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• Future directions

Outline

• Neutron star structure and the equation of state 
(EoS)

• Multi-messenger constraints on the EoS: what 
have we learned so far?

• Introduction - dense matter and neutron 
stars
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• properties of ultra-dense matter in the inner 
cores of neutron stars (NSs) 


• a challenging problem as no terrestrial 
experiments can probe such high densities 


• also because reliable first-principle calculations 
break down at the strongly-interacting regime
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• lattice QCD gives good result at 

finite temperature, but is stymied 
currently at finite density


• perturbative QCD: only valid at 
asymptotically high densities


• can’t calculate properties of cold 
dense matter, must observe!
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 Dense matter in NSs


• stable nuclei 


• neutron-rich nuclei


• neutron-rich nuclei with 
quasi-free neutrons


• homogeneous nucleonic 
matter (liquid)


• exotica


 Fundamental questions


• what are the most relevant 
lower-energy degrees of 
freedom? 


• how does deconfinement 
evolve as T->0 on the QCD 
phase diagram?


credit: Dany Page
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Nature’s extreme labs

©NRAO

massive neutron stars ~           do exist!

• for the interior of a spherical, static, relativistic star

M (R)
astro 
obs.

GR

radio pulsar timing

micro 
theo.
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NS mass-radius diagram

massive neutron stars ~           do exist!

M (R)

micro 
theo.

astro 
obs.

GR

increasing pressure 
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SH & Prakash, 
arXiv:2006.02207

• self-bound stars with a bare surface e.g. strange matter hypothesis


• continuous (and mostly smooth) profile for normal hadronic EoSs; *also 
possible with weak/mild phase transition or crossover


• substantial softening e.g. discontinuity in the energy density induced by 
a strong sharp phase transition

Witten (1984)

Categories of the M-R relation 

2.0

1.4

Schertler et al.  (2000)

“stiffer”

“softer”
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Schematic EoSs from theory

“s
ofte

r”

“stiffer”, higher pressure

controlled 
calc.

speculate

exp.

• self-bound stars with a bare surface e.g. strange matter hypothesis


• continuous (and mostly smooth) profile for normal hadronic EoSs; *also 
possible with weak/mild phase transition or crossover


• substantial softening e.g. discontinuity in the energy density induced by 
a strong sharp phase transition
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From nuclei to neutron stars

• nuclear experiments correlate S and L

• theory extrapolates in isospin and baryon density


Lattimer & Lim (2012)stable nuclei is here 
[self-bound system]

Steiner et al., Phys. Rept. 411 (2005) 325

slope determines 

stiffn
ess (pressure)
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From nuclei to neutron stars

• under hot debate: pressures at sub-
nuclear densities and the inferred 
value of L


Lattimer & Lim (2012)

PREX Collaboration, arXiv: 2102.10767 

new! neutron skin measurement @JLab
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Nuclear physics input Drischler, SH, 
Lattimer, Prakash, 
Reddy and Zhao, 
arXiv:2009.06441

• pressure at low 
densities (outer 
core) controls 
typical NS radii: 
stiff or soft?


• reliably quantified 
uncertainties from 
chiEFT for beta-
equilibrated NSM


• less than ~5% 
deviation from 
PNM pressures 


• to extrapolate or 
match at higher 
densities in the 
inner core

crustal 
matter

inner 
core
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Typical scenarios

known up to 

saturation

nuclear matter only (standard)

1st-order PT 

crossover/quarkyonic

sharp boundary - 
Maxwell

mixed phase - Gibbs

 (geometrically separated)

• masquerade problem: likely indistinguishable 
through observations that constrain M-R only


• smooth crossover: no more easily understood in 
terms of hadrons than in terms of quarks


• 1st-OPT: mixed phase (Gibbs) is favored if the 
hadron/quark surface tension is small 

strong PT

weak PT

maximally

distinguishable
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X-ray probes of NS radii

Ozel & Freire (2016); 
Steiner et. al (2016)

• photospheric radius expansions 
(PREs) 


• quiescent low-mass x-ray 
binaries (QLMXBs) 


• conventional methods of radius estimates through surface 
photon emission detection suffer from large uncertainties
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First BNS merger detection

credit: Karan Jani/Georgia Tech

EoS affects GW emission 
during inspiral 


• tidal deformability 


• compactness 

tidal effects

GW170817 that unveiled the 
multi-messenger era


• “hear” cosmic collisions between 
densest astronomical objects


• follow-up E&M signals; “see” e.g. 
evidence for nucleosynthesis
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larger tidal parameter <-> faster GW emission

Impact on pre-merger GW signal

• tidal Love number depends on the 
EoS and the compactness M/R


• matter effects (NSs) leave imprints 
in the waveform - distinguish from 
point-particles (BHs)


• much cleaner systematics 
Postnikov et al. (2010) 
Hinderer et al. (2010)

Chatziioannou 

arXiv:2006.03168
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• smaller R (favored) <13.6km • larger R (disfavored)

chirp mass extremely 
well measured

effect from mass ratio 
uncertainty is small

Measuring NS radius with GWs
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Pure neutron matter (PNM) Drischler et al. 
PRL 125, 202702  
arXiv:2004.07232

BUQEYE Collab. 
(2020)

low-density matter is 
soft-ish
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GW + heavy pulsars 

• sound speed in the core and when rapid stiffening in the EoS begins

Drischler, SH, 
Lattimer, Prakash, 
Reddy and Zhao, 
arXiv:2009.06441

conformal limit causal limit
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GW190814
the most asymmetric 
system observed

• extremely loud event produced by 
the inspiral and merger of two 
compact objects -- one, a black 
hole, and the other of undetermined 
nature 


• the mass measured for the lighter 
compact object makes it either the 
lightest black hole or the heaviest 
neutron star ever discovered LVC collaboration, arXiv:2006.12611
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Sound speed in the core
Phases of Dense Matter 
(INT Program INT-16-2b)

McLerran & Reddy, 

PRL 122, 122701 (2019) 

rapid 
stiffening

                               


how fast pressure rises with energy density


 Possible behavior in neutron star interiors


• minimal scenario of normal nuclear matter: 
(smoothly) continuous function of pressure


• first-order phase transition scenario: finite 
energy density discontinuity induces sudden 
softening near the phase boundary


• crossover scenario/quarkyonic matter


  Limits


• asymptotically high density: ~1/3


• ~4-8 times saturation: supports massive NSs


• high-T: matches lattice calc./heavy-ion data
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Sound speed in the core
Phases of Dense Matter 
(INT Program INT-16-2b)

Baym et al. arXiv:1707.04966 
Rept. Prog. Phys. 81, 056902 

                               


how fast pressure rises with energy density


 Possible behavior in neutron star interiors


• minimal scenario of normal nuclear matter: 
(smoothly) continuous function of pressure


• first-order phase transition scenario: finite 
energy density discontinuity induces sudden 
softening near the phase boundary


• crossover scenario/quarkyonic matter


  Limits


• asymptotically high density: ~1/3


• ~4-8 times saturation: supports massive NSs


• high-T: matches lattice calc./heavy-ion data


temporary 
softening
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Constraints from max. massAlford & SH        
arXiv:1508.01261

Generic ansartz

• with weakly interacting 
quarks, very limited to 
reach two solar masses 


• high transition density 
scenario: resembles no 
PT; short extension


• low transition density 
scenario: no twin stars


still survives the 
conformal limit
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e.g. a population of BNS events
Chatziioannou & SH, arXiv:1911.07091


SH & Steiner, arXiv:1810.10967

M

R

disc. 
branch

Alford, SH & Prakash 

PRD 88, 083013 (2013)

• might identify third-family stars [strong 1st-OPT] with pre-merger GWs


• requires multiple (N~50-100) future detections to separate different 
families: NS-NS, NS-HS, HS-HS mergers


Mtrans

transR R

M

masquerade

critical strength to 
trigger an instability

Seidov (1971)
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e.g. a population of BNS events
Chatziioannou & SH, arXiv:1911.07091


SH & Steiner, arXiv:1810.10967

• might identify third-family stars [strong 1st-OPT] with pre-merger GWs


• requires multiple (N~50-100) future detections to separate different 
families: NS-NS, NS-HS, HS-HS mergers


most populated if the 
normal branch > 13 km 
and the high density 
matter is still strongly 
interacting             
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• most recent data on the heaviest NS known so far: combined information 
with precise mass measurements through Shapiro delay (radio)


• light-curve modeling of x-ray pulse profiles that are 
sensitive to the stellar compactness M/R

Cromartie et al. 

Nature Astronomy (2019)

Neutron star Interior Composition ExploreR

PSR J0740+6620

©NASA

NS radii from hotspots
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PSR J0030+0451

26



km  vs.                km

• analyses of waveforms produced by hotspots of rotation-powered pulsars

• tend to favor relatively stiffer EoS at intermediate (              ) densities

new! radius of PSR J0740+6620         

NS radii from hotspots

previously: PSR J0030+0451

Riley et al. (2021)

Miller et al. (2021)
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• nonparametric survey conditioned on ensembles of existing model EoSs

• GW170817+190425, NICER J0030 & J0740, and massive pulsars

Multimessenger constraints

radius of a 
massive NS 
first measured

Legred et al. 
(including SH), 
arXiv:2106.05313
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• tightening the pressure constraint at intermediate densities

• (90% symmetric credible intervals) best compatibility with data

Pressure vs. density

maximum NS 
inferred 

regime probed 
by radius
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Marginalized Composition

1 Stable Branch

2 + Stable Branches

• full posterior is dominated by EoSs with a single stable branch 

• onset for the unstable branch (extra softening) pushed to two ends

Single branch vs. multiple branches

expected from 
max. mass

driven by radius
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• pressure or stiffness in nuclear EoS up to twice saturation 
density is crucial for interpretations of high-density 
behavior: the golden window

Summary

• most extreme phase transitions that lead to drastic >2-3km 
reduction seem disfavored; onset restricted to either low 
or high densities

• milder PTs or smooth crossovers are fairly consistent with 
data; requires high sound speed in the inner core

• multimessenger constraints point to NS radii around 12.5 
km \pm 1.5 km
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 GW190814


• component of ambiguous nature 


• most asymmetric system observed

Looking forward

2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

mtot (M!)

0

2

4

6

8

10

P
ro
ba
bi
lit
y
de
ns
it
y

χ < 0.89

χ < 0.05

Galactic BNS

LVC collaboration 
arXiv:2001.01761

 GW190425


• total mass ~3.4 solar masses


• signal too weak to provide further 
EoS constraints R<16 km

LVC collaboration 
arXiv:2006.12611

see events of GWTC-2: arXiv:2010.14527 

light BNS 
mergers would 
be great

hunting for surprises..

more mass-
gap objects?
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Margalit & Metzger

arXiv:1710.05938


ApJL 850, L19 (2017)

Fate of merger remnant

• GW + EM constraints from 170817 seem to favor Mmax<2.16~2.3 solar 
masses    Ruiz et al. (2018), Rezzolla et al. (2018), Shibata et al. (2019)

• radius >10.68 km to prevent prompt collapse    Bauswein et al. (2017)
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• complicated spectra of excited modes depend on the EoS


• location of the dominant peak strongly correlated with NS radii


• within reach of next generation GW detectors (~10 times more sensitive)

Takami et al., arXiv:1412.3240

Post-merger dynamics

Bauswein & Stergioulas, arXiv:1502.03176
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e.g. softening effects on post-merger GW 

Radice et al.  arXiv:1612.06429

ApJL 842, L10 (2017)
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Most et al. arXiv:1807.03684

PRL 122, 061101 (2019)

hyperon onset

1st-OPT to soft 
quark matter 
after merger

• more compact remnant 
(higher central density)


• earlier collapse; higher 
frequency

35



e.g. softening effects on post-merger GW 

Bauswein & Blacker (2020)Fujimoto et al. (2022)

third-family 
stars

crossover to soft 
quark matter 
after merger

• stiff EoS at low 
density -DD2


• strong 1st-OPT to 
stiff quark matter

• soft EoS at low 
density ~N3LO chiEFT 


• rapid stiffening in the 
crossover regime
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NSBH mergers
LVK collaboration 
arXiv:2106.15163

see events of GWTC-3: arXiv:2111.03606 

• GW200105: ~1.9 + ~9 solar masses


• GW200115: ~1.5 + ~6 solar masses
no information on matter effects 
no significant EM detections
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Foucart et al. (2018)

Outcome of a NSBH merger

• NS is either tidally disrupted or plunges into the BH - mass ratio, spin, EoS


• radius determines if tides are measurable & if EM signals can be produced
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probing dense matter in NSs


• cooling of NS 1987A - neutrino 
emissivity, stellar superfluids 
(nuclear theory, condensed matter)

• merger evolution and astro/GW 
signals - out-of-equilibrium 
physics; composition details 
(simulation, nucleosynthesis)

• next Galactic supernova? 
(neutrino physics)

• asteroseismology 
(hydrodynamics, GR, nucl-th)

• …and more - add your own!

More opportunities
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Rev. Mod. Phys. 
88, 021001 (2016)

?

?

? new!

39



THANK YOU!

Q & A
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