

THEORETICAL PHYSICS COLLOQUIUM
ARIZONA STATE UNIVERSITY
JAN 13, 2021

ATOMS AND IONS AS QUANTUM SIMULATORS OF QUARKS, GLUONS, AND NUCLEI?

ZOHREH DAVOUDI
UNIVERSITY OF MARYLAND, COLLEGE PARK

QUANTUM CHROMODYNAMICS (OCD)

QCD is a $S U(3)$ gauge theory augmented with several flavors of massive quarks:

$$
\begin{aligned}
\mathcal{L}_{Q C D}= & \sum_{f=1}^{N_{f}}\left[\bar{q}_{f}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) q_{f}-g A_{\mu}^{i} \bar{q}_{f} \gamma^{\mu} T^{i} q_{f}\right] \\
& -\frac{1}{4} F_{\mu \nu}^{i} F^{i \mu \nu}+\frac{g}{2} f_{i j k} F_{\mu \nu}^{i} A^{i \mu} A^{j \nu}-\frac{g^{2}}{4} f_{i j k} f_{k l m} A_{\mu}^{j} A_{\nu}^{k} A^{l \mu} A^{m \nu}
\end{aligned}
$$

Features:
i) There are only $1+N_{f}$ input parameters plus QED coupling. Fix them by few quantities and all nuclear physics is predicted (in principle)!
ii) QCD is asymptotically free and exhibits confinement.

WHAT CAN WE DO AT LOW ENERGIES?

WHAT CAN WE DO AT LOW ENERGIES?

Solve it nonperturbatively: Lattice QCD

Extrapolate to infinite volume and zero lattice spacing

LATTICE OCD COMBINED WITH EFFECTIVE FIELD THEORIES IS ON TRACK TO DELIVER RESULTS ON IMPORTANT QUANTITIES IN NUCLEAR AND HIGH-ENERGY PHYSICS.

A MILESTONE: NUCLEI FROM QCD IN A WORLD WITH HEAVIER QUARKS THAN THOSE IN NATURE

$$
N_{f}=3, m_{\pi}=0.806 \mathrm{GeV}, a=0.145(2) \mathrm{fm}
$$

THIS STUDY TOOK ABOUT TWO YEARS AND A FEW HUNDRED MILLION CPU HOURS ON THE LARGEST SUPERCOMPUTERS IN THE U.S.!

Titan supercomputer, Oak Ridge National Laboratory, USA

A SINGLE-WEAK PROCESS

$$
p p \rightarrow d e^{+} \nu_{e}
$$

Savage, ZD et al, Phys.Rev.Lett.119,062002(2017).

MATCHING OCD TO STUDIES OF HEAVIER ISOTOPES

Beane, et al. (NPLQCD), Phys.Rev. D87 (2013)
Barnea et al Phys. Rev. Lett. 114, 052501
(2015), Contessi et al, Phys. Lett. B772 (2017).

LATTICE GAUGE THEORY IS SUPPORTING A MULTI-BILLION DOLLAR EXPERIMENTAL PROGRAM!

THREE FEATURES MAKE LATTICE OCD CALCULATIONS OF NUCLEI HARD:

i) The complexity of systems grows factorially with the number of quarks.

```
Detmold and Orginos (2013)
```

Detmold and Savage (2010)
Doi and Endres (2013)

ii) There is a severe signal-to-noise degradation.

Paris (1984) and Lepage (1989)
Wagman and Savage (2017, 2018)
iii) Excitation energies of nuclei are much smaller than the OCD scale.

```
Beane at al (NPLQCD) (2009)
Beane, Detmold, Orginos, Savage (2011)
ZD (2018)
Briceno, Dudek and Young (2018)
```


ADDITIONALLY THE SIGN PROBLEM FORBIDS:

i) Studies of nuclear isotopes, dense matter, and phase diagram of QCD... both with lattice QCD and with ab initio nuclear many-body methods.

Path integral formulation:

$$
e^{-S[U, q, \bar{q}]}
$$

with a complex action:

$$
\mathcal{L}_{\mathrm{QCD}} \rightarrow \mathcal{L}_{\mathrm{QCD}}-i \mu \sum_{f} \bar{q}_{f} \gamma^{0} q_{f}
$$

ADDITIONALLY THE SIGN PROBLEM FORBIDS:

ii) Real-time dynamics of matter in heavy-ion collisions or after Big Bang...

...and a wealth of dynamical response functions, transport properties, hadron distribution functions, and non-equilibrium physics of QCD.

Path integral formulation:

$$
e^{i S[U, q \bar{q}]}
$$

Hamiltonian evolution:

$$
U(t)=e^{-i H t}
$$

AN OPPORTUNITY TO EXPLORE NEW PARADIGMS AND NEW TECHNOLOGIES IN SIMULATION: QUANTUM SIMULATION?

Quantum simulation amounts to leveraging a quantum system that can be controlled to study another quantum systems that is more elusive, experimentally or computationally.

Quantum simulation amounts to leveraging a quantum system that can be controlled to study another quantum systems that is more elusive, experimentally or computationally.

Quantum simulation amounts to leveraging a quantum system that can be controlled to study another quantum systems that is more elusive, experimentally or computationally.

A RANGE OF QUANTUM SIMULATORS WITH VARING CAPACITY AND CAPABILITY IS AVAILABLE!

SOME SIMILARITIES BUT MAJOR DIFFERENCES WITH CONDENSED MATTER AND CHEMISTRY PROBLEMS

Starting from the nucelar Hamiltonian

More complex Hamiltonian, itself unknown with arbitrary accuracy, short, intermediate, and long-range interactions, three and multibody interactions, pions (bosons) and other hadrons can become dynamical.

SOME SIMILARITIES BUT MAJOR DIFFERENCES WITH CONDENSED MATTER AND CHEMISTRY PROBLEMS

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES INVOLVES:

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES INVOLVES:

Martinez, Muschik, Schindler, Nigg, Erhard, Heyl, Hauke, Dalmonte, Monz, Zoller, Blatt, Nature 534, 516-519 (2016)
1.0 Trapped ions, 4 qubits

Nguyen, Shaw, Zhu, Huerta Alderete, ZD, Linke (2020)

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES INVOLVES:

Hamiltonian formalism maybe more natural than the path integral formalism for quantum simulation/computation:

Kogut and Susskind formulation:

$$
\begin{aligned}
& H_{\mathrm{QCD}}=-t \sum_{\langle x y\rangle} s_{x y}\left(\psi_{x}^{\dagger} U_{x y} \psi_{y}+\psi_{y}^{\dagger} U_{x y}^{\dagger} \psi_{x}\right)+m \sum_{x} s_{x} \psi_{x}^{\dagger} \psi_{x}+\frac{g^{2}}{2} \sum_{\langle x y\rangle}\left(L_{x y}^{2}+R_{x y}^{2}\right)-\frac{1}{4 g^{2}} \sum_{\square} \operatorname{Tr}\left(U_{\square}+U_{\square}^{\dagger}\right) . \\
& \text { Fermion hopping term Fermion Energy of color Energy of color } \\
& \text { mass electric field magnetic field }
\end{aligned}
$$

$\begin{aligned} & \text { Generator of infinitesimal } \\ & \text { gauge transformation }\end{aligned} G_{x}^{a}=\psi_{x}^{i t} \lambda_{i j}^{a} \psi_{x}^{j}+\sum_{k}\left(L_{x, x+k}^{a}+R_{x-k, x}^{a}\right) \triangleleft G_{x}^{i}\left|\psi\left(\left\{q_{x}^{(i)}\right\}\right)\right\rangle=q_{x}^{(i)}\left|\psi\left(\left\{q_{x}^{(i)}\right\}\right)\right\rangle$

EXAMPLES OF THEORY DEVELOPMENTS

Hamiltonian formalism maybe more natural than the path integral formalism for quantum simulation/computation:

Kogut and Susskind formulation:

$$
\begin{array}{ccc}
H_{\mathrm{QCD}}=-t \sum_{\langle x y\rangle} s_{x y}\left(\psi_{x}^{\dagger} U_{x y} \psi_{y}+\psi_{y}^{\dagger} U_{x y}^{\dagger} \psi_{x}\right)+m \sum_{x} s_{x} \psi_{x}^{\dagger} \psi_{x}+\frac{g^{2}}{2} \sum_{\langle x y\rangle}\left(L_{x y}^{2}+R_{x y}^{2}\right)-\frac{1}{4 g^{2}} \sum_{\square} \operatorname{Tr}\left(U_{\square}+U_{\square}^{\dagger}\right) . \\
\text { Fermion hopping term } & \text { Fermion } & \text { Energy of color }
\end{array} \quad \text { Energy of color } \quad \text { electric field } \quad \text { mass } \quad \text { magnetic field } \quad .
$$

Generator of infinitesimal gauge transformation

$$
G_{x}^{a}=\psi_{x}^{i t} \lambda_{i j}^{a} \psi_{x}^{j}+\sum_{k}\left(L_{x, x+k}^{a}+R_{x-k, x}^{a}\right) \breve{G} G_{x}^{i}\left|\psi\left(\left\{q_{x}^{(i)}\right\}\right)\right\rangle=q_{x}^{(i)}\left|\psi\left(\left\{q_{x}^{(i)}\right\}\right)\right\rangle
$$

$q_{x} \neq 0$

EXAMPLES OF THEORY DEVELOPMENTS

Hamiltonian formalism maybe more natural than the path integral formalism for quantum simulation/computation:

Kogut and Susskind formulation:

$$
\begin{array}{ccc}
H_{\mathrm{QCD}}=-t \sum_{\langle x y\rangle} s_{x y}\left(\psi_{x}^{\dagger} U_{x y} \psi_{y}+\psi_{y}^{\dagger} U_{x y}^{\dagger} \psi_{x}\right)+m \sum_{x} s_{x} \psi_{x}^{\dagger} \psi_{x}+\frac{g^{2}}{2} \sum_{\langle x y\rangle}\left(L_{x y}^{2}+R_{x y}^{2}\right)-\frac{1}{4 g^{2}} \sum_{\square} \operatorname{Tr}\left(U_{\square}+U_{\square}^{\dagger}\right) . \\
\text { Fermion hopping term } & \text { Fermion } & \text { Energy of color }
\end{array} \quad \text { Energy of color } \quad \text { electric field } \quad \text { mass } \quad \text { magnetic field } \quad .
$$

$\begin{aligned} & \begin{array}{l}\text { Generator of infinitesimal } \\ \text { gauge transformation }\end{array}\end{aligned} G_{x}^{a}=\psi_{x}^{i \dagger} \lambda_{i j}^{a} \psi_{x}^{j}+\sum_{k}\left(L_{x, x+k}^{a}+R_{x-k, x}^{a}\right) \triangleleft G_{x}^{i}\left|\psi\left(\left\{q_{x}^{(i)}\right\}\right)\right\rangle=q_{x}^{(i)}\left|\psi\left(\left\{q_{x}^{(i)}\right\}\right)\right\rangle$

ZD, Raychowdhury, and Shaw, arXiv:2009.11802 [hep-lat]

EXAMPLES OF THEORY DEVELOPMENTS

```
ZD, Raychowdhury, and Shaw, arXiv:2009.11802 [hep-lat]
```

The time complexity of classical Hamiltonian-simulation algorithms for each formulation.

SU(2) LGT formulation for quantum simulation: Raychowdhury, Stryker, Phys. Rev. D 101, 114502 (2020).

```
For progress in 2+1 D U(1) gauge theory, see:
Haase, Dellantonio, Celi, Paulson, Kan, Jansen, Muschik,
arXiv:2006.14160 [quant-ph]
Paulson, Dellantonio, Haase, Celi, Kan, Jena, Kokail,
van Bijnen, Jansen, Zoller, Muschik,
arXiv:2008.09252 [quant-ph].
```

Other digitization ideas:
Brower et al, Phys. Rev. D 60, 094502 (1999). Alexandru et 1 , Phys. Rev. D 100, 114501 (2019).

Halimeh, Lang, Mildenberger, Jiang, Hauke, arXiv:2007.00668 [quant-ph], Stannigel, Hauke, Marcos, Hafezi, Diehl, Dalmonte, Zoller, Phys. Rev. Lett. 112, 120406, and Lamm, Lawrence, Yamauchi, arXiv:2005. 12688 [quant-ph] for similar symmetry-protection ideas.

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES INVOLVES:

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: ALGORITHMIC DEVELOPMENTS
Scalar field theory
Jordan, Lee, and Preskill, Quant. Inf. Comput. 14, 1014(2014)

Klco, Savage, Phys. Rev. A 99, 052335 (2019).

Barata, Mueller, Tarasov,
Venugopalan (2020).

1+1 D quantum electrodynamics

$$
\hat{H}_{\text {spin }}=w \sum_{n=1}^{N-1}\left[\hat{\sigma}_{n}^{+} e^{i \hat{\theta}_{n}} \hat{\sigma}_{n+1}^{-}+\text {H.c. }\right]+\frac{m}{2} \sum_{n=1}^{N}(-1)^{n} \hat{\sigma}_{n}^{z}+J \sum_{n=1}^{N-1} \hat{L}_{n}^{2}
$$

Shaw, Lougovski, Stryker, Wiebe, Quantum 4, 306 (2020)

QUANTUM SIMULATION OF QUANTUM FIELD THEORIES: ALGORITHMIC DEVELOPMENTS

1+1 D quantum electrodynamics

$$
\hat{H}_{\mathrm{spin}}=w \sum_{n=1}^{N-1}\left[\hat{\sigma}_{n}^{+} e^{i \hat{\theta}_{n}} \hat{\sigma}_{n+1}^{-}+\text {H.c. }\right]+\frac{m}{2} \sum_{n=1}^{N}(-1)^{n} \hat{\sigma}_{n}^{z}+J \sum_{n=1}^{N-1} \hat{L}_{n}^{2}
$$

Near term
Recourse analysis for lattice Schwinger model

	$\delta_{g}=10^{-3}$		$\delta_{g}=10^{-4}$		$\delta_{g}=10^{-5}$		$\delta_{g}=10^{-6}$		$\delta_{g}=10^{-7}$	
	$\tilde{\epsilon}^{2}$	CNOT								
$x=10^{-2}$	-	7.3 e 4	-	1.6 e 5	-	3.4 e 5	-	7.3 e 5	$5.6 \mathrm{e}-2$	1.6 e 6
$x=10^{-1}$	-	1.6 e 4	-	3.5 e 4	-	7.5 e 4	$5.9 \mathrm{e}-2$	1.6 e 5	$2.7 \mathrm{e}-3$	3.5 e 5
$x=1$	-	4.6 e 3	-	9.9 e 3	$1.0 \mathrm{e}-1$	2.1 e 4	$4.7 \mathrm{e}-3$	4.6 e 4	$2.2 \mathrm{e}-4$	9.9 e 4
$x=10^{2}$	-	2.8 e 3	$8.3 \mathrm{e}-1$	6.1 e 3	$3.8 \mathrm{e}-2$	1.3 e 4	$1.8 \mathrm{e}-3$	2.8 e 4	$8.2 \mathrm{e}-5$	6.0 e 4

Upper Bounds on T-gate Cost of Specific Simulations ($\mu=1, \tilde{\epsilon}^{2}=0.1$)				
	Short Time ($T=10 / x$)		Long Time ($T=1000 / x$)	
	Sampling	Estimating	Sampling	Estimating
$N=4, \Lambda=2$				
Strong Coupling ($x=0.1$)	$6.5 \cdot 10^{7}$	$2.4 \cdot 10^{11}$	$8.8 \cdot 10^{10}$	$3.3 \cdot 10^{14}$
Weak Coupling ($x=10$)	$5.0 \cdot 10^{6}$	$1.8 \cdot 10^{10}$	$7.0 \cdot 10^{9}$	$2.6 \cdot 10^{13}$
$N=16, \Lambda=2$				
Strong Coupling ($x=0.1$)	$7.2 \cdot 10^{8}$	$2.5 \cdot 10^{12}$	$9.4 \cdot 10^{11}$	$3.3 \cdot 10^{15}$
Weak Coupling ($x=10$)	$5.6 \cdot 10^{7}$	$1.9 \cdot 10^{11}$	$7.6 \cdot 10^{10}$	$2.7 \cdot 10^{14}$
$N=16, \Lambda=4$				
Strong Coupling ($x=0.1$)	$1.9 \cdot 10^{9}$	$6.3 \cdot 10^{12}$	$2.3 \cdot 10^{12}$	$8.1 \cdot 10^{15}$
Weak Coupling ($x=10$)	$9.6 \cdot 10^{7}$	$3.2 \cdot 10^{11}$	$1.2 \cdot 10^{11}$	$4.2 \cdot 10^{14}$

THEORY-EXPERIMENT CO-DEVELOPMENT IS A KEY TO PROGRESS.

CAN NUCLEAR AND HIGH-ENERGY IMPACT QUANTUM-SIMULATION HARDWARE DEVELOPMENTS?

ATOMS AND IONS AS ANALOG QUANTUM SIMULATORS OF LATTICE GAUGE THEORIES?

ATOMS AND IONS AS ANALOG QUANTUM SIMULATORS OF LATTICE GAUGE THEORIES?

$$
H_{I}=-\mu \cdot \mathbf{E}
$$

$$
H_{I}=\sum_{i=1}^{N}\left[\left(\sum_{I=1}^{n_{L}} \frac{1}{2} \Omega_{I}^{(i)} e^{-i\left(\omega_{I}-\omega_{\uparrow \downarrow}\right) t+i \phi_{I}^{(i)}}\right)\left(e^{i \sum_{m=1}^{3 N} \eta_{m}^{(i)}\left(a_{m} e^{-i \omega_{m} t}+a_{m}^{\dagger} e^{i \omega_{m} t}\right)}\right)\left(\alpha_{0} \mathbb{I}+\alpha_{1} \sigma_{x}^{(i)}+\alpha_{2} \sigma_{y}^{(i)}+\alpha_{3} \sigma_{z}^{(i)}\right)\right]
$$

$$
H_{I}=-\mu \cdot \mathbf{E}
$$

TWO-QUBIT ENTANGLING OPERATION

Adiabatic elimination technique and the use of sideband transitions effectively couples two spins and is independent of phonon occupation.

A TRAPPED-ION ANALOG SIMULATOR

A TRAPPED-ION ANALOG SIMULATOR

A TRAPPED-ION ANALOG SIMULATOR

Effective Hamiltonian

$$
H_{\mathrm{eff}}=\sum_{i, j} J_{i, j}^{(x x)} \sigma_{x}^{(i)} \otimes \sigma_{x}^{(j)}-\frac{B_{z}}{2} \sum_{i} \sigma_{z}^{(i)}
$$

with coupling:

$$
J_{i, j}^{(x x)} \sim \frac{1}{|i-j|^{\alpha}}, 0<\alpha<3
$$

ANOTHER EXAMPLE: SPIN MODELS AS PROTOTYPES OF QCD? CAN THEY REVEAL ENTANGLEMENT ASPECTS OF CONFINEMENT AND COLLISIONS?

Transverse-field Ising model with long-range interactions in 1+1D exhibits an effective confining potential among domain walls: the "mesons"!

$$
H=-\sum_{i<j}^{L} J_{i, j} \sigma_{i}^{x} \sigma_{j}^{x}-B \sum_{i}^{L} \sigma_{i}^{z} .
$$

Native Hamiltonian in a trapped-ion simulator!

Tan, Becker, Liu, Pagano, Collins, De, Feng, Kaplan, Kyprianidis, Lundgren, Morong, Whitsitt, Gorshkov, Monroe, arXiv:1912.11117 [quant-ph]

A TRAPPED-ION DIGITAL SIMULATOR

A TRAPPED-ION DIGITAL SIMULATOR

[^0]
A TRAPPED-ION DIGITAL SIMULATOR

An individual addressing scheme for digital computation

ANOTHER EXAMPLE I: VARIATIONAL QUANTUM SIMULATION OF LATTICE SCHWINGER MODEL

AN ADVANCED TRAPPED-ION ANALOG SIMULATOR

AN ADVANCED TRAPPED-ION ANALOG SIMULATOR

AN ADVANCED TRAPPED-ION ANALOG SIMULATOR

Heisenberg model Hamiltonian can be obtained under certain conditions:

$$
H_{\mathrm{eff}}=\sum_{\substack{i, j \\ j<i}}\left[J_{i, j}^{(x x)} \sigma_{x}^{(i)} \otimes \sigma_{x}^{(j)}+J_{i, j}^{(y y)} \sigma_{y}^{(i)} \otimes \sigma_{y}^{(j)}+J_{i, j}^{(z z)} \sigma_{z}^{(i)} \otimes \sigma_{z}^{(j)}\right]-\frac{1}{2} \sum_{i=1}^{N} B_{z}^{(i)} \sigma_{z}^{(i)}
$$

This can be matched to the Hamiltonian of Schwinger Model

$$
\hat{H}_{s}=\frac{\mu}{2} \sum_{n=1}^{N}(-1)^{n} \sigma_{n}^{z}+x \sum_{n=1}^{N-1}\left\{\sigma_{n}^{+} \sigma_{n+1}^{-}+\text {h.c. }\right\}+\frac{1}{4} \sum_{n=1}^{N-1}\left\{\sum_{m=1}^{n}\left[\sigma_{m}^{z}+(-1)^{m}\right]\right\}^{2}
$$

This can be matched to the Hamiltonian of Schwinger Model

$$
\hat{H}_{s}=\frac{\mu}{2} \sum_{n=1}^{N}(-1)^{n} \sigma_{n}^{z}+x \sum_{n=1}^{N-1}\left\{\sigma_{n}^{+} \sigma_{n+1}^{-}+\text {h.c. }\right\}+\frac{1}{4} \sum_{n=1}^{N-1}\left\{\sum_{m=1}^{n}\left[\sigma_{m}^{z}+(-1)^{m}\right]\right\}^{2}
$$

Eight-fermion site theory
ZD, HAFEZI, MONROE, PAGANO, SEIF AND SHAW, Phys. Rev. R 2, 023015 (2020)

This can be matched to the Hamiltonian of Schwinger Model

$$
\hat{H}_{s}=\frac{\mu}{2} \sum_{n=1}^{N}(-1)^{n} \sigma_{n}^{z}+x \sum_{n=1}^{N-1}\left\{\sigma_{n}^{+} \sigma_{n+1}^{-}+\text {h.c. }\right\}+\frac{1}{4} \sum_{n=1}^{N-1}\left\{\sum_{m=1}^{n}\left[\sigma_{m}^{z}+(-1)^{m}\right]\right\}^{2}
$$

Eight-fermion site theory
ZD, HAFEZI, MONROE, PAGANO, SEIF AND SHAW, PhYS. Rev. R 2, 023015 (2020)

This can be matched to the Hamiltonian of Schwinger Model

$$
\hat{H}_{s}=\frac{\mu}{2} \sum_{n=1}^{N}(-1)^{n} \sigma_{n}^{z}+x \sum_{n=1}^{N-1}\left\{\sigma_{n}^{+} \sigma_{n+1}^{-}+\text {h.c. }\right\}+\frac{1}{4} \sum_{n=1}^{N-1}\left\{\sum_{m=1}^{n}\left[\sigma_{m}^{z}+(-1)^{m}\right]\right\}^{2}
$$

Eight-fermion site theory
ZD, HAFEZI, MONROE, PAGANO, SEIF AND SHAW, Phys. Rev. R 2, 023015 (2020)

The same scheme can be applied to Chern-Simons theory in $2+1 \mathrm{~d}$:

$$
\mathcal{L}_{\mathrm{CS}}=a^{\dagger}(x) i D_{0} a(x)-\sum_{j=1,2}\left[a^{\dagger}(x) e^{i A_{j}(x)} a\left(x+\hat{\boldsymbol{n}}_{j}\right)+\right.
$$

$$
H_{\mathrm{CS}}=\sum_{\boldsymbol{n}} \sum_{j=1,2}\left[\sigma_{+}^{(\boldsymbol{n})} \sigma_{-}^{\left(\boldsymbol{n}+\hat{\boldsymbol{n}}_{j}\right)}+\text { h.c. }\right]
$$

$$
\begin{equation*}
\text { h.c. }]-\frac{\theta}{4} \epsilon^{\mu \nu \lambda} A_{\mu}(x) F_{\nu \lambda}(x) \tag{24}
\end{equation*}
$$

2D lattice

Coupling matrix

Ion chain

HOW OTHER GAUGE THEORIES? OR NUCLEAR HAMILTONIAN?

CAN WE EXPAND THE TRAPPED-ION TOOLKIT EVEN FURTHER FOR ANALOG SIMULATIONS OF NUCLEAR AND HIGH-ENERGY PHYSICS?

 SINGLE AND DOUBLE SIDEBANDS CAN INDUCE THREE-SPIN INTERACTIONS.

18 paths contribute! $\delta=2 \delta^{\prime}$ eliminates dependence on phonon occupation and makes it very robust.

II) LEVERAGING PHONON MODES FOR SIMULATING GAUGE DEGREES OF FREEDOM?

Micro trap technology...

(b)

....or new ideas based on pinned ions with optical tweezers: Olsacher et al, PRx Quantum 1, 020316 (2020).

(b)

Or simply manipulate phonons on a shorter time scale than effective spin interactions.

Debnath et al, Phys. Rev. Lett. 120, 073001 (2018).

ATOMS AND IONS AS ANALOG QUANTUM

 SIMULATORS OF LATTICE GAUGE THEORIES?

COLD-ATOM QUANTUM SIMULATORS 101

An optical lattice is an artificial crystal created by focused laser beams...

...where either fermionic or bosonic atoms or a mixture of both can be trapped.

Effective microscopic Hamiltonian:

$$
\mathcal{H}=-t \sum_{\langle i j\rangle \sigma} c_{i \sigma}^{\dagger} c_{j \sigma}+U \sum_{i} n_{i \uparrow} n_{i \downarrow}-\mu \sum_{i} n_{i}
$$

Many variants of this setup exists, including super-lattices, and Rydberg atom arrays in optical tweezers, etc, cable of simulating Hubbard model, Ising model, and simple lattice gauge theories.

EXAMPLE: PROBING MANY-BODY DYNAMICS ON A 51-ATOM QUANTUM SIMULATOR

An array of programmable Rydberg atoms...

...can simulate the quenched dynamics of a constrained quantum-many body system.

Schwinger model within quantum link model formulation...

...mapped to an atomic Hubbard simulator:

Gauss's law violating effects are suppressed:

EXAMPLE: WHAT ABOUT NON-ABELIAN SYMMETRIES? SLOW BUT STEADY PROGRESS.

In the electric-field basis, non-trivial interactions are:

$$
\psi_{L}^{\dagger} U \psi_{R} \quad \sum_{\text {plaquettes }}\left(\operatorname{Tr}\left(U_{1} U_{2} U_{3}^{\dagger} U_{4}^{\dagger}\right)+\text { h.c. }\right)
$$

Some non-Abelian gauge theory proposals:
Zohar, Cirac, Reznik, Phys. Rev. Lett. 110, 125304
(2013), Phys. Rev. A 88023617 (2013), Rep. Prog. Phys. 79, 014401 (2016).
González Cuadra, Zohar, Cirac, New J. Phys. 19063038 (2017) .

Dasgupta and Raychowdhury, arXiv:2009.13969 [hep-lat].

A few proposals are developed including one based on cold Bose-Fermi mixture in optical lattices...
e.g.,

$$
\psi_{L}^{\dagger} U \psi_{R} \sim \psi_{L}^{\dagger} L_{+} \psi_{R}=c^{\dagger} a^{\dagger} b d
$$

Zohar, Cirac, Reznik, Phys. Rev. A 88023617 (2013).

...where gauge invariance is inherent in the local angular momentum conservation in scattering processes.

EXAMPLE I: QUANTUM CHEMISTRY VS. NP IN ANALOG SIMULATIONS

Long-range interactions between electrons mediated with Mott insulator spin excitations. Already challenging.

C

Effective potential $\quad V(r) \approx C+\frac{V_{0}}{r / a} e^{-r / L}$
Cirac, Nature 574, 215-218 (2019)

How about analog schemes for nuclear Hamiltonian with more complex interactions?

Or in the language of effective field theories:

NNLO
$\left(Q / \Lambda_{\chi}\right)^{3}$

TO SUMMARIZE...

A NUCLEAR PHYSICS ROADMAP FOR LEVERAGING QUANTUM TECHNOLOGIES

A NUCLEAR PHYSICS ROADMAP FOR LEVERAGING QUANTUM TECHNOLOGIES

MANY THANKS TO...

S. BEANE

U WASHINGTON

A. PARRENO

U BARCELONA

B. TIBURZI CUNY, NY

E. CHANG

M. SAVAGE U WASHINGTON

M. WAGMAN FERMILAB

W. DETMOLD

MIT

D. MURPHY
P. SHANAHAN MIT

S. KADAM (S)
M. ILLA (S)

U BARCELONA U MARYLAND

Nuclear Physics

A. SEIF (S)

JOINT CENTER FOR
QUANTUM INFORMATION and Computer Science

QIS/CS
Atomic, optical, and Molecular Physics

THANK YOU

[^0]: A highly tunable analog simulator is achievable with this set up too: Teoh, Drygala, Melko, Islam arXiv: 1910.02496 [quant-ph], Korenblit, Islam, Monroe et al, New Journal of Physics 14, 095024 (2012).

