dimensional transmutation, the scale invari-
ance of the QCD Lagrangian in the massless chiral limit is
explicitly broken by the ultraviolet regulator 1

a . It should
be pointed out that massless QCD does not predict the
value of any dimensionful scale like the nucleon mass.
After all, the nucleon mass, e.g. in units of kilograms, re-
lies on a man-made convention, and essentially reduces
to the question how many protons and neutrons were
deposited near Paris, when the kilogram was defined a
long time ago. However, once an overall energy scale,
e.g. Mn, has been picked, QCD predicts the values of
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Hamiltonian formalism maybe more natural than the path integral formalism for quantum 
simulation/computation:
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FIG. 6. The number of states in the physical Hilbert space,
Nstates, within the KS (and LSH) formulation with PBC (a)
and OBC (b) is approximated by epN , and the coe�cient of
the lattice size, N , in the exponent is obtained from fits to the
N dependence of Nstates for several values of ⇤. The expo-
nents approach, with an exponential form, a fixed value, and
the empirical fit to this ⇤ dependence obtains the asymptotic
value of p denoted by the horizontal lines in the plots and
shown in the inset boxes. The uncertainty on these values is
estimated by variations in the fit values when each data point
is removed from the set, one at a time, and the remaining
points are refit. The numerical values associated with these
plots are listed in Appendix B.

the plot. Second, as expected, the number of states
grows exponentially with the system size at a fixed
cuto↵, as plotted in Fig. 5-(a). The growth, up
to constant factors and higher order terms in the
exponent, can be approximated by Nstate ⇠ e

pN .
The coe�cient of N in the exponent approaches a
constant value as a function of cuto↵, as shown in
Fig. 6-(a). This value can be obtained from a fit to
points shown in the plot, as depicted in the figure.
For moderate N values such that the higher-order
terms in the exponent are negligible, this p value
can be used to approximate the number of states
in the physical Hilbert space with PBC as ⇤ ! 1.

. For OBC, the number of states in the physical
Hilbert space grows as a function of ⇤ until it be-
comes a constant for ⇤ � N (⇤ � N+2✏0 for an ar-
bitrary ✏0), as depicted in Fig. 4-(b). The reason for
this behavior is that the J quantum number only
changes (by 1

2
) from the left to the right side of site

x if the site’s total fermionic occupation number is
equal to one. If the JR value at site x = 0 is set
to ✏0, it can become at most JL = ✏0 +N/2 at the
last site. Increasing the cuto↵ beyond this value
will not change the states present in the physical
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FIG. 7. The number of states in the physical Hilbert space,
Nstates, within the KS (and LSH) formulation with OBC is
approximated by eq⇤, and the coe�cient of the cuto↵ on the
electric-field excitations, ⇤(= 2Jmax), in the exponent is ob-
tained from fits to the ⇤ dependence of Nstates for several val-
ues of N . The exponents approach, with a exponential form,
a fixed value, and the empirical fit to this N dependence ob-
tains the asymptotic value of q denoted by the horizontal line
in the plot and shown in the inset box. The uncertainty on
this value is estimated by variations in the fit values when
each data point is removed from the set, one at a time, and
the remaining points are refit. The numerical values associ-
ated with these plots are listed in Appendix B.

Hilbert space. The growth of the number of states
to this saturation value at a fixed N can be approx-
imated by an exponential form, Nstates ⇠ e

q⇤. The
coe�cient of ⇤ in the exponent for various values
of N is plotted in Fig. 7 and is seen to asymptote
to a constant value at large N . The fit to this
asymptotic value is shown in the plot. This value
can be used to approximate the number of states
in the physical Hilbert space for an arbitrary large
N and any ⇤. Similarly, the dependence of the
number of states in the physical Hilbert space on
the lattice size can be approximated by an expo-
nential form, Nstate ⇠ e

pN , for a fixed cuto↵, and
up to constant factors and higher order terms in
the exponent. The coe�cient of N in the exponent
asymptotes to a constant value at large ⇤, as shown
in Fig. 6-(b).

. The size of the full Hilbert space before implement-
ing physical constraints can be approximated by

N
(full)

states
(N,⇤) =

2

44⇥
X

j

(2j + 1)2

3

5
N

, (68)

with PBC, where j = {0, 1

2
, 1, · · · , ⇤

2
}. To com-

pare this with the number of states in the physical
Hilbert space with PBC, one can again write the
lattice-size dependence of the number of states as
e
pN . The coe�cient of N in this exponent as a
function of ⇤ can be plotted for both the full and
physical Hilbert space, as is shown in Fig. 8. As is
evident, even for small values of the cuto↵, the full
Hilbert space grows much faster with the system’s
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Quantize                    operator in 
terms of the normal modes of the 
motion of the chain.
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Depends on intensity and phases of 
the lasers. Note that ideally ions can 
be addressed by individual lasers.
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Adiabatic elimination technique and the use of 
sideband transitions effectively couples two spins 
and is independent of phonon occupation.
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TWO-QUBIT ENTANGLING OPERATION

Cirac and Zoller, Phys.Rev.Lett.74, 4091 (1995), 
Sorenson and Molmer, Phys. Rev. A 62, 022311 (2000)
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with coupling:

Effective Hamiltonian

Zhang et al, Nature 551, 601–604 (2017).
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A TRAPPED-ION ANALOG SIMULATOR



Transverse-field Ising model with 
long-range interactions in 1+1D 
exhibits an effective confining 
potential among domain walls: 
the “mesons”!

ANOTHER EXAMPLE: SPIN MODELS AS PROTOTYPES OF QCD? CAN THEY REVEAL 
ENTANGLEMENT ASPECTS OF CONFINEMENT AND COLLISIONS?

Native Hamiltonian in a trapped-ion simulator!

Tan, Becker, Liu, Pagano, Collins, De, Feng, Kaplan, Kyprianidis, 
Lundgren, Morong, Whitsitt, Gorshkov, Monroe, arXiv:1912.11117 [quant-ph]

See also: Milsted, Liu, Preskill, Vidal, arXiv:2012.07243 [quant-ph].
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A TRAPPED-ION DIGITAL SIMULATOR

X̂

Ŷ

Ẑ

An individual addressing scheme 
for digital computation

A highly tunable analog simulator is achievable with this set up too: 
Teoh, Drygala, Melko, Islam arXiv:1910.02496 [quant-ph], Korenblit, 
Islam, Monroe et al, New Journal of Physics 14, 095024 (2012).
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Ẑ

An individual addressing scheme 
for digital computation

VQE for finding deuteron’s binding

Shehab et al, Phys. Rev. A 100, 062319 (2019)

C. Figgatt (2018)

A TRAPPED-ION DIGITAL SIMULATOR



Hamiltonian under which the system evolves 
respects some symmetries of the original theory 
and is implemented in an analog fashion.

ANOTHER EXAMPLE I: VARIATIONAL QUANTUM SIMULATION OF LATTICE SCHWINGER MODEL

Kokail et al, Nature 569, 355 (2019).

See alSo the VQE applied to calculation of neutron 
binding in Dumitrescu, McCaskey, Hagen, Jansen, Morris, 
Papenbrock, Pooser, Dean, Lougovski Phys. Rev. Lett. 120, 
210501 (2018)
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An enhanced individual addressing 
scheme for analog simulation

AN ADVANCED TRAPPED-ION ANALOG SIMULATOR

ZD, HAFEZI, MONROE, PAGANO, SEIF AND SHAW, Phys. Rev. R 2, 023015 (2020)
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An enhanced individual addressing 
scheme for analog simulation

ZD, HAFEZI, MONROE, PAGANO, SEIF AND SHAW, Phys. Rev. R 2, 023015 (2020)
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early times. This is achieved with |⌘
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When B
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(t), and ↵

(y)
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(t) in Eqs. (8) and (9)
develop an oscillatory time dependence but with a lin-
ear growth in the magnitude of its amplitude. These

terms are proportional to B
(i)
z �

(i)
y and B

(i)
z �

(i)
x . Assum-

ing that the magnetic field is comparable in size to the
e↵ective spin-spin couplings, such contaminating terms
do not severely impact the desired evolution as long as
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(i)
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⌦(i)
I
|, |⌘

(i)
II,m

⌦(i)
II
|. Unfortunately, this con-

dition limits the size of (e↵ective) magnetic fields that
can be studied in models considered below. Nonetheless,
a range of interesting possibilities can still be explored.

Under the conditions described above, the time-
evolution operator in Eq. (7) can be approximated as

U(t) ⇡ e
�iHefft, (11)
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As a result, the individual-addressing scheme proposed
here enables analog quantum simulations of a rather
generic Heisenberg spin model. The spin-spin coupling
matrices in Eq. (12) are derived from discussions above
(see also Appendix C), and read
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Here, RL = (�kL)2

2M is the recoil frequency of the ion given
the lasers L = I, II, III.

It is worth noting that despite the case of a usual
Molmer-Sorenson transition where the starting Hamil-
tonian is proportional to �x, the Magnus expansion
in the scheme described above is not cut o↵ at any
order in the Lamb-Dicke parameter, due to the non-
zero commutation of Pauli operators in Eqs. (3-6).
It is therefore important to ensure that not only����
⌘
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µI�!T
m

���� ,
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���� ⌧ 1 as stated before,
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���� ⌧ 1 for integer p � 2. This guar-

antees that contributions from the p
th-sideband transi-

tions are suppressed compared to the first-sideband tran-
sitions. These conditions are easier to satisfy for trans-
verse modes than the axial modes. This is because the
axial modes have lower frequencies, and their correspond-
ing Lamb-Dicke parameters are larger. Finally, one notes
that coherent operations on a single spin correspond to
the zeroth-order terms in Eq. (1) in the Lamb-Dicke limit,

and with �!
(i)
L

= !0. Hence, the laser frequencies ap-
plied must be far detuned from such “carrier transitions”
of the ions.

III. OPTIMIZED SPIN-SPIN HAMILTONIANS
IN AN ION TRAP: 1+1D SCHWINGER MODEL

A unique testbed for exploring theoretical and experi-
mental proposals for quantum simulations of gauge theo-
ries is the 1+1D QED, i.e., the Schwinger model. It is an
Abelian gauge theory, hence avoiding complexities of its
non-Abelian counterparts. It is also a low-dimensional
theory, allowing numerical and experimental studies of
its approximate dynamics with finite resources. Despite
these simplifications in the formulation, the theory ex-
hibits rich properties, similar to those seen in more com-
plex theories such as QCD. In particular, phenomena
such as confinement and spontaneous symmetry breaking
arise in the model. The spontaneous creation of electron-
positron pairs in the time evolution of the “vacuum”
exhibits a clear signature of such non-trivial dynamics.
Since the time evolution of quantum states is, in gen-
eral, a computationally intractable problem with classical
Monte Carlo methods, addressing such a problem using
a quantum simulation platform is of significant value, see
Refs. [8, 9] for digital implementations.
The strong-coupling dynamics of the Schwinger model

can be studied through non-perturbative LGT methods.
In the staggered formulation of Kogut and Susskind [89,
90], the (scaled) lattice Hamiltonian takes the form

H = �ix
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h
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where �n (�†
n
) is a one-component fermion field that

creates (annihilates) an electron on the odd site while
annihilates (creates) a positron on an even site. Due to
this distinction, there is a staggered mass term in the
Hamiltonian, with the fermion (scaled) mass µ. ✓n is
the U(1) gauge potential with the corresponding gauge
link e

i✓n originating at site n. The latter is introduced in
the Hamiltonian to render the fermion hopping (kinetic)
term gauge invariant. The pair creation and annihilation
in the theory originates from this term. The correspond-
ing electric field at site n is denoted as Ln (with the
operator relation [✓n, Lm] = i�n,m), which adds a contri-
bution to the Hamiltonian due to the energy stored in the
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Heisenberg model Hamiltonian can be obtained under certain conditions:
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I. The Schwinger Model Hamiltonian

In this document we will be providing the circuits required to implement the Trotter-
Suzuki prescription to the few-site 1-D Schwinger model with open boundary conditions, as
outlined in Martinez et al. The Trotterization circuit is written in the language of the natural
gates present in an ion-trap architecture, as outlined by Linke et al. The Schwinger model
Hamiltonian, after the gauge degrees of freedom have been rotated away can be written as
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spin systems by providing examples of relevant gauge
theories. Explicit scenarios for given ion-trap architec-
tures are straightforward to obtain, following optimiza-
tion strategies presented for the case of the Schwinger
model.

IV. ANALOG SIMULATIONS OF SYSTEMS IN
HIGHER DIMENSIONS WITH A 1D CHAIN OF

IONS

With a generic Heisenberg model and an e↵ective mag-
netic field engineered in Sec. II, it is clear that a wide
range of couplings among spins can be tailored, as was
demonstrated for the case of the Schwinger model. In
particular, as seen in Sec. III, the H

(↵↵) with ↵ = x, y, z

does not have to be necessarily nearest neighbor or of any
particular form, as the multi-frequency, multi-amplitude
scheme of this work allows an arbitrary Ji,j to be pro-
duced. This observation implies that spin systems in
higher spatial dimensions can be engineered as well, as
was also noted in Ref. [82]. One only needs to map the
points on a 2D or 3D lattice to a linear chain of ions along
with their corresponding couplings. Of course, with a
fixed number of ions in a given experiment, this means
that the finite-size e↵ects in the dynamics of the system
under study will be larger, as e.g., in the case of square
and cubic lattices the spatial extent of the system will be
N

1/2 and N
1/3, respectively. Nevertheless, this possibil-

ity implies that a linear quantum system can be used as a
platform for analog simulations of theories in any dimen-
sion, bringing the versatility of such an analog platform
closer to its digital counterpart.

A. 2+1D Abelian Chern-Simons theory coupled to
fermions

As an example of an interesting field theory in 2+1D,
consider the Chern-Simons theory coupled to fermions.
This theory is of broad impact on a range of problems
in theoretical physics, from the theory of the integer and
fractional quantum Hall e↵ects to knot theory and par-
ity anomalies in quantum field theory, see Ref. [93] for a
review. Since the theory is topological in the continuum,
the construction of a discretized counterpart of the theory
turned out to be non-trivial as a lattice has explicit refer-
ence to a given coordinate system and metric. However,
it has been shown [94, 95] that one can still formulate a
U(1) LGT that retains gauge invariance on arbitrary 2D
planar graphs, has no local excitations (hence is topo-
logical) and in the long-wavelength limit approaches the
Chern-Simons theory in the continuum. As is discussed
in Ref. [95], a lattice formulation of the Chern-Simons
theory is invaluable in investigations of fractional Chern
insulators that occur in given lattice geometries. As a
result, it is interesting to ask if a quantum-simulation
protocol for this theory can be devised on the simulating

platform of this work.
A known result [94] in the context of the generalized

Jordan-Wigner transformation in higher dimensions is
Fradkin’s proof of equivalence between the spin- 12 XY
model on a 2D Bravais lattice and a Chern-Simons theory
in 2+1D coupled to fermions, provided that the strength
of the Chern-Simons’ term in the Lagrangian density:

LCS = a
†(x)iD0a(x)�

X

j=1,2

h
a
†(x)eiAj(x)a(x+ n̂j)+

h.c.]�
✓

4
✏
µ⌫�

Aµ(x)F⌫�(x) (24)

is ✓ = 1
2⇡ [94]. Here, time is assumed to be continuous

while spatial coordinates are defined on a square lattice,
i.e., x = (t,n) where n is a vector whose components are
integer multiples of the lattice spacing.12 µ, ⌫ = 0, 1, 2
with the zeroth direction being the time direction, a is
a complex spinless fermion field, Aµ is the gauge field,
Dµ = @µ � iAµ is the covariant derivative, Fµ⌫ is the
field-strength tensor: Fµ⌫ = @µA⌫ � @⌫Aµ, and ✏

µ⌫� is
the Levi-Civita symbol. Note that the A0 field does not
have any dynamics and can be set equal to zero with
the choice of a temporal gauge. The physical sector of
the theory, i.e., states that satisfy the Gauss’s law, can
be identified from the condition �S

�A0
= 0, where S is

the action. These states then correspond to those for
which a

†(x)a(x) � ✓✏ij [Aj(x+ n̂i)�Aj(x)] = 0. It is
also clear that the Hamiltonian of the theory vanishes in
the absence of matter fields, which is a desired feature of
the topological theory. In the presence of matter fields,
i.e., the Hamiltonian corresponding to Eq. (24) is

HCS =
X

n

X

j=1,2

h
a
†(n)eiAj(n)

a(n+ n̂j) + h.c.
i
.(25)

Note that the time dependence of the fields is now im-
plicit considering the Hamiltonian equations of motion.
As is shown in Ref. [94], the gauge links can be elimi-
nated from the Hamiltonian with the use of Gauss’s law,
at the cost of changing the equal-time commutation re-
lation of fermions. This is in fact a great advantage since
when ✓ = 1

2⇡ (or in general when 1
2✓ is an odd multi-

ple of ⇡), the new commutation relations are those of
hardcore bosons, i.e., the spin- 12 matrices. As a result,
this procedure can be realized as a 2D generalization of
the familiar Jordan-Wigner transformation. Explicitly,
by performing the transformations a ! e

i�
a ⌘ ã and

a
†
! a

†
e
�i�

⌘ ã
†, where Aj(n) ⌘ �j(n + n̂i) � �j(n),

one arrives at

HCS =
X

n

X

j=1,2

h
�
(n)
+ �

(n+n̂j)
� + h.c.

i
, (26)

where the following identifications are assumed: �
(n)
+ =

ã
†(n), �(n)

� = ã(n), and �
(n)
z = 1�2a†(n)a(n). Eq. (26)

12 For a general formulation on 2D planar lattices, see Refs. [95, 96].
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HOW OTHER GAUGE THEORIES? OR NUCLEAR 
HAMILTONIAN? 

CAN WE EXPAND THE TRAPPED-ION TOOLKIT 
EVEN FURTHER FOR ANALOG SIMULATIONS OF 

NUCLEAR AND HIGH-ENERGY PHYSICS?
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I) MORE COMPLEX SPIN INTERACTIONS?



|ci

Adiabatic elimination technique 
for a four-level system

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0

|ai |bi

|ci, |di

0 100 200 300 400 500 600

0.0

0.2

0.4

0.6

0.8

1.0
g1 = g3 = g2 = �c = �d

g1 = g3 = 0.05g2 = �c = ��d



A BICHROMATIC LASER PLUS A MONOCHROMATIC LASER OFF-TUNED FROM 
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See also: Bermudez et al, 
Pays.Rev.A79, 060303 R (2009)

�

!m

!#"

| """i

| #""i

| ##"i

| ###i

| "##i

| ""#i

| #"#i

| "#"i
�0

�

�0

g,! � 2!m � �

g,! + !m + �0

g0,! + !m + � � �0

18 paths contribute!                     eliminates dependence 
on phonon occupation and makes it very robust.

� = 2�0

Can augment it with multi-level ion simulators in 
Low, White, Cox, Day, Senko, Phys. Rev. Research 2, 033128 (2020)



Micro trap technology…

II) LEVERAGING PHONON MODES FOR SIMULATING GAUGE DEGREES OF FREEDOM?

2

Ion 1 Ion 3Ion 2

z

x

blockade
 

hopping
 

 
Hopping / Blockade

Ion 1

Ion 2

Ion 3

Time

Preparation Measurement

SBC

SBC

SBC

Detect

Detect

Detect

hopping
 

a)

b)

Blockade

Blockade

Figure 1. Experimental system for observing hopping of
a single phonon excitation between local transverse motional
modes along the X-direction. (a) The local phonon frequen-
cies are represented by Êi in a frame rotating at the transverse
common mode frequency Êx, and Ÿjk is the phonon hopping
strength between modes j and k. Phonon blockades on indi-
vidual sites (here ion 3) is implemented by driving resonant
red sideband transitions with strength �r

j that gives rise to
an energy splitting between the ground state |g, 0Í and the
first excited polaritonic states |±, 1Í. (b) An experimental
sequence where each ion is prepared in the ground state of
spin and motion |g, 0Í using Raman sideband cooling (SBC).
A single phonon is excited on ion 2 using fi-pulses at the blue
sideband (fib) and carrier (fi) transitions. Local phonon block-
ades are applied using resonant red sideband pulses (shown
in red). The hopping duration · is varied to observe the dy-
namics of local phonon occupancy (0 or 1 phonon) measured
by first projecting it to the internal spin states (|gÍ or |eÍ)
of each ion using red sideband fi-pulses (fir) followed by the
detection of state-dependent fluorescence from each ion using
a photomultiplier tube array.

sented by the blockade Hamiltonian as

Hb =
ÿ

j

�j |eÍjÈe|j +
ÿ

j

�r

j

2 (‡+
j aj + ‡

≠
j a

†
j
). (2)

Here, the spin-1/2 ‘ground’ and ‘excited’ states of the
j≠th ion are represented by |gÍj and |eÍj , respectively,
with energy splitting ÊHF , and spin raising and lowering
operators ‡

+
j and ‡

≠
j . A local motional red sideband is

driven at a Rabi frequency �r

j and detuned from reso-
nance by �j .

Phonon blockades are applied on individual sites that
have ions prepared in the ground state of spin and mo-
tion |g, 0Í, where the second index denotes the local mode
phonon number. Upon applying the Jaynes-Cummings
interaction at resonance (�j = 0), a maximal energy
splitting of |Êj ± �r

j/2| occurs between |g, 0Í and the
next excited polaritonic states |±, 1Í. This energy cost
suppresses phonons from entering the targeted sites and
thereby creates a blockade (see Fig. 1a). This scheme
is analogous to implementing photon blockades using
single-atom cavity QED systems [18].

The experiment consists of a linear chain of three
171Yb+ions, each with an internal spin defined by a pair
of hyperfine ‘clock’ states as |gÍ = |F = 0, mF = 0Í
and |eÍ = |F = 1, mF = 0Í of the 2S1/2 electronic
ground level with a hyperfine energy splitting of ÊHF =
2fi ◊ 12.642812 GHz [19]. Here, F and mF denote the
quantum numbers associated with the total atomic an-
gular momentum and its projection along the quantiza-
tion axis defined by an applied magnetic field of 5.2 G.
The external motion of the trapped ions is defined by
a linear rf-Paul trap with transverse (X,Y) and axial
(Z) harmonic confinement at frequencies {Êx, Êy, Êz} =
2fi ◊ {3.10, 2.85, 0.15} MHz such that the ion chain is
aligned along Z with a distance of dj,j+1 = 10.1(2) µm
between adjacent ions. During an experiment, we excite
local phonons in the transverse modes along X, which
can then hop between the ion sites. The inherent hop-
ping rates are approximately Ÿj,j+1 ¥ 2fi ◊ 3 kHz and
Ÿj,j+2 ¥ Ÿj,j+1/8, respectively. The combined e�ect of
the transverse (X) harmonic confinement and repulsion
between ions (determined by djk) define the position-
dependent local mode frequency shifts {Êj}. Fig. 1a
represents the local modes with frequencies {Êj} in a
frame rotating at the common mode frequency Êx.

Coherent control of the spin and motion of each ion
is implemented with stimulated Raman transitions using
a 355 nm mode-locked laser [20], where pairs of Raman
beams couple the spin of an ion to its transverse motion
[3]. A global beam illuminates the entire chain, and a
counterpropagating array of individual addressing beams
is focused to a waist of ¥ 1µm at each ion. The beat note
between the Raman beams can then be tuned to ÊHF to
implement a “carrier” transition for coherent spin flips, or
tuned to ÊHF ±(Êx +Êj) to drive a blue- or red-sideband
transition involving local phonon modes. The individual
addressing beams are modulated independently using a
multi-channel acousto-optic modulator [21], each chan-
nel of which is driven by a separate arbitrary waveform
generator [22]. The wave vector di�erence �k̄ between
Raman beams has a projection along both the X and Y
directions of motion. Each transverse mode can then be
addressed by tuning near their sideband transitions. In
order to spectrally resolve each local mode, we choose
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Figure 2. The evolution of local phonon occupancies with initial single-phonon excitations on ions 1, 2, and 3 as shown by
the shaded orange, green, and blue circles, respectively. In the absence of a blockade (a-c), the dynamics are governed by
the hopping strengths {Ÿjk} and the local mode frequencies {Êj}. The corresponding dynamics in the presence of a blockade
(d-g) indicate hopping suppression, which is determined by the blockade strength {�r

j }. The theoretical plots are obtained by
fitting a Jaynes-Cummings Hubbard model (Hamiltonian in Eq. 1 and 2) with free parameters {�r

j }, {Êj} and {Ÿjk} using all
evolution data sets collectively. Error bars represent statistical uncertainties of 2‡.

sideband Rabi frequencies �r

j , �b

j < |Êx ≠ Êy|, while also
satisfying |Êj | π |Êx ≠ Êy| to prevent crosstalk between
the modes.

A typical experimental sequence, as shown in Fig. 1b,
starts with the preparation of each ion in state |g, 0Í by
Doppler cooling and subsequent Raman sideband cooling
of each of the transverse modes. A single phonon excita-
tion is introduced at a single site by resonantly driving
a blue-sideband and carrier fi≠pulse to prepare the state
|g, 1Í. In order to minimize the e�ect of hopping during
this process, the sideband and carrier fi≠pulses are kept
short (¥ 10 µs and ¥ 1 µs, respectively). Phonon block-
ades are applied to particular ions, initially prepared in
the |g, 0Í state, by resonantly driving the red-sidebands of
their respective local modes. Finally, the single phonon
occupancy denoted by states |g, 0Í and |g, 1Í is measured
at each site using a red-sideband fi≠pulse on each ion,
which coherently projects it to spin states |gÍ and |eÍ,
respectively. The spin-dependent fluorescence can then
be detected using a multi-channel photomultiplier tube,
thereby measuring a binary phonon occupancy of 0 or 1
for each site [3, 19].

Figure 2 shows the hopping dynamics. During free
hopping, a single excitation is observed to hop predomi-
nantly to the neighboring site. The extent of hopping is
indicated by the amplitude of the oscillations in phonon
occupancy. This is determined by the strength of hopping
Ÿjk relative to the energy splitting between local modes

Parameter Fitted value Measured value

Ê12 11.58 —
Ê23 7.36 —
Ÿ12 2.90 3.27(19)
Ÿ23 2.96 3.36(20)
�r

1 39.7 43.1(16)
�r

2 45.9 47.6(14)
�r

3 46.3 46.0(19)

Table I. Observed experimental parameters relevant to hop-
ping and the blockade in units of 2fi◊kHz. The values ob-
tained from fits to the hopping data (Fig.2) are compared
with those obtained from direct measurement. The mea-
sured hopping rate Ÿij is obtained from inter-ion distances
{d12, d23} = {10.1(2), 10.0(2)}µm, where the systematic error
is due to uncertainty in dij . The measured red-sideband Rabi
frequency is directly obtained from sideband spectroscopy
(see Fig.S1). The local mode frequencies measured from side-
band spectroscopy are not given due to large Stark shifts that
vary between experimental runs with beam alignment [23].

Êjk = Êj ≠ Êk. We observe di�erent hopping rates be-
tween ions 1 and 2 compared to that between 2 and 3,
which indicates an asymmetry in the local mode energy
di�erences, |Ê12| ”= |Ê23|. This is likely due to a sta-
ble non-linearity in the transverse confinement of the ion
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Figure 2. The evolution of local phonon occupancies with initial single-phonon excitations on ions 1, 2, and 3 as shown by
the shaded orange, green, and blue circles, respectively. In the absence of a blockade (a-c), the dynamics are governed by
the hopping strengths {Ÿjk} and the local mode frequencies {Êj}. The corresponding dynamics in the presence of a blockade
(d-g) indicate hopping suppression, which is determined by the blockade strength {�r

j }. The theoretical plots are obtained by
fitting a Jaynes-Cummings Hubbard model (Hamiltonian in Eq. 1 and 2) with free parameters {�r

j }, {Êj} and {Ÿjk} using all
evolution data sets collectively. Error bars represent statistical uncertainties of 2‡.

sideband Rabi frequencies �r

j , �b

j < |Êx ≠ Êy|, while also
satisfying |Êj | π |Êx ≠ Êy| to prevent crosstalk between
the modes.

A typical experimental sequence, as shown in Fig. 1b,
starts with the preparation of each ion in state |g, 0Í by
Doppler cooling and subsequent Raman sideband cooling
of each of the transverse modes. A single phonon excita-
tion is introduced at a single site by resonantly driving
a blue-sideband and carrier fi≠pulse to prepare the state
|g, 1Í. In order to minimize the e�ect of hopping during
this process, the sideband and carrier fi≠pulses are kept
short (¥ 10 µs and ¥ 1 µs, respectively). Phonon block-
ades are applied to particular ions, initially prepared in
the |g, 0Í state, by resonantly driving the red-sidebands of
their respective local modes. Finally, the single phonon
occupancy denoted by states |g, 0Í and |g, 1Í is measured
at each site using a red-sideband fi≠pulse on each ion,
which coherently projects it to spin states |gÍ and |eÍ,
respectively. The spin-dependent fluorescence can then
be detected using a multi-channel photomultiplier tube,
thereby measuring a binary phonon occupancy of 0 or 1
for each site [3, 19].

Figure 2 shows the hopping dynamics. During free
hopping, a single excitation is observed to hop predomi-
nantly to the neighboring site. The extent of hopping is
indicated by the amplitude of the oscillations in phonon
occupancy. This is determined by the strength of hopping
Ÿjk relative to the energy splitting between local modes

Parameter Fitted value Measured value

Ê12 11.58 —
Ê23 7.36 —
Ÿ12 2.90 3.27(19)
Ÿ23 2.96 3.36(20)
�r

1 39.7 43.1(16)
�r

2 45.9 47.6(14)
�r

3 46.3 46.0(19)

Table I. Observed experimental parameters relevant to hop-
ping and the blockade in units of 2fi◊kHz. The values ob-
tained from fits to the hopping data (Fig.2) are compared
with those obtained from direct measurement. The mea-
sured hopping rate Ÿij is obtained from inter-ion distances
{d12, d23} = {10.1(2), 10.0(2)}µm, where the systematic error
is due to uncertainty in dij . The measured red-sideband Rabi
frequency is directly obtained from sideband spectroscopy
(see Fig.S1). The local mode frequencies measured from side-
band spectroscopy are not given due to large Stark shifts that
vary between experimental runs with beam alignment [23].

Êjk = Êj ≠ Êk. We observe di�erent hopping rates be-
tween ions 1 and 2 compared to that between 2 and 3,
which indicates an asymmetry in the local mode energy
di�erences, |Ê12| ”= |Ê23|. This is likely due to a sta-
ble non-linearity in the transverse confinement of the ion

…or new ideas based on pinned ions with optical 
tweezers:

Or simply manipulate phonons on a shorter 
time scale than effective spin interactions.

Debnath et al, Phys. Rev. Lett. 120, 073001 (2018).

Yang et al, Phys. Rev. A 94, 052321 (2016).

Olsacher et al, PRX Quantum 1, 020316 (2020).



ATOMS AND IONS AS ANALOG QUANTUM 
SIMULATORS OF LATTICE GAUGE THEORIES?

Nature 574, 215-218 (2019).



An optical lattice is an artificial crystal created by focused laser beams…

COLD-ATOM QUANTUM SIMULATORS 101

Atoms in optical lattices

Theory:  Jaksch et al. PRL (1998)

Experiment:  Kasevich et al., Science (2001);
Greiner et al., Nature (2001);
Phillips et al., J. Physics B (2002)       
Esslinger et al., PRL (2004);
and many more …

…where either fermionic or bosonic atoms or a mixture of both can be trapped.

Many variants of this setup exists, including super-lattices, and Rydberg atom arrays 
in optical tweezers, etc, cable of simulating Hubbard model, Ising model, and simple lattice 
gauge theories.

Effective microscopic Hamiltonian:

Quantum simulations with ultracold atoms

Antiferromagnetic and 
superconducting Tc  
of the order of 100 K

Atoms in optical lattice

Antiferromagnetism and 
pairing at nano Kelvin 
temperatures

Same microscopic modelEugene Demler lectures, Harvard University.



An array of programmable Rydberg atoms…

EXAMPLE: PROBING MANY-BODY DYNAMICS ON A 51-ATOM QUANTUM SIMULATOR

Bernien et al, Nature 551, 579-584 (2017). 2
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FIG. 1: Experimental platform. a, Individual 87Rb atoms
are trapped using optical tweezers (vertical red beams) and
arranged into defect-free arrays. Coherent interactions Vij

between the atoms (arrows) are enabled by exciting them
(horizontal blue and red beams) to a Rydberg state, with
strength ⌦ and detuning � (inset). b, A two-photon process
couples the ground state |gi =

��5S1/2, F = 2,mF = �2
↵
to

the Rydberg state |ri =
��70S1/2, J = 1/2,mJ = �1/2

↵
via an

intermediate state |ei =
��6P3/2, F = 3,mF = �3

↵
with detun-

ing �, using circularly polarized 420 nm and 1013 nm lasers
with single-photon Rabi frequencies of ⌦B and ⌦R, respec-
tively. Typical experimental values are � ⇡ 2⇡ ⇥ 560MHz �

⌦B ,⌦R ⇡ 2⇡⇥60, 36MHz. c, The experimental protocol con-
sists of loading the atoms into a tweezer array (1) and rear-
ranging them into a preprogrammed configuration (2). After
this, the system evolves under U(t) with tunable parameters
�(t),⌦(t) and Vij . This evolution can be implemented in
parallel on several non-interacting sub-systems (3). We then
detect the final state using fluorescence imaging (4). Atoms
in state |gi remain trapped, whereas atoms in state |ri are
ejected from the trap and detected as the absence of fluo-
rescence (indicated with red circles). d, For resonant driving
(� = 0), isolated atoms (blue circles) display Rabi oscillations
between |gi and |ri. Arranging the atoms into fully blockaded
clusters of N = 2 (green circles) and N = 3 (red circles) atoms
results in only one excitation being shared between the atoms
in the cluster, while the Rabi frequency is enhanced by

p
N .

The probability of detecting more than one excitation in the
cluster is  5%. Error bars indicate 68% confidence intervals
(CI) and are smaller than the marker size.

The experimental protocol that we implement is de-
picted in Fig. 1c (see also Extended Data Fig. 1). First,
atoms are loaded from a magneto-optical trap into a
tweezer array created by an acousto-optic deflector. We
then use a measurement and feedback procedure that
eliminates the entropy associated with the probabilis-
tic trap loading and results in the rapid production of
defect-free arrays with more than 50 laser-cooled atoms,
as described previously [26]. These atoms are prepared in
a preprogrammed spatial configuration in a well-defined
internal ground state |gi (Methods). We then turn o↵
the traps and let the system evolve under the unitary
time evolution U(⌦,�, t), which is realized by coupling
the atoms to the Rydberg state |ri =

��70S1/2

↵
with laser

light along the array axis (Fig. 1a). The final states of
individual atoms are detected by turning the traps back
on, and imaging the recaptured ground-state atoms via
atomic fluorescence; the anti-trapped Rydberg atoms are
ejected. The atomic motion in the absence of traps limits
the time window for exploring coherent dynamics. For a
typical sequence duration of about 1µs, the probability
of atom loss is less than 1% (see Extended Data Fig. 2).

The strong, coherent interactions between Rydberg
atoms provide an e↵ective coherent constraint that pre-
vents simultaneous excitation of nearby atoms into Ryd-
berg states. This is the essence of the so-called Rydberg
blockade [15], demonstrated in Fig. 1d. When two atoms
are su�ciently close that their Rydberg-Rydberg interac-
tions Vij exceed the e↵ective Rabi frequency ⌦, multiple
Rydberg excitations are suppressed. This defines the Ry-
dberg blockade radius, Rb, at which Vij = ⌦ (Rb = 9µm
for |ri =

��70S1/2

↵
and ⌦ = 2⇡ ⇥ 2MHz, as used here).

In the case of resonant driving of atoms separated by
a = 23µm, we observe Rabi oscillations associated with
non-interacting atoms (blue curve in Fig. 1d). However,
the dynamics changes substantially as we bring multiple
atoms close to each other (a = 2.87µm < Rb). In this
case, we observe Rabi oscillations between the ground
state and a collective state with exactly one excitation
(W = (1/

p
N)

P
i |g1...ri...gN i) with the characteristic

p
N -scaling of the collective Rabi frequency [24, 28, 29].

These observations enable us to quantify the coherence
properties of our system (see Methods and Extended
Data Fig. 3). In particular, the amplitude of Rabi oscil-
lations in Fig. 1d is limited mostly by the state detection
fidelity (93% for |ri and ⇠ 98% for |gi; Methods). The
individual Rabi frequencies are controlled to better than
3% across the array, whereas the coherence time is lim-
ited ultimately by the small probability of spontaneous
emission from the intermediate state |ei during the laser
pulse (scattering rate 0.022/µs; Methods).
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FIG. 6: Emergent oscillations in many-body dynamics after sudden quench. a, Schematic sequence (top, showing
�(t)) involves adiabatic preparation and then a sudden quench to single-atom resonance. The single-atom trajectories are
shown (bottom) for a 9 atom cluster, with the colour scale indicating the Rydberg probability. We observe that the initial
crystal with a Rydberg excitation at every odd trap site (left inset) collapses after the quench, and a crystal with an excitation
at every even site builds up (middle inset). At a later time the initial crystal revives with a frequency of ⌦/1.38(1) (right
inset). Error bars denote 68% confidence intervals. b, Domain-wall density after the quench. The dynamics decay slowly on
a timescale of 0.88 µs. Shaded region represents the standard error of the mean. Solid blue line is a fully coherent matrix
product state (MPS) simulation with bond dimension D = 256, taking into account measurement fidelity. c, Toy model of
non-interacting dimers (see main text). Blue (white) circles represent atoms in state |gi (|ri). d, Numerical calculations of the
dynamics after a quench, starting from an ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall density
(red) and the growth of entanglement entropy of the half chain (13 atoms; blue) are shown as functions of time after the
quench. Dashed lines take into account only nearest-neighbour (NN) blockade constraint. Solid lines correspond to the full
1/R6 interaction potential.

quench dynamics of Rydberg crystals initially prepared
deep in the Z2 ordered phase, as we change the detun-
ing �(t) suddenly to the single-atom resonance � = 0
(Fig. 6a). After such a quench, we observe oscillations of
many-body states between the initial crystal and a com-
plementary crystal in which each internal atomic state is
inverted (Fig. 6a). Remarkably, we find that these oscil-
lations are robust, persisting over several periods with a
frequency that is largely independent of the system size.
This is confirmed by measuring the dynamics of the do-
main wall density, which signals the appearance and dis-
appearance of the crystalline states, shown in Fig. 6b for
arrays of 9 and 51 atoms. We find that the initial crystal
repeatedly revives with a period that is slower by a fac-
tor of 1.38(1) (error denotes the uncertainty in the fit)
compared to the Rabi-oscillation period for independent,
non-interacting atoms.

DISCUSSION

Several important features of these experimental obser-
vations should be noted. First, the Z2 ordered state can-
not be characterized by a simple thermal ensemble. More
specifically, if an e↵ective temperature is estimated based
on the experimentally determined, corrected domain wall
density of 0.1, then the corresponding thermal ensemble
predicts a correlation length ⇠th = 4.48(3), which is sig-
nificantly longer than the measured value ⇠ = 3.03(6)
(Methods). Such a discrepancy is also reflected in dis-
tinct probability distributions for the number of domain
walls (Fig. 5c). These observations suggest that the sys-
tem does not thermalize within the timescale of the Z2

state preparation.

Even more striking is the coherent and persistent oscil-
lation of the crystalline order after the quantum quench.
With respect to the quenched Hamiltonian (� = 0), the
energy density of our Z2 ordered state corresponds to
that of an infinite-temperature ensemble within the man-
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FIG. 6: Emergent oscillations in many-body dynamics after sudden quench. a, Schematic sequence (top, showing
�(t)) involves adiabatic preparation and then a sudden quench to single-atom resonance. The single-atom trajectories are
shown (bottom) for a 9 atom cluster, with the colour scale indicating the Rydberg probability. We observe that the initial
crystal with a Rydberg excitation at every odd trap site (left inset) collapses after the quench, and a crystal with an excitation
at every even site builds up (middle inset). At a later time the initial crystal revives with a frequency of ⌦/1.38(1) (right
inset). Error bars denote 68% confidence intervals. b, Domain-wall density after the quench. The dynamics decay slowly on
a timescale of 0.88 µs. Shaded region represents the standard error of the mean. Solid blue line is a fully coherent matrix
product state (MPS) simulation with bond dimension D = 256, taking into account measurement fidelity. c, Toy model of
non-interacting dimers (see main text). Blue (white) circles represent atoms in state |gi (|ri). d, Numerical calculations of the
dynamics after a quench, starting from an ideal 25-atom crystal, obtained from exact diagonalization. Domain-wall density
(red) and the growth of entanglement entropy of the half chain (13 atoms; blue) are shown as functions of time after the
quench. Dashed lines take into account only nearest-neighbour (NN) blockade constraint. Solid lines correspond to the full
1/R6 interaction potential.

quench dynamics of Rydberg crystals initially prepared
deep in the Z2 ordered phase, as we change the detun-
ing �(t) suddenly to the single-atom resonance � = 0
(Fig. 6a). After such a quench, we observe oscillations of
many-body states between the initial crystal and a com-
plementary crystal in which each internal atomic state is
inverted (Fig. 6a). Remarkably, we find that these oscil-
lations are robust, persisting over several periods with a
frequency that is largely independent of the system size.
This is confirmed by measuring the dynamics of the do-
main wall density, which signals the appearance and dis-
appearance of the crystalline states, shown in Fig. 6b for
arrays of 9 and 51 atoms. We find that the initial crystal
repeatedly revives with a period that is slower by a fac-
tor of 1.38(1) (error denotes the uncertainty in the fit)
compared to the Rabi-oscillation period for independent,
non-interacting atoms.

DISCUSSION

Several important features of these experimental obser-
vations should be noted. First, the Z2 ordered state can-
not be characterized by a simple thermal ensemble. More
specifically, if an e↵ective temperature is estimated based
on the experimentally determined, corrected domain wall
density of 0.1, then the corresponding thermal ensemble
predicts a correlation length ⇠th = 4.48(3), which is sig-
nificantly longer than the measured value ⇠ = 3.03(6)
(Methods). Such a discrepancy is also reflected in dis-
tinct probability distributions for the number of domain
walls (Fig. 5c). These observations suggest that the sys-
tem does not thermalize within the timescale of the Z2

state preparation.

Even more striking is the coherent and persistent oscil-
lation of the crystalline order after the quantum quench.
With respect to the quenched Hamiltonian (� = 0), the
energy density of our Z2 ordered state corresponds to
that of an infinite-temperature ensemble within the man-

…can simulate the quenched dynamics of a constrained quantum-many body system.



4

FIG. 3: Density-density correlation. (a) Left: Idealized
sketches of the initial and final state. The domain length of
the final state equals to the distance between two unconverted
atoms, which are removed from the system before measure-
ment. Right: Measured interference patterns in initial and
final state (averaged over 523 and 1729 images, respectively).
The x-lattice defining the 1D chains is tilted by 4� relative to
the imaging plane. (b) Single-pixel sections along the x direc-
tion through the center of the patterns in a. In the final state,
additional peaks at ±0.5~k appear, indicating the emergence
of a new ordering.

J/U is ramped from 0.014 up to 0.065 and back to 0.019.
Simultaneously, we linearly lower the z-lattice potential
to ramp the on-site interaction U from 1.82(1) kHz to
1.35(1) kHz. This ramp corresponds to driving the sys-
tem from a large and negative m, through its critical
point at m ⇠ 0, to a large and positive value deep within
the C/P-broken phase.

To probe the system dynamics, we ramp up the lattice
barriers after evolution time t and extract the probabil-

ity distributions p
(m/g)
j (n) of the occupation number n.

With our optical resolution of ⇠1 µm, in situ observables
average the signal over a small region around site j. Our
measurements distinguish between even matter sites (m)
and odd gauge-field sites (g). We illustrate the procedure

for p(g)j (n). To extract it for n  3, we combine the three
schemes sketched in Fig. 2a (see Methods for a detailed

translation of (i)-(iii) to the p(m/g)
j (n)). (i) The mean oc-

cupation of gauge-field sites is recorded by in situ absorp-
tion imaging after applying a site-selective spin flip in the

superlattice, which gives n̄
(g) =

P
n np

(g)

j (n) with natu-
ral numbers n. (ii) We use a photoassociation (PA) laser
to project the occupancy into odd or even parity. Unlike
selecting out doublons via Feshbach resonances [25, 26],
the PA-excited molecule decays spontaneously and gains
kinetic energy to escape from the trap, with which the

residual atomic density is n̄
(g)

c =
P

n mod2(n)p
(g)

j (n).
(iii) A further engineering of atoms in DWs allows us to
measure the probabilities of occupancies larger than two.
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FIG. 4: Fulfillment of Gauss’s law. (a) Correlated mea-
surements detect gauge-invariant states |...nj�1njnj+1...i, j
even, within gauge-matter-gauge three-site units. For prob-
ing |...010...i, we first flip the hyperfine levels of the atoms
on odd sites. Then, we change the superlattice into two
kinds of DW structures and monitor the tunneling of the
middle atoms. For |...002...i and |...200...i, we split the dou-
blons into two sites and mark them by the hyperfine lev-
els. Their state populations correlate to the oscillation am-
plitudes of tunneling dynamics. (b) From the probabilities
of the gauge-invariant states, we extract the gauge violation
✏(t) = 1 �

�
p|...010...i + p|...002...i + p|...200...i

�
. While the in-

version between the Fock states after the phase transition is
stronger in the ideal QLM (exact numerics, orange and blue
curves), a high level of gauge invariance is retained through-
out. The experimental results are in quantitative agreement
with t-DMRG calculations for our isolated Bose–Hubbard sys-
tem (red curve).

We first clean the matter sites and then split the atoms
into DWs. After a subsequent parity projection via il-
lumination with PA light, the remaining atomic density

is n̄
(g)

c + 2p(g)j (2). From the population, we find that
high-energy excitations, such as n = 3, are negligible
throughout our experiment.

As the data for p(m/g)
j (n) in Fig. 2b-c shows, after the

ramp through the phase transition, on average 80(3)%
of the atoms have left the even sites and 39(2)% of dou-
ble occupancy is observed on the odd sites (we checked
the coherence and reversibility of the process by ramp-
ing back from the final state, see Methods). This cor-
responds to the annihilation of 78(5)% of particle–anti-

Schwinger model within quantum link model 
formulation…

…mapped to an atomic Hubbard simulator:

Gauss’s law violating effects are suppressed:

EXAMPLE: OBSERVATION OF GAUGE INVARIANCE IN A 71-SITE BOSE-HUBBARD QUANTUM SIMULATOR

Yang et al, Nature 587 (2020) 7834, 392-396.



In the electric-field basis, non-trivial interactions are:

EXAMPLE: WHAT ABOUT NON-ABELIAN SYMMETRIES? SLOW BUT STEADY PROGRESS.

Some non-Abelian gauge theory proposals:
Zohar, Cirac, Reznik, Phys. Rev. Lett. 110, 125304 
(2013), Phys. Rev. A 88 023617 (2013), Rep. Prog. Phys. 
79, 014401 (2016).
González Cuadra, Zohar, Cirac, New J. Phys. 19 063038 
(2017).
Dasgupta and Raychowdhury, arXiv:2009.13969 [hep-lat].

• Links  l atomic scattering : gauge invariance is a fundamental symmetry

• Plaquettesl gauge invariant links l virtual loops of ancillary fermions.

E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. Lett. 110, 125304 (2013)
E. Zohar, J. I. Cirac, B. Reznik, Phys. Rev. A 88 023617 (2013)
E. Zohar, J. I. Cirac, B. Reznik, Rep. Prog. Phys. 79, 014401 (2016)
D. González Cuadra, E. Zohar, J. I. Cirac, New J. Phys. 19 063038 (2017)

Analog Approach II:
Atomic Symmetries Æ Local Gauge Invariance

Atomic symmetry Æ Gauge Invariance
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Analog Approach II:
Atomic Symmetries Æ Local Gauge Invariance

A few proposals are developed including one based 
on cold Bose-Fermi mixture in optical lattices…

e.g.,

…where gauge invariance is inherent in the local angular 
momentum conservation in scattering processes.

• Links  l atomic scattering : gauge invariance is a fundamental symmetry

• Plaquettesl gauge invariant links l virtual loops of ancillary fermions.
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EXAMPLE I: QUANTUM CHEMISTRY VS. NP IN ANALOG SIMULATIONS

Long-range interactions between electrons mediated 
with Mott insulator spin excitations. Already challenging.

Effective potential

How about analog schemes for nuclear Hamiltonian 
with more complex interactions?

Or in the language of effective field theories:

Argüello-Luengo, González-Tudela, Shi, Zoller, 
Cirac, Nature 574, 215-218 (2019)

?
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Proton-proton fusion and tritium �-decay from lattice quantum chromodynamics

Martin J. Savage,1, 2 Phiala E. Shanahan,3, 2 Brian C. Tiburzi,4, 5, 6, 2 Michael L. Wagman,7, 2 Frank Winter,8

Silas R. Beane,7, 2 Emmanuel Chang,1 Zohreh Davoudi,3, 2 William Detmold,3, 2 and Kostas Orginos9, 8
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The nuclear matrix element determining the pp ! de+⌫ fusion cross section and the Gamow-Teller
matrix element contributing to tritium �-decay are calculated with lattice Quantum Chromodynam-
ics (QCD) for the first time. Using a new implementation of the background field method, these
quantities are calculated at the SU(3)-flavor–symmetric value of the quark masses, corresponding
to a pion mass of m⇡ ⇠ 806 MeV. The Gamow-Teller matrix element in tritium is found to be
0.979(03)(10) at these quark masses, which is within 2� of the experimental value. Assuming that
the short-distance correlated two-nucleon contributions to the matrix element (meson-exchange cur-
rents) depend only mildly on the quark masses, as seen for the analogous magnetic interactions, the
calculated pp ! de+⌫ transition matrix element leads to a fusion cross section at the physical quark
masses that is consistent with its currently accepted value. Moreover, the leading two-nucleon axial
counterterm of pionless e↵ective field theory is determined to be L1,A = 3.9(0.1)(1.0)(0.3)(0.9) fm3

at a renormalization scale set by the physical pion mass, also in agreement with the accepted phe-
nomenological range. This work concretely demonstrates that weak transition amplitudes in few-
nucleon systems can be studied directly from the fundamental quark and gluon degrees of freedom
and opens the way for subsequent investigations of many important quantities in nuclear physics.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp

Weak nuclear processes play a central role in many set-
tings, from the instability of the neutron to the dynam-
ics of core-collapse supernova. In this work, the results
of the first lattice Quantum Chromodynamics (LQCD)
calculations of two such processes are presented, namely
the pp ! de+⌫e fusion process and tritium �-decay. The
pp ! de+⌫ process is centrally important in astrophysics
as it is primarily responsible for initiating the proton-
proton fusion chain reaction that provides the dominant
energy production mechanism in stars like the Sun. Sig-
nificant theoretical e↵ort has been expended in refining
calculations of the pp ! de+⌫ cross section at the ener-
gies relevant to solar burning, and progress continues to
be made with a range of techniques [1–10], as summarized
in Ref. [11]. This process is related to the ⌫d ! nne+

neutrino breakup reaction [12–14], relevant to the mea-
surement of neutrino oscillations at the Sudbury Neu-
trino Observatory (SNO) [15, 16], and to the muon cap-
ture reaction, µ�d ! nn⌫µ, which is the focus of cur-
rent investigation in the MuSun experiment [17]. The

second process studied in this work, tritium �-decay, is
a powerful tool for investigating the weak interactions
of the Standard model and plays an important role in
the search for new physics. The super-allowed process
3H !

3He e�⌫̄ is theoretically clean and is the simplest
semileptonic weak decay of a nuclear system. In con-
trast to pp fusion, this decay has been very precisely
studied in the laboratory (see Ref. [18] for a review)
and provides important constraints on the antineutrino
mass [19]. Tritium �-decay is also potentially sensitive to
sterile neutrinos [20, 21] and to interactions not present
in the Standard Model [21–24]. Although the dominant
contributions to the decay rate are under theoretical con-
trol as this is a super-allowed process, the Gamow-Teller
(GT) contribution (axial current) is somewhat more chal-
lenging to address than the Fermi (F) contribution (vec-
tor current). Improved constraints on multi-body con-
tributions to the GT matrix element will translate into
reduced uncertainties in predictions for decay rates of
larger nuclei and are a first step towards understanding
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