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Neutron-Star Core Modelling

. Landau predicted giant nuclei
formed when normal nuclei come
in close contact at great density
and “laws of ordinary quantum
mechanics break down” in 1931

. Chadwick discovered neutron in 1932

. Baade and Zwicky proposed that heavy stars explode as
supernovae and give birth to neutron stars in 1939

. Oppenheimer and Volkoff Energy Levels
modeled neutron stars as cold,
degenerate Fermi gas in 1939




Neutron-Star Core Modelling

. Attractive and repulsive aspects
of nuclear force introduced in

relativistic model by Walecka in
1974

. Higher-order interactions added to better reproduce
nuclear saturation properties by Boguta and Bodmer in
1977

. Hyperons included in modeling by Glendenning in 1979
. Negative parity baryons studied in stars by VD in 2008



Neutron-Star Core I\/Iodellmg

. Hybrid stars with a “quarkian” core suggested
by Ivanenko and Kurdgelaidze in 1969

. Pure quark stars proposed by Itoh in 1970

. Presence of a mixed phase (with hadrons
and deconfined quarks) inside neutron
stars that conserves global charge
proposed by Glendenning in 1991

. Presence of a mixed phase inside proto-neutron stars that
conserve global charge and global lepton fraction
investigated by Roark and VD in 2018



Neutron-Star Structure

Outer crust: individual nuclei and electrons

Outer core: uniform nuclear matter
(protons, many neutrons, electrons)

Inner core: hyperons,
deconfined quarks?

WV

~0.6 km ~10 km

. Nuclear density p, ~ 10*> g/cm3 :



CMF (Chiral Mean Field) Model

Non-linear realization of the linear sigma model
Includes baryons (+ leptons) and quarks

Fitted to reproduce nuclear, astrophysical, lattice QCD
Baryon and quark effective masses

M3} = gBoo + gpsT30 + gl + Mo, + gpo®?
M; = 9400 + 45730 + gq¢cC + Mo, + gga (1 — @)

15t order phase transitions or crossovers

Potential for @ U = (6oT* + a1’y + as T2 ) 2

deconfinement i ! , ,
order parameter T %10 I (160~ 4807 — 307)



QCD Phase Diagram
for High Energy
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Local vs Global Charge Neutrality

. Absence / presence of mixture
of phases: surface tension ???

. “Mixed” quantities like baryon
number density
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Particle Population from Model

. Hadronic phase: hadrons (neutrons, protons, and A\
hyperons) plus electrons and muons

. Quark phase: quarks (up, down, and strange) plus
electrons

with mixture of phases
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Stellar Central Density

. Modified General Relativity equations for deformed stars

predict lower central stellar density for larger rotational

frequencies (at fixed baryon number)

. As massive stars
grow old new
degrees of
freedom appear

. Larger central
densities
present in mixed
phase

central density pg (fm3)
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Stellar Central Density

. Modified General Relativity equations for deformed stars
predict lower centraltellar density for larger rotational

frequencies (at fixeg umber)

. As massive star
grow old new
degrees of
freedom ag

sheading -
frequency‘_

. Larger centrs
densities
present in mixed
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But How Can We Probe the
Interiors of Neutron Stars?
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Neutron Star Merger 170817

. Observed by LIGO/VIRGO in 17 August 2017
. From galaxy NGC 4993 140 million light-years away

. Observed electromagnetically by 70 observatories on 7
continents and in space i |

/M//
i
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Neutron Star Merger 170817

. Observed by LIGO/VIRGO in 17 August 2017
. From galaxy NGC 4993 140 million light-years away

. Observed electromagnetically by 70 observatories on 7
continents and in space i |
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Hadronic Merger Simulations

What we can do nowadays
Takami, Rezzolla, Baiotti (2014, 2015), Rezzolla+ (2016)
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Merger Simulation with Deconf.

3D (T, pg,Y.) CMF EoS with/without quarks

Solve coupled Einstein-hydrodynamics system using
Frankfurt/IllinoisGRMHD code (FIL)

. Interesting results for final masses of 2.8 and 2.9 M,
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Inside the Neutron-Star Merger

As neutron stars merge, a hot ring with some quarks
forms around the center

Then a very hot region forms in the center with lots of
qguarks
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Merger in the QCD Phase Diagram

. Background: 2D (T,ng) CMF EoS with 1%t order phase
transition for Yo=Q/B=0.05

density pg — 18



Merger in the QCD Phase Diagram

. 3D (T,ng,Yq) CMF EoS with 1%t order phase transition for
binaries with
final mass
of 2.9 M,
after
deconfinement
(~5 ms)
but before

collapse to
black hole
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Merger in the QCD phase Diagram

. Tracking maximum temperature @ and density 4 in
merger
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QCD Phase Diagram
for High Energy
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More Phase Diagrams

. Tracking maximum temperature @ and density ¢
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. Increase in abs. value of charged chemical potential until
phase transition, when it drops

. Decrease in charge fraction of core when quarks appear
(not reaching heavy-ion/supernovae conditions) 22



Simulation

Our simulation on Youtube

23


https://tinyurl.com/tfqces2

Inside Hypermassive Neutron Star

. At 5 ms after merger

r [km] r [km]

. Increase of temperature, entropy per baryon, and s-quark
fraction at phase transition

. Total strangeness (hyperons =2 s-quarks) remains ~ same

24



Neutron Star Merger 170817

. Observed by LIGO/VIRGO in 17 August 2017
. From galaxy NGC 4993 140 million light-years away

. Observed electromagnetically by 70 observatories on 7
continents and in space i |
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Tidal Deformability

Normalized stellar quadripole
deformation by companion ¢ ® e

Calculated from finite-size
effects in end of inspiral:
76 — 1045 with 90% confidence (De et. al 2018)

Related to NSradiusof ™ — ../
— 1400 i‘l‘p“
\Y ‘1.4 M.,
(Raithel et. al 2018) oo "
800 frvmimmsmimm s s
Universal relation? o /@/{(@f —
1-0 11 12 13 *14 = 1_5

R(m,) (km)
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Exploring Isovector Coupling

. Using 3 relativistic EoS’s that fulfil standard nuclear and

astrophysical constraints: NL3, MBF, and CMF

. New vector-isovector channel L., : wwF pupt

suggested by Horowitz and Piekarewicz  we coupling
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Exploring Isovector Coupling

New vector-isovector channel also in much better
agreement with Effective Field Theory calculations from
Hebeler et. al (2013) available for low densities
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Conclusions and Outloo

Astrophysics provides an ideal e ———
testing ground for nuclear physics L

Unique conditions created in
neutron-star mergers

Now, in addition to observe light, we can
also understand the universe through gravitational waves

More realistic models with temperature/exotic degrees of
freedom needed to study
- relation between tidal deformability and nuclear physics
- realistic neutron-star merger simulations

More merger data coming ... so, maybe, there will be a clear
first signature for quark deconfinement phase transition will
from astrophysics!
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