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Physical Motivation: Quantum Physics in Extreme Conditions

QCD phase diagram

non-equilibrium physics at strong-coupling
quantum systems 1n extreme background fields
back-reaction physics

transition to hydrodynamics

extreme = strongly-coupled; high density; ultra-fast driving; ultra-cold;
strong fields; strong curvature; heavy 1on collisions; ...

perturbation theory

non-perturbative semi-classical methods: “instantons”
non-perturbative numerical methods: Monte Carlo
asymptotics
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Physical Motivation: Quantum Physics in Extreme Conditions

QCD phase diagram

non-equilibrium physics at strong-coupling
quantum systems 1n extreme background fields
back-reaction physics

transition to hydrodynamics

extreme = strongly-coupled; high density; ultra-fast driving; ultra-cold;
strong fields; strong curvature; heavy 1on collisions; ...

perturbation theory

non-perturbative semi-classical methods: “instantons”
non-perturbative numerical methods: Monte Carlo
asymptotics

“resurgence’’: new form of asymptotics that unifies these approaches

technical problem: what does a quantum path integral really mean?



The Feynman Path Integral

<xt‘6_iﬁt/h‘a}0> _

QM: /Dm(t) exp %S[:L‘(t)]

QFT: / DA(x") exp g—QS[A(ﬂf“)]

* stationary phase approximation: classical physics

* quantum perturbation theory: fluctuations about trivial saddle point

* other saddle points: non-perturbative physics

 resurgence: saddle points are related by analytic continuation, so
perturbative and non-perturbative physics are unified




Stokes and the Airy Function: “Stokes Phenomenon”
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Stokes and the Airy Function: “Stokes Phenomenon”
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Stokes transitions occur in the complex x plane v \/ \/ M

Airy Stokes sectors
anti-Stokes lines: arg(z) = £%, 7
Stokes lines: arg(z) = +2F,0

non-perturbative connection
formulae connect sectors
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Analytic Continuation of Path Integrals

since we need complex analysis and contour deformation to
make sense of oscillatory exponential integrals, 1t 1s natural to
explore similar methods for (infinite dimensional) path integrals

/ Da(t) exp |+ Sla(t)]| - » / Dx(t) exp

—= Slz(t)]

goal: a satisfactory formulation of the functional integral

should be able to describe Stokes transitions

1dea: seek a computationally viable constructive definition
of the path integral using 1deas from resurgent trans-series




Resurgent Trans-Series

resurgence: “new’’ 1dea in mathematics
Ecalle 1980s; Dingle 1960s; Stokes 1850

perturbative sertes — “trans-series”

f(h) =) el — f(H)=> " ‘ckpl " RP (Inh)

p kK p

physics: < unifies perturbative and non-perturbative physics

mathematics: e trans-series is well-defined under analytic continuation
 expansions about different saddles are related
« exponentially improved asymptotics




Resurgent Functions

“resurgent functions display at each of their singular points
a behaviour closely related to their behaviour at the origin.
Loosely speaking, these functions resurrect, or surge up - 1n
a slightly different guise, as it were - at their singularities”

J. Ecalle, 1980

implication: fluctuations about different singularities are related

conjecture: this structure occurs for all “natural problems™




Resurgence 1n Exponential Integrals

steepest descent integral through saddle point “n’:

[(n)(ﬁ):/ drer (@) — = e%f”T(")(h)
C

all fluctuations beyond the Gaussian approximation:

T () ~ 3T B
r=0
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Resurgence 1n Exponential Integrals

steepest descent integral through saddle point “n’:

[(n)(ﬁ) — / drer f@) — = 7 fn T(")(h)
C. \/ 1 / h
all fluctuations beyond the Gaussian approximation: Ny Cm
O
n
T () ~ 3T 1
r=0 Cn
straightforward complex analysis implies:
universal large orders of fluctuation coefficients: (F nm = Jm — fn)
“ D) (£1) | F (Fpm)’ '
’ 27 i ;(an)r ’ (r—1)"" r—1)(r—2) 2

fluctuations about different saddles are quantitatively related




Resurgence 1n Exponential Integrals

canonical example: Airy function: 2 saddle points

T(r+3)T(r+2) {1_ 5 385 | 85085 }

T:t — Z:l — €I €I « 0.
G (27) (5) ! 487 4608 663552



Resurgence 1n Exponential Integrals

canonical example: Airy function: 2 saddle points

L(r+g) U+ 6)

o 389

80085

TF = (+1 =1, + -
* = Gy b = (Lt e

large orders of fluctuation coefficients:

R e (1 -()weo+6)

> 385

6635527

1

.

4608 (r — 1)(r — 2)

ogeneric “‘large-order/low-order” resurgence




Resurgence 1n Exponential Integrals

canonical example: Airy function: 2 saddle points

T:I: _ (__1)TF (T + %) I (7“ + %) o {1 n D 3389 N 80085
o (2m) (2)"r1 |77 4874608 663552

large orders of fluctuation coefficients:

.

L+ (r=1) C(AY 5 L[4 385 !
Y e (a) (1 <3> 8(r—1) <3> 4608 (r = 1)(r = 2)

ogeneric “‘large-order/low-order” resurgence

amazing fact: this resurgent large-order/low-order behavior has been
found 1n matrix models, QM, QFT, string theory, ...

the only natural way to explain this is via analytic
continuation of functional integrals



Perturbation Theory

perturbation theory works, but it 1s generically divergent

perturbation theory encodes non-perturbative information



PHYSICAL REVIEW VOLUME 85, NUMBER 4 FEBRUARY 15, 1952

Divergence of Perturbation Theory in Quantum Electrodynamics

F. J. Dysox
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York

(Received November 5, 1951)

An argument is presented which leads tentatively to the conclusion that all the power-series expansions
currently in use in quantum electrodynamics are divergent after the renormalization of mass and charge.
The divergence in no way restricts the accuracy of practical calculations that can be made with the theory,
but raises important questions of principle concerning the nature of the physical concepts upon which the

theory is built.

F =ap+ae’ + ase* +aze® + ...
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Borel Summation: the Physics of Divergent Series

Borel transform of a divergent series with ¢,, ~ n/!

flg) ~> eng® — Bfl(t)=) %t"

Borel sum of the divergent series:

1

st =, | " dte 9 By (1)

- the singularities of B[f](t) provide a physical encoding of the global
asymptotic behavior of f(g), which is also much more mathematically
efficient than the asymptotic series

- singularities of Borel transform < » non-perturbative physics

- singularities on positive Borel t axis: exponentially small imaginary part



QM Perturbation Theory: Zeeman & Stark Effects

Zeeman : divergent, alternating, asymptotic series
a, ~ (—1)"(2n)!

Borel singularities on the negative Borel axis.

physics: Magnetic field causes (real) energy level shifts

Stark : divergent, non-alternating, asymptotic series

ap ~ (2n)!

Borel singularities on the positive Borel axis.

physics: Electric field causes (real) energy level shifts

and 1onization (1maginary, exponentially small)



but not so fast ...

the story becomes even more interesting ...



Instantons and Non-Perturbative Physics

AN
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—
(phase transitions) (band structure)

exponentially small non-perturbative splitting due to tunneling
Yang-Mills theory and QCD have aspects of both systems



Instantons and Non-Perturbative Physics

AN
\ Z AN /
\/ \/ < )F >
 ——
—
(phase transitions) (band structure)

exponentially small non-perturbative splitting due to tunneling
Yang-Mills theory and QCD have aspects of both systems

surprise: perturbation theory 1s non-alternating divergent

but these systems are stable 777



A Brilliant Resolution: “BZJ Cancelation Mechanism”

E. B. Bogomolny, 1980; J. Zinn-Justin et al, 1980

. , 251
perturbation theory + Borel: — +1 exp v
non-perturbative instanton , - 257

& anti-instanton interaction: e A

unphysical imaginary parts exactly cancel

separately, each of these perturbative and non-perturbative computations
1s 1nconsistent; but combined as a trans-series they are consistent




A Brilliant Resolution: “BZJ Cancelation Mechanism”

E. B. Bogomolny, 1980; J. Zinn-Justin et al, 1980

. . 257
perturbation theory + Borel: — +1% exp 7 d
non-perturbative instanton , - 257

& anti-instanton interaction: A h

unphysical imaginary parts exactly cancel

separately, each of these perturbative and non-perturbative computations
1s 1nconsistent; but combined as a trans-series they are consistent

tip-of-the-1ceberg: perturbative/non-perturbative relations

“Resurgence”: cancelations occur to all orders; the
trans-series expression for the energy 1s real & well-defined



Resurgence in Quantum Mechanical Instanton Models

trans-series for energy, including non-perturbative splitting:

o1 /32\Vt3 ]
Ei(h,N) :Epert(haN) - \/%N' n eXP —% Pinst(haN) + ...



Resurgence in Quantum Mechanical Instanton Models

trans-series for energy, including non-perturbative splitting:

ho1o(32\V2 3
Ei(h,N):Epert(h,N)::mN! P exXp _ﬁ Pinst(h,N)—l—...

fluctuations about first non-trivial saddle:

— oy
) = PP N) / dh (8Epert(h, N) . (V43 )
0

ON h3 ON S

perturbation theory encodes everything ... to all orders



Resurgent Functions

resurgent relations seen 1n QM path integrals with an infinite number of saddles




Parametric Resurgence and Phase Transitions

Z(h) = / DA exp (% S[A])

In practice, we are interested in many parameters

Z(h) — Z(h,masses, couplings, u, T, B, ...)

e.g., for a phase transition: large N " thermodynamic limit”
Z(h) — Z(h,N), and N — oc

multiple parameters: different limits are possible

“uniform” ’t Hooft Iimit: N — 0o, A -0 : hN = fixed
trans-series transmutes into different form 1n the large N limait
hallmark of a phase transition



Phase Transition in the Periodic Potential Spectrum
E(h, N)

2.5}

2.0}

1.5¢

1.0
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-0.5}

_1.0F

»  N= band/gap label; 7 =coupling
. 8
» phase transition: narrow bands vs. narrow gaps: AN = —
- real instantons vs. complex 1nstantons 4
» phase transition = “instanton condensation” Neuberger, 1981

- universal phase transition Basar, GD, 1501.05671,
GD, Unsal, 1603.04924



https://inspirehep.net/literature/1340869
https://arxiv.org/abs/1603.04924

Resurgence 1n QFT: Euler-Heisenberg Effective Action

Folgerungen aus der Diracschen Theorie des Positrons.
Von W. Heisenberg und H. Euler in Leipzig.

Mit 2 Abbildungen. (Eingegangen am 22. Dezember 1935.)

Aus der Diracschen Theorie des Positrons folgt, da jedes elektromagnetische
Feld zur Paarerzeugung neigt, eine Abéinderung der Maxwellschen Gleichungen
des Vakuums. Diese Abinderungen werden fiir den speziellen Fall berechnet,
in dem keine wirklichen Elektronen und Positronen vorhanden sind, und in
dem sich das Feld auf Strecken der Compton-Wellenldnge nur wenig &ndert.
Fs crgibt sich fiir das Feld eine Lagrange-Funktion:

Ve RE L 24 (ES konj
ms([@kl Vg2 - B +_ %((553))4' on]

1 e? d -
53:__((52_%2)4__#5e‘ﬂ_ﬂ{%nﬂ((ﬁ%)- I "
2 he )7 g cos(—w” V& =BT 25 (€B) ) —konj

2
G2+ T (%ﬂ—tﬁﬂ)}-

- paradigm of an effective field theory
- 1ntegral representation = Borel sum

- analogue of Stark effect 1onization and Dyson’s argument



Stokes Phase Transition in QFT

Schwinger effect with monochromatic E field: F(t) = £ cos(wt)

. o mcw
Keldysh adiabaticity parameter: 7 = s
C m?c]
KB: T’ ~ —
W QED EXP _ (s ehg g(/Y):|
m2 C3

exp{ﬂehg] , 1Kl

L'orp ~
£ dme? [ hw
) Btk

(Keldysh, 1964;
Brezin/Itzykson, 1980;
Popov, 1981)

(tunneling)

(multiphoton)

phase transition: tunneling vs. multi-photon “ionization”

phase transition: real vs. complex instantons
the same transition as in the Mathieu equation
applications to worldline representation of QFT

(GD, Dumlu,1004.2509, 1102.2899)

(Raju’s colloquium)


https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.104.250402
https://inspirehep.net/literature/889724

Resurgence in QFT: Ultra-Fast Dynamics

time evolution of quantum systems with ultra-fast perturbations

|O>in ’O>out

t = —00 intermediate time t =400

the adiabatic/gradient expansion 1s divergent
resurgence: expansion can be (Borel) resummed to a universal form

novel quantum interference effects: complex saddles
applications in QFT, and in AMO and CM physics




Analytic Continuation of Path Integrals: “Lefschetz Thimbles”

Z(h) = / DA exp (% S[A]) : >~ Nuwe'® [ DA x () xexp (Re {%S[A]D

thimble

Lefschetz thimble = “functional steepest descents contour™

on a thimble, the path integral becomes
well-defined and computable

complexified gradient flow:

9, 0S5
57 A& T) = O0A(x;T)

OT




Analytic Continuation of Path Integrals: “Lefschetz Thimbles™

CRISTOFORETTI et al.  (2013) Fujii et al (2013)
07 4| T T T T T |
Schho e A o Thimel e
0.6 -WA 8 X —1 )(-
0.5} . 25|
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u (chemical potential in lattice unit)

FIG. 3. Comparison of the average density (n) obtained with
the worm algorithm (WA) [22] with the Aurora algorithm (AA)

- 4d relativistic Bose gas: complex scalar field theory
- Monte Carlo on thimble softens the sign problem
- results comparable to “worm algorithm”

1.6



(Generalized Thimble Method

1dea: flow to an approximate Lefschetz thimble
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Alexandru, Basar, Bedaque et al 2016



(Generalized Thimble Method

Alexandru, Basar, Bedaque et al 2016

1dea: flow to an approximate Lefschetz thimble

(TN

17\ w

|

|

|

|

|

If

LA \/U |

exact steepest *
descents contour

0.0006

approximate steepest
descents contour

e
w.m/\/\/.\. Vb L] /\/\,xvﬂv.,,__h_,*t
Ve

AR vz\} \/2




(Generalized Thimble Method

thimble thimble

NS

saddle g
i/

\

original domain (real fields) -
. basar

recall that thimble structure can change as parameters change



Phase Transitions in QFT: 2d Thirring Model
2

L =" (30 +m+ py0) Y z?vf (V1) (7 01”)

chain of interacting fermions: asymptotically free
prototype for dense quark matter
sign problem at nonzero density

- —p= T/my=~0.38
| =—e= T/my=0.19

0.6:— —o— T/m=0.13
Monte Carlo thimble
computation

T/m;=0.09

(Alexandru et al, 2016)




Tempered Lefschetz Thimble Method

probe all relevant thimbles ?7?
sign problem vs. ergodicity
coupling — dynamical variable
parallelized tempering

e.g. 2d Hubbard model
probes multiple thimbles

(Fukuma et al, 2017, 2019,...)

m
1'Of « w/tempering (T>0)
w/o tempering (T>0)
08| + reweighting (T=0)
|  — exactvalues
i - exact values (N;=o0)
0.6+

041

02!

0.0+




Tempered Lefschetz Thimble Method

probe all relevant thimbles ?7?
sign problem vs. ergodicity

coup|

1ng — dynamical variable

paral

elized tempering

e.g. 2d Hubbard model
probes multiple thimbles

~ 0.5
o
1 0.3}
l o2
1 0.1}

with tempering

(ny

(Fukuma et al, 2017, 2019,...)

l'of o w/tempering (T>0)
w/o tempering (T>0)
0.8_— + reweighting (T=0)

| — exactvalues
- exact values (N;=c0)

0.6
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02!

0.0+

_Rez
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without tempering



Phase Transitions 1n 2d Gross-Neveu Model

CGI‘OSS—NGVGU. :waiWa | 9 (wawa)

* asymptotically free; dynamical mass; chiral symmetry; model for QCD
* large Nr chiral symmetry breaking phase transition
* physics = (relativistic) Peierls dimerization instability in 1+1 dim.

chiral symmetry
breaking condensate

massless

04

massive o(x;T, 1) = <@Ew> (; T, )
02 |
ot develops crystalline
; . l . . . . | phases
0.2 0.4 2/m 0.8 1 i 14 1.6
. (Thies et al)
saddles solve an inhomogeneous gap equation
0 .
o(z;T, 1) = Indet (¢ @ — o(2; T, p))
oo (z; T, 1)

Basar, GD, Thies, 0903.1868



https://inspirehep.net/literature/815153

Phase Transitions in Gross-Neveu Model

Basar, GD, Thies, 0903.1868

 thermodynamic potential
Ulo; T, u] = Zan(T, w) folo(@, T, w)] = ap + az 0 + ay (6% + (o)) + ...

* expansion about tricritical point = Ginzburg-Landau expansion (divergent)
 mKdV hierarchy
* successive orders of GL expansion “reveal” crystal phase

Order \° Order )8 Order \'°
0.35 0.35 0.35

0.30

0.30 0.30

0.25

0.25 0.25

0.20 0.20 0.20

~ &~
0.15 0.15 0.15
0.10 0.10 0.10
ag =0 \
0.05 0.05
0.05 =0
0.00 0.00 0.00
055 060 065 070 075 080 085 0. 055 060 065 070 075 080 085 090 055 060 065 070 075 080 085 0.90
p o 10

* all orders gives full crystal phase ... but T=0 critical point is difficult


https://inspirehep.net/literature/815153

Phase Transitions in Gross-Neveu Model

 density expansion has non-perturbative terms: “trans-series”

* high-density expansion at T=0: convergent; radius gives i,

T 5 1 | 3
o)~ 5 p (1 32(mp)d | 8192(mp)8 )

* low-density expansion at T=0: (non-perturbative trans-series)

1 2p 1 =e F/r
E(p) ~ F =Y —— Fi1(p)

A7t ™=

* T=0 quantum phase transition

2
Heritical — — A P = 0
-



Resurgence and Large N Phase Transitions in Matrix Models

3rd order phase transition in Gross-Witten-Wadia unitary matrix model

Z(t,N):/ DU exp
U(N)

gtr (U + UT)

Gross-Witten, 1980
Wadia, 1980
Marino, 2008

Z depends on two parameters: 't Hooft coupling t, and matrix size N

_ 1 T

C/N?
500
4+

L

L : 1

1 i

1 Lo

l 2

3 4 A

FIG. 2. The specific heat per degree of freedom, C/
N 2, as a function of A (temperature).

_ N _

phase transition in the

“thermodynamic” large N limit




Resurgence in Matrix Models at Large N

“order parameter” A(t, N ) = <det U > satisties a Painleve III equation
Ahmed & GD, 1710.01812

N2A A
o (1-4%) = — (N2 _ 2 (A’)Z)

N appears only as a parameter: perfect for large N asymptotics

an(t) | _NseyN () | _ansey N Cnll)
A(t,N)NZ N’n r € zn: Nn r € zn: Nn ™ o o o

n

tQAN—I—tA/ |

large N 1nstanton contributions: generated from ODE

e.g. ap(t)=+v1—t

all physical observables inherit this large N trans-series structure


https://arxiv.org/abs/1710.01812

Resurgence in Matrix Models at Large N

ODE = large N weak coupling trans-series:
(0)

= igweak te_Nsweak(t) - d’gzl)(t)
V1 —
A(t, N Z N2n 2T N (1—15)1/4 n;) N7
weak coupling large N action:
Sweak (1) = cvi-t 2 arctanh (\/ 1 — t)

t



Resurgence in Matrix Models at Large N

ODE = large N weak coupling trans-series:

X AV (t) i owear teVSvenr® 4 dM (1)

A(t,N) ~+1—t
(’ ) N2n 2\/27T—N (l_t)l/él Nn

weak coupling large N action:

21 —t
Sweak (1) = — 2 arctanh (\/ 1 — t)

t

“one-1nstanton' fluctuations:

id%”(t) LB -12t-8) 1
Nn o T 96(1—t)3/2 N T

n=0



Resurgence in Matrix Models at Large N

ODE = large N weak coupling trans-series:

(1) i ogear teNSwear®) 2 g ()

A(t,N) ~ 1t

N2n 2\/27T—N (l_t)l/él Nn

n=0
weak coupling large N action:

21 —t
Sweak (1) = — 2 arctanh (\/ 1 — t)

t

“one-1nstanton' fluctuations:

id%”(t) LB -12t-8) 1
Nn o T 96(1—t)3/2 N T

n=0

resurgence: large-order growth of “perturbative coefficients™:

—1 ['(2n — 2) . (3t — 12t — 8) Syeak(t)

(0) () ~
S R T (S )2 § L 96(1- 077 (20— 3)



Lee-Yang view of Large N Phase Transitions in Matrix Models

Lee-Yang: complex zeros of Z(t, N) pinch the real t axis at the phase
transition, in the thermodynamic (large N) limit

*lmg T T T I I
10F " g B / .
N @ " @
h L /
St \ e . .
N &
N 7
of — — — — — — == — - — —-
/N
/ ° N\
51 / \ |
a e \
/e * \
! / e 8 s X l
10+ , e -. . ..“ . i
1 Re.g I-IIO % 6 g 110

Lee-Yang zeros near t=1 transition can be recovered from large t expansion



Resurgence in 2d Lattice Ising Model

diagonal correlation functions: C(s,N) = (opo0nnN)(S)
C(s, N) = tau function for Painleve VI equation (Jimbo, Miwa)

C(s, N) has a trans-series expansion: convergent about T=0, T= 0O
scaling limit: PVI—+Plllas N - o0 & T — T, (McCoy et al)

convergent conformal block expansions at low T and high T:

0O (Lisovyy et al,
T(8) ~ Z p" C(0,0+n)B(0,0+n;s) 2012,2013)

n——aoo

B(0,0; ) x Z B . (0 ), o) s\ F Ik
A UEY

resurgence also for convergent expansions GD, 1901.02076



https://arxiv.org/abs/1901.02076

Resurgent Extrapolation Costin, GD: 1904.11593, 2003.07451
) 2009.01962

* often, perturbation theory/asymptotics i1s the ONLY thing we can do

e question: how much global information can be decoded from a FINITE
number of perturbative coefficients ?

* how much “perturbative” information is required to detect, and to probe
the properties of, a phase transition, possibly at a distant point ?

Quark-Gluon Plasma

Temperature (MeV)

Color
Nuclear Superconductor

Matter
..|...|\,-.|..

0 200 400 600 800 1000 1200 1400 1600
Baryon Doping — ug (MeV)



https://arxiv.org/abs/1904.11593
https://arxiv.org/abs/2003.07451
https://arxiv.org/abs/2009.01962

Resurgent Extrapolation

» case-study: Painleve I equation y”(a;') =06 y2 (:L‘) — X

Im[x]

Stokes

Anti—Stokes

Anti—Stokes

pole expansion Relx] asymptotic expansion

Anti—Stokes
Stokes

* Painleve I equation has 5 sectors in the complex x plane, separated by phase

transitions
* tritronquée solution: poles only 1n shaded region

 suppose we expand about x=+infty to finite order N: how much do
these coefficients “know” about the other sectors?



Resurgent Extrapolation
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* there 1s an optimal way to extrapolate
» Pade-Borel + uniformizing maps: extreme precision
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* extrapolate across Stokes transitions, and also onto higher Riemann sheets

e resurgent extrapolation can decode global behavior from
surprisingly little input data from some other regime
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Resurgent Extrapolation: Euler-Heisenberg example

Borel extrapolation of one—loop effective action
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- weak to strong magnetic field extrapolation:

12 orders of magnitude from
just 10 weak field coefficients



Resurgent Extrapolation: Euler-Heisenberg example

Borel extrapolation of one—loop effective action
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magnetic to electric field analytic continuation:, ...
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4 orders of magnitude 1n imaginary part from

just 10 weak magnetic field coefficients

- weak to strong magnetic field extrapolation:

12 orders of magnitude from
just 10 weak field coefficients

Imaginary part of one—loop electric background Lagrangian
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Conclusions

“resurgence” 1s based on a new and improved form of asymptotics
deep(er) connections between perturbative and non-perturbative physics
recent applications to differential eqs, QM, QFT, string theory, ...

phase transitions from large N in 2-parameter trans-series

resurgent extrapolation: high-precision extraction of physical information
from finite order expansions

outlook: new theoretical approach to quantum systems 1n extreme conditions

outlook: computational access to strongly-coupled systems, phase transitions,
particle production, and far-from-equilibrium physics, ...



