Chiral anomalous processes in magnetospheres of compact stars

E.V. Gorbar

Taras Shevchenko National University of Kyiv Bogolyubov Institute for Theoretical Physics

E.V.G. and I.A. Shovkovy, to be submitted

September 29, 2021

Chirality

Spin state and momentum are independent quantities for non-relativistic electrons In the ultrarelativistic limit, the Weyl equation

 $\mathcal{H}_W = \pm c\sigma \cdot \mathbf{k}$

implies that spin is completely locked to momentum

E.V. Gorbar (KNU)

Chiral anomalous processes

September 29, 2021

Chiral magnetic effect

Figure: Landau levels

In a magnetic field, LLL states are completely spin polarized. Rightand left-handed electrons propagate in the opposite directions \rightarrow an imbalance (quantified by μ_5) results in an electric current $\mathbf{j} = e^2 \mu_5 \mathbf{B}/(2\pi^2)$. This is the chiral magnetic effect (CME) = ...=

E.V. Gorbar (KNU)

Chiral anomalous processes

Parallel electric and magnetic fields break a balance between the Fermi surfaces of the right- and left-handed fermions

$\dot{\mathbf{k}}_{R} = e\mathbf{E} \rightarrow$	$\frac{dN_R}{dtdz} = \frac{e\mathbf{E}}{2\pi},$	(1)
$\frac{dN_R}{dxdy} = \frac{eB}{2\pi} \rightarrow $	$\frac{dN_R}{dtdV} = \frac{e^2(\mathbf{E}\cdot\mathbf{B})}{(2\pi)^2},$	(2)
$\frac{dN_L}{dN_L} =$	$= \frac{dN_R}{dN_R}$	(3)
dt dV	dt dV	. ,

Chirality generation

Therefore, the chiral charge is not conserved (the chiral anomaly) [S. L. Adler, Phys. Rev. **177**, 2426, (1969); J. S. Bell and R. Jackiw, Nuovo Cim. A **60**, 47, (1969)]

$$\dot{q}_5 \equiv \dot{n}_R - \dot{n}_L = rac{e^2 (\mathbf{E} \cdot \mathbf{B})}{2\pi^2}$$
 (4)

Figure: Chiral imbalance $\mu_5 = (\mu_R - \mu_L)/2 \neq 0$ induced by the chiral anomaly

Many-body chiral fermion systems

Chiral matter is realized in the following physical systems:

- Ultrarelativistic primordial plasma in early Universe
- Quark-gluon plasma in heavy-ion collisions
- Electron quasiparticles in Dirac and Weyl semimetals
- Degenerate electrons in compact stars
- Relativistic jets in black holes and neutron stars
- Is there a chiral asymmetry in relativistic jets?

Chirality production in proto-neutron stars

Electron capture (core collapse $10^6 \text{ km} \rightarrow 10 \text{ km}$)

$$p + e_L^- \rightarrow n + \nu_L^e$$
 (5)

is a weak interaction process where left-handed electrons are captured by protons producing $\mu_5 \neq 0$. A. Ohnishi and N. Yamamoto, arXiv:1402.4760 suggested that magnetic field of neutron stars can be generated due to the chiral magnetic instability. Maxwell's equations

$$abla \times \mathbf{B} = \mathbf{j} + \frac{\partial \mathbf{E}}{\partial t}, \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$
(6)

with the CME and Ohm's currents

$$\mathbf{j} = \frac{\mu_5 \mathbf{B}}{2\pi^2} + \sigma \mathbf{E} \tag{7}$$

result in

$$\frac{\partial \mathbf{B}}{\partial t} = \frac{1}{\sigma} \nabla^2 \mathbf{B} + \frac{2\alpha \mu_5}{\pi \sigma} \nabla \times \mathbf{B}$$
(8)

For the field $\mathbf{B}_{\pm} \sim (\hat{x} \pm \hat{y}) e^{i(kz - \omega t)}$, modes with $0 < k < 2k_*$ are unstable

$$B_k(t) = B_k(0)e^{tk(2k_*-k)/\sigma}, \qquad k_* = \frac{\alpha\mu_5}{\pi}$$
 (9)

The maximally unstable mode occurs for $k = k_*$

Using the increase of neutron density due to the electron capture

$$\Delta n_n \sim 0.1 \, \mathrm{fm}^{-3}, \tag{10}$$

Ohnishi and Yamamoto estimated the generated chiral chemical potential

$$\mu_5 \approx 200 \text{ MeV}$$
 (11)

that may give enormous magnetic field $B \sim 10^{18}$ G. Still electrons have nonzero mass that may hinder the chiral charge generation. Since the electron mass $m_e = 0.51$ MeV is much less than the electron chemical potential $\mu_e \approx 100$ MeV, it was argued in arXiv:1402.4760 that the electron mass effects can be neglected.

Role of mass

Chirality flip rate due to electron's mass [D. Grabowska, D.B. Kaplan, and S. Reddy, Phys. Rev. D **91**, 085035 (2015)] equals

$$\Gamma_m \approx rac{lpha^2 m_e^2}{3\pi\mu_e} pprox 1.4 imes 10^{-8} \, {
m MeV}$$
 (12)

Evolution of chiral charge density is governed by

$$\frac{\partial n_5}{\partial t} = n_e \Gamma_w - n_5 \Gamma_m \tag{13}$$

During core collapse the electron fraction changes $\delta Y_e \approx 0.4$ in the free fall time $t_{\rm ff} = 0.1 \, s$ giving the chirality production rate per electron

$$\Gamma_w = rac{\dot{Y}_e}{Y_e} \sim 1 \, s^{-1} \sim 6.6 \times 10^{-22} \, {
m MeV}$$
 (14)

For the steady state solution, the chiral charge density

$$n_5 = n_e \frac{\Gamma_w}{\Gamma_m} \sim 10^{-14} n_e \tag{15}$$

and the chemical potential

$$\mu_5 = \frac{\pi^2 n_5}{\mu_e^2} \sim 10^{-14} \mu_e \tag{16}$$

are very small.

Nonzero mass strongly (!) hinders the generation of chiral asymmetry.

Jets of active galactic nuclei

Figure: M87 jet, $\gamma \approx$ 6, radio lobes stretch up to 80 kiloparsecs

E.V. Gorbar (KNU)

September 29, 2021

Central engine

Figure: Central engine is supermassive black hole $M = 6.5 \times 10^9 M_{\odot}$ with $R_s = 120 \text{ AU}$

Magnetic field $B \simeq 10^4$ G, time scale $t_0 = R_s/c \sim 10^5 s$ is very large (macroscopic) in view of $R_s \sim 10^{13} m$

E.V. Gorbar (KNU)

Chiral anomalous processes

For most optimistic $E \sim B$, the chiral charge density due to the chiral anomaly equals naively

$$n_5^{\mathrm{naive}} \simeq \frac{e^2}{2\pi^2} \mathbf{E} \cdot \mathbf{B} t_0 \sim 10^4 \,\mathrm{MeV}^3$$
 (17)

The inclusion of the chirality flip changes the situation dramatically with $\Gamma_m = \alpha^2 m_e^2/(3\pi T)$ and T = 1 MeV

$$n_5 = rac{e^2}{2\pi^2\Gamma_m} \mathbf{E} \cdot \mathbf{B} \sim 10^{-17} \mathrm{MeV}^3, \qquad \mu_5 \sim 10^{-17} \mathrm{MeV}$$
 (18)

leading to negligible chiral chemical potential

Magnetars

Figure: Artist's conception of a magnetar

 $B \sim 10^{11} - 10^{13}$ G (radio pulsars), $B \sim 10^{14} - 10^{15}$ G (magnetars). About 30 magnetars are known in the Milky Way and are observed as soft gamma-repeaters or anomalous X-ray pulsars. Magnetar SGR 1935+2154 has been associated with fast radio burst (2) (Softer (KNU)) Chiral anomalous processes September 29, 2021 15/25

Fast radio bursts

Figure: Artist's conception of FRB 181112 reaching the Earth

A fast radio burst is a transient radio pulse in the millisecond range with typical frequency 1.4 GHz and releasing on average as much energy as the Sun in 3 days E.V. Gorbar (KNU) Chiral anomalous processes September 29, 2021 16/25

Magnetospheres of compact stars

Figure: Magnetosphere of a compact star = >

E.V. Gorbar (KNU)

Chiral anomalous processes

September 29, 2021

 $\exists \rightarrow$

- Vacuum model with charges on the compact star's surface and vacuum outside
- Corotating plasma model with the Goldreich–Julian charge density $\rho = \operatorname{div} \mathbf{E} \approx -2 \,\Omega \cdot \mathbf{B}$
- Consistency with the Faraday's law implies the necessity of transient gap regions with $\mathbf{E} \cdot \mathbf{B} \neq 0$

- Chirality production is possible in the gap region, where $\mathbf{E}\cdot\mathbf{B}\neq\mathbf{0}$
- B ~ 1/r³ → only the polar cap region is of interest for chirality production
- Gap height h = 3.6 m, voltage drop across the gap 10^{12} V that gives electric field $eE_{||} = 2.1 \times 10^{-7} m_e^2$

For magnetar with $B = 10^{15}$ G and plasma temperature T = 1 MeV, we find that the steady state solution to

$$\frac{\partial n_5}{\partial t} = \frac{e^2}{2\pi^2} \mathbf{E} \cdot \mathbf{B} - \Gamma_m n_5 \tag{19}$$

leads to a sizeable chiral charge density and chiral chemical potential

$$n_5 = \frac{e^2 EB}{2\pi^2 \Gamma_m} \approx (0.1 \,\mathrm{MeV})^3, \qquad \mu_5 \approx \frac{3n_5}{T^2} \approx 3.5 \times 10^{-3} \,\mathrm{MeV}$$
 (20)
giving $k_* = \alpha \mu_5 / \pi = 8 \,\mathrm{eV}$

Dynamics in gap region

- Still electric field $E_{||} = 2.1 \times 10^{-7} m_e^2/e$ is much smaller than the Schwinger electric field $E_c = m_e^2/e$
- Gap is an intermittent phenomenon [D.B. Melrose and R. Yuen, Pulsar electrodynamics, J. Plasma Phys. **82**, 635820202 (2016)]
- As $E_{||}$ grows in the charge starvation region, it could lead to avalanches induced by a photon flux
- Gap region opening and closing is a dynamical process → particle-in-cell simulations are necessary
- Our proposition is to include the evolution equation for the chiral charge density and the CME current in these simulations

- Chirality and electron-positron pair production induced by energetic photons
- The rate of chirality flip Γ_m in a superstrong $(|eB| \gg m_e^2)$ magnetic field
- Joint evolution of chiral imbalance and magnetic fields
- Inverse magnetic cascade and its observational consequences for electromagnetic emission (relevance for fast radio bursts?)

Inverse magnetic cascade

Figure: Transfer of helicity from shorter to longer modes (red to blue)

Magnetic field helicity evolves in chirally asymmetric primordial plasma in the form of inverse cascade [A. Boyarsky, J. Frohlich, and O. Ruchayskiy, Phys. Rev. Lett. **108**, 031301 (2012)]

E.V. Gorbar (KNU)

Chiral anomalous processes

September 29, 2021

- Chirality generation is possible in polar caps of magnetars due to the chiral anomaly
- Spinodal instability due to the CME leads to strong helical electromagnetic field modes
- Observational features could be polarized electromagnetic radiation (possibly relevant for fast radio bursts)

Thank you for attention!

2