
Exotic Matter Produced in
Neutron-Star Mergers

Veronica Dexheimer
in collabora;on with Krishna Aryal, Jacob Roark,

Elias Most, Jens Papenfort,
MaFhias Hanauske, Luciano Rezzolla and  Horst Stöcker

Phys. Rev. C (2010) 0901.1748 ,
Mon. Not. Roy. Astron. Soc. (2019) 1812.08157 ,

Phys. Rev. Lett. (2019) 1807.03684
J. Phys. G (2019) 1810.06109,

Eur. Phys. J A (2019) 1910.13893 
ArXiv 2004.03039

https://arxiv.org/abs/0901.1748
https://arxiv.org/abs/1812.08157
https://arxiv.org/abs/1807.03684
https://arxiv.org/abs/1810.06109
https://arxiv.org/abs/1910.13893
https://arxiv.org/abs/2004.03039


2

● Landau predicted giant nuclei
formed when normal nuclei come
in close contact at great density
and  “laws of ordinary quantum
mechanics break down” in 1931

● Chadwick discovered neutron in 1932

● Baade and Zwicky proposed that heavy stars explode as 
supernovae and give birth to neutron stars in 1939

● Oppenheimer and Volkoff
modeled neutron stars as cold,
degenerate Fermi gas in 1939

Energy Levels

Neutron-Star Core Modelling



Neutron-Star Core Modelling

● Higher-order interactions added to better reproduce 
nuclear saturation properties by Boguta and Bodmer in 
1977

● Hyperons included in modeling by Glendenning in 1979

● Negative parity baryons studied in stars by VD in 2008
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● Attractive and repulsive aspects 
of nuclear force introduced in 
relativistic model by Walecka in 
1974
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Neutron-Star Core Modelling
● Hybrid stars with a “quarkian” core suggested
by Ivanenko and Kurdgelaidze in 1969

● Pure quark stars proposed by Itoh in 1970

● Presence of a mixed phase (with hadrons
and deconfined quarks) inside neutron
stars that conserves global charge
proposed by Glendenning in 1991

● Presence of a mixed phase inside proto-neutron stars that 
conserve global charge and global lepton fraction
investigated by Roark and VD in 2018
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Neutron-Star Structure

● Nuclear density 𝜌0 ~ 1015 g/cm3

Outer crust: individual nuclei and electrons

Inner crust: individual nuclei, electrons, and  neutrons

Outer core: uniform nuclear matter
(protons, many neutrons, electrons)

Inner core: hyperons, 
deconfined quarks?
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CMF (Chiral Mean Field) Model
● Non-linear realization of the linear sigma model
● Includes baryons (+ leptons) and quarks
● Fitted to reproduce nuclear, astrophysical, lattice QCD
● Baryon and quark effective masses

● 1st order phase transitions or crossovers
● Potential for 𝚽

deconfinement
order parameter
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● Results from the CMF model



Local vs Global Charge Neutrality

jump

physical
(mixed)

region

physical
(mixed)

region

● Absence / presence of mixture
of phases: surface tension ???

● “Mixed” quantities like baryon
number density
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Par;cle Popula;on from Model
● Hadronic phase: hadrons (neutrons, protons, and Λ 

hyperons) plus electrons and muons

● Quark phase: quarks (up, down, and strange) plus 
electrons

hadronic phase

quark phase
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with mixture of phases
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Stellar Central Density
● Modified General Relativity equations for deformed stars 

predict lower central stellar density for larger rotational 
frequencies (at fixed baryon number)

● As massive stars 
grow old new 
degrees of 
freedom appear

● Larger central
densities
present in mixed
phase
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Stellar Central Density
● Modified General Rela;vity equa;ons for deformed stars 

predict lower central stellar density for larger rota;onal 
frequencies (at fixed baryon number)

● As massive stars 
grow old new 
degrees of 
freedom appear

● Larger central
densi;es
present in mixed
phase
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But How Can We Probe the 
Interiors of Neutron Stars?



Neutron Star Merger 170817
● Observed by LIGO/VIRGO in 17 August 2017

● From galaxy NGC 4993 140 million light-years away

● Observed electromagnetically by 70 observatories on 7 
continents and in space
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Neutron Star Merger 170817

postmerger not yet observed!

● Observed by LIGO/VIRGO in 17 August 2017

● From galaxy NGC 4993 140 million light-years away

● Observed electromagnetically by 70 observatories on 7 
continents and in space
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Hadronic Merger Simulations
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average 
stellar mass



Merger Simulation with Deconf.
● 3D (T, 𝛒B,Yc) CMF EoS with/without quarks

● Solve coupled Einstein-hydrodynamics system using 
Frankfurt/IllinoisGRMHD code (FIL)

● Interesting results for final masses of 2.8 and 2.9 Msun

● Effects from quarks (h, f, phase) only after the merger 16

phase difference phase difference



Inside the Neutron-Star Merger
● As neutron stars merge, a hot ring with some quarks 

forms around the center

● Then a very hot region forms in the center with lots of 
quarks
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;me since merger=2 ms time since merger=7 ms ;me since merger=15 ms



Merger in the QCD Phase Diagram
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● Background: 2D (T,nB) CMF EoS with 1st order phase 
transition for YQ=Q/B=0.05
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Merger in the QCD Phase Diagram
● 3D (T,nB,YQ) CMF EoS with 1st order phase transition for 

binaries with
final mass
of 2.9 MSun
after
deconfinement
(~5 ms) 
but before
collapse to
black hole
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Merger in the QCD phase Diagram
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● Tracking maximum temperature ● and density in 
merger
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● Results from the CMF model



More Phase Diagrams
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● Tracking maximum temperature ● and density 

● Increase in abs. value of charged chemical poten;al un;l 
phase transi;on, when it drops

● Decrease in charge frac;on of core when quarks appear
(not reaching heavy-ion/supernovae condi;ons)
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Simulation
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● Our simulation on Youtube

https://tinyurl.com/tfqces2


Inside Hypermassive Neutron Star
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● At 5 ms ater merger

● Increase of temperature, entropy per baryon, and s-quark 
frac;on at phase transi;on

● Total strangeness (hyperons ➜ s-quarks) remains ~ same



Neutron Star Merger 170817

postmerger not yet observed!

● Observed by LIGO/VIRGO in 17 August 2017

● From galaxy NGC 4993 140 million light-years away

● Observed electromagnetically by 70 observatories on 7 
continents and in space
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Tidal Deformability
● Normalized stellar quadripole 

deformation by companion

● Calculated from finite-size 
effects in end of inspiral: 
76 ® 1045 with 90% confidence (De et. al 2018)

● Related to NS radius of
M=1.4 Msun
(Raithel et. al 2018)

● Universal relation?

26



Exploring Isovector Coupling

ωρ coupling
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● Using 3 relativistic EoS’s that fulfil standard nuclear and 
astrophysical constraints: NL3, MBF, and CMF

● New vector-isovector channel
suggested by Horowitz and Piekarewicz

● Non-trivial relation between     and R1.4MSun 27



● New vector-isovector channel also in much better 
agreement with Effective Field Theory calculations from 
Hebeler et. al (2013) available for low densities

Exploring Isovector Coupling
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Conclusions and Outlook
• Astrophysics provides an ideal

tes;ng ground for nuclear physics

• Unique condi;ons created in 
neutron-star mergers

• Now, in addi;on to observe light, we can 
also understand the universe through gravita;onal waves

• More realis;c models with temperature/exo;c degrees of 
freedom needed to study 

- rela;on between ;dal deformability and nuclear physics
- realis;c neutron-star merger simula;ons

• More merger data coming … so, maybe, there will be a clear 
first signature for quark deconfinement phase transi;on will 
from astrophysics!


