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Quantum field theories of particle physics are 
(for the most part) weakly-interacting at short 
distances: we have a reasonable idea of how to 

calculate with them.  
But this is not the only possibility… 

Inspired by condensed-matter systems eg. graphene, I  will  

• discuss QFTs of relativistic fermions in 2+1d exhibiting  
critical behaviour, signalling a new strongly-interacting QFT 

•  argue that to characterise the Quantum Critical Point  
it is crucial to capture relevant global symmetries accurately 

•  present simulation results showing that different lattice 
discretisations tell very different stories… 



, 

The Thirring Model in 2+1d

r ! (g2Nf)−1

ψψ̄

Σ(Nf)/g2, 〈ψ̄ψ(Nf)〉/g4

S =

∫

d3x Ψ̄(γµ∂µ)Ψ + mΨ̄Ψ

im3Ψ̄γ3Ψ; im5Ψ̄γ5Ψ

m35Ψ̄γ3γ5Ψ

tr(γµγµ) = 4

13

SHLS =

∫

d3x ψ̄(∂µ + iAµ)ψ +
1

2g2
(Aµ − ∂µϕ)2

ψ "→ eiαψ; Aµ "→ Aµ + ∂µϕ; ϕ "→ ϕ + α

〈ψ̄ψ〉
m

=
∑

x

〈ψ̄γ3ψ(0)ψ̄γ3ψ(x)〉

γ3Aγ3 = γ5Aγ5 = A†

µ = 0, 1, 2

15

∂/ ≡ ∂μγμ

{γμ, γν} = 2δμν

i = 1,…, N

ψ, ψ̄

γ5 ≡ γ0γ1γ2γ3

γμ

Interaction between conserved currents:   
like charges repel, opposite charges attract

ℒ = ψ̄i(∂/ + m)ψi +
g2

2N
(ψ̄iγμψi)2

Covariant quantum field theory of  
N flavors of interacting fermion in 2+1 dimensions. 

Fermions are spinor fields         acted on by 4x4 Dirac matrices 

μ, ν = 0,1,2,3



 Many applications of 
“Flatland fermions”

in condensed matter physics

• Nodal fermions in 
d-wave superconductors

• Spin liquids in 
Heisenberg AFM

• surface states of 
topological insulators

•  graphene
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Relativity in Graphene
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∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

〈ψ̄ψ〉 = 0

H = −t
∑

r∈B

3
∑

i=1

b†(r)a(r + si) + a†(r + si)b(r)

9

“tight-binding” Hamiltonian

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

〈ψ̄ψ〉 = 0

H = −t
∑

r∈B

3
∑

i=1

b†(r)a(r + si) + a†(r + si)b(r)

H =
∑

#k

(

Φ(#k)a†(#k)b(#k) + Φ∗(#k)b†(#k)a(#k)
)

9

In momentum space

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

〈ψ̄ψ〉 = 0

H = −t
∑

r∈B

3
∑

i=1

b†(r)a(r + si) + a†(r + si)b(r)

H =
∑

#k

(

Φ(#k)a†(#k)b(#k) + Φ∗(#k)b†(#k)a(#k)
)

Φ(#k) = −t

[

eikxl + 2 cos
(

√
3kyl

2

)

e−ikxl
2

]

9

with

describes hopping of electrons in π-orbitals
from A to B sublattices and vice versa

The electronic properties of graphene were first 
studied theoretically almost 75 years ago

P.R. Wallace, Phys. Rev. 71 (1947) 622

Rules of the Dance
On each carbon atom there can reside 0, 1 or 2 

electrons which can hop between sites



Define states

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

〈ψ̄ψ〉 = 0

H = −t
∑

r∈B

3
∑

i=1

b†(r)a(r + si) + a†(r + si)b(r)

H =
∑

#k

(

Φ(#k)a†(#k)b(#k) + Φ∗(#k)b†(#k)a(#k)
)

Φ(#k) = −t

[

eikxl + 2 cos
(

√
3kyl

2

)

e−ikxl
2

]

|#k±〉 = (
√

2)−1[a†(#k) ± b†(#k)]|0〉

9
⇒ 〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

10

Half-filling (neutral “undoped” graphene) has zero energy at 
Dirac points at corners of first Brillouin Zone:

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π

3
√

3l
)

10

the pitch of the cone 
 is the “Fermi velocity” 
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GRAPHENE: FROM TIGHT-BINDING MODEL TO QED2+1 7
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Fig. 2. (Colour online) The energy band structure of graphene. Valence and conduction bands
meet at six K points.

and

ε(k) = t

√

1 + 4 cos2
kxa

2
+ 4 cos

kxa

2
cos

√
3kya

2
. (12)

Accordingly, because the graphene structure contains two atoms per unit cell (two
sublattices), the spectrum of quasiparticles excitations has two branches (bands)
with the dispersion43 E± = ±ε(k) shown in Fig. 2. In Eq. (10) we introduced the
spinors

Υσ(k) =

(

aσ(k)
bσ(k)

)

(13)

with the operator Υσ(k) being the Fourier transform of the spinor Υσ(n) =

(

an,σ

bn,σ

)

:

Υσ(n) =
√

S

∫

BZ

d2k

(2π)2
eiknΥσ(k). (14)

Here S =
√

3a2/2 is the area of a unit cell and the integration in Eqs. (10) and
(14) goes over the extended rhombic Brillouin zone (BZ). We also add to H0 the
Zeeman term and the chemical potential

HZ = −
∑

σ

µσ

∫

BZ

d2k

(2π)2
Υ†

σ(k)Υσ(k) (15)
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To explain the half-integer QHE qualitatively, we invoke
the formal expression2,14–17 for the energy of massless relativistic
fermions in quantized fields, EN ¼ [2e!hc*

2B(N þ 1/2 ^ 1/2)]1/2.
In quantum electrodynamics, the sign^ describes two spins, whereas
in graphene it refers to ‘pseudospins’. The latter have nothing to do
with the real spin but are ‘built in’ to the Dirac-like spectrum of
graphene; their origin can be traced to the presence of two carbon
sublattices. The above formula shows that the lowest LL (N ¼ 0)
appears at E ¼ 0 (in agreement with the index theorem) and
accommodates fermions with only one (minus) projection of the
pseudospin. All other levels N $ 1 are occupied by fermions with
both (^) pseudospins. This implies that for N ¼ 0 the degeneracy is
half of that for any otherN. Alternatively, one can say that all LLs have
the same ‘compound’ degeneracy but the zero-energy LL is shared
equally by electrons and holes. As a result the first Hall plateau occurs
at half the normal filling and, oddly, both n ¼ 21/2 and þ1/2
correspond to the same LL (N ¼ 0). All other levels have normal
degeneracy 4B/f0 and therefore remain shifted by the same 1/2 from
the standard sequence. This explains the QHE at n ¼ N þ 1/2 and, at
the same time, the ‘odd’ phase of SdHO (minima in rxx correspond to
plateaux in rxy and therefore occur at half-integer n; see Figs 2 and 4),
in agreement with theory14–17. Note, however, that from another
perspective the phase shift can be viewed as the direct manifestation
of Berry’s phase acquired by Dirac fermions moving in magnetic
field20,21.
Finally, we return to zero-field behaviour and discuss another

feature related to graphene’s relativistic-like spectrum. The spectrum
implies vanishing concentrations of both carriers near the Dirac
point E ¼ 0 (Fig. 3e), which suggests that low-T resistivity of the

zero-gap semiconductor should diverge at Vg < 0. However, neither
of our devices showed such behaviour. On the contrary, in the
transition region between holes and electrons graphene’s conduc-
tivity never falls below a well-defined value, practically independent
of T between 4K and 100 K. Figure 1c plots values of the maximum
resistivity rmax found in 15 different devices at zero B, which
within an experimental error of ,15% all exhibit rmax < 6.5 kQ
independently of their mobility, which varies by a factor of 10. Given
the quadruple degeneracy f, it is obvious to associate rmax with
h/fe2 ¼ 6.45 kQ, where h/e2 is the resistance quantum.We emphasize
that it is the resistivity (or conductivity) rather than the resistance (or
conductance) that is quantized in graphene (that is, resistance R
measured experimentally scaled in the usual manner as R ¼ rL/w
with changing length L andwidthw of our devices). Thus, the effect is
completely different from the conductance quantization observed
previously in quantum transport experiments.
However surprising it may be, the minimum conductivity is an

intrinsic property of electronic systems described by the Dirac
equation22–25. It is due to the fact that, in the presence of disorder,
localization effects in such systems are strongly suppressed and
emerge only at exponentially large length scales. Assuming the
absence of localization, the observed minimum conductivity can be
explained qualitatively by invoking Mott’s argument26 that the mean
free path l of charge carriers in ametal can never be shorter than their
wavelength lF. Then, j ¼ nem can be rewritten as j ¼ (e2/h)kFl, so j
cannot be smaller than,e2/h for each type of carrier. This argument
is known to have failed for 2D systems with a parabolic spectrum in
which disorder leads to localization and eventually to insulating
behaviour22,23. For 2DDirac fermions, no localization is expected22–25

and, accordingly, Mott’s argument can be used. Although there is a
broad theoretical consensus15,16,23–28 that a 2D gas of Dirac fermions
should exhibit a minimum conductivity of about e2/h, this quantiza-
tion was not expected to be accurate and most theories suggest a
value of ,e2/ph, in disagreement with the experiment.
Thus, graphene exhibits electronic properties that are distinctive

for a 2D gas of particles described by the Dirac equation rather than
the Schrödinger equation. The work shows a possibility of studying

Figure 4 | QHE for massless Dirac fermions. Hall conductivity jxy and
longitudinal resistivity rxx of graphene as a function of their concentration
at B ¼ 14 T and T ¼ 4K. jxy ; (4e2/h)n is calculated from the measured
dependences of rxy(Vg) and rxx(Vg) as jxy ¼ rxy/(rxy

2 þ rxx
2 ). The

behaviour of 1/rxy is similar but exhibits a discontinuity at Vg < 0, which is
avoided by plotting jxy. Inset: jxy in ‘two-layer graphene’ where the
quantization sequence is normal and occurs at integer n. The latter shows
that the half-integer QHE is exclusive to ‘ideal’ graphene.

Figure 3 | Dirac fermions of graphene. a, Dependence of BF on carrier
concentration n (positive n corresponds to electrons; negative to holes).
b, Examples of fan diagrams used in our analysis7 to findBF.N is the number
associated with different minima of oscillations. The lower and upper curves
are for graphene (sample of Fig. 2a) and a 5-nm-thick film of graphite with a
similar value of BF, respectively. Note that the curves extrapolate to different
origins, namely to N ¼ 1/2 and N ¼ 0. In graphene, curves for all n
extrapolate toN ¼ 1/2 (compare ref. 7). This indicates a phase shift ofpwith
respect to the conventional Landau quantization in metals. The shift is due
to Berry’s phase14,20. c, Examples of the behaviour of SdHO amplitude Dj
(symbols) as a function of T for m c < 0.069 and 0.023m0 (see the
dependences showing the rapid and slower decay with increasing T,
respectively); solid curves are best fits. d, Cyclotronmassm c of electrons and
holes as a function of their concentration. Symbols are experimental data,
solid curves the best fit to theory. e, Electronic spectrum of graphene, as
inferred experimentally and in agreement with theory. This is the spectrum
of a zero-gap 2D semiconductor that describes massless Dirac fermions with
c* 1/300 the speed of light.
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Energy spectrum is symmetric about E = 0

Φ( !K± + !p) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

12

Taylor expand 
@ Dirac point

Φ( !K± + !p) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

12

Two independent 
Dirac points



ie.  low-energy excitations are 
massless fermions with Fermi velocity 

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π

3
√

3l
)

a±(!p) = a( !K± + !p)

H ' vF

∑

!p

Ψ†(!p)!α.!pΨ(!p)

Ψ =( b+, a+, a−, b−)tr

10

Now combine them into a “4-spinor”

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π

3
√

3l
)

a±(!p) = a( !K± + !p)

H ' vF

∑

!p

Ψ†(!p)!α.!pΨ(!p) + O(p2)

Ψ =( b+, a+, a−, b−)tr

vF =
3

2
tl ≈

1

300
c

10

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π

3
√

3l
)

a±(!p) = a( !K± + !p)

H ' vF

∑

!p

Ψ†(!p)!α.!pΨ(!p)

Ψ =( b+, a+, a−, b−)tr

10

Define modified operators

Φ( !K± + !p) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

H " vF

∑

!p

Ψ†(!p)









py + ipx

py − ipx

−py − ipx

−py + ipx









Ψ(!p)

= vF

∑

!p

Ψ†(!p)!α.!p Ψ(!p)

12

Dirac Hamiltonian

For monolayer graphene the number of flavors N = 2
(2 C atoms/cell × 2 Dirac points/zone × 2 spins = 2 flavors × 4 spinor)

Φ( !K± + !p) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

H " vF

∑

!p

Ψ†(!p)









py + ipx

py − ipx

−py − ipx

−py + ipx









Ψ(!p)

= vF

∑

!p

Ψ†(!p)!α.!p Ψ(!p)

{αi, αj} = 2δij

12

⇒

etc.



Inter-electron interactions: an effective field theory 

〈!k±|H|!k±〉 = ±(Φ(!k) + Φ∗(!k)) ≡ ±E(!k)

Φ(!k) = 0 ⇒ !k = !K± = (0,±
4π

3
√

3l
)

a±(!p) = a( !K± + !p)

H ' vF

∑

!p

Ψ†(!p)!α.!pΨ(!p) + O(p2)

Ψ =( b+, a+, a−, b−)tr

vF =
3

2
tl ≈

1

300
c

S =

Nf
∑

a=1

∫

dx0d
2x(ψ̄aγ0∂0ψa + vF ψ̄a!γ.!∇ψa + iV ψ̄aγ0ψa)

+
1

2e2

∫

dx0d
3x(∂iV )2,

10

V-propagator (large-Nf): D(p) =

(

2|!p|
e2

+
Nf

8

|!p|2

(p2
0 + v2

F |!p|2)
1
2

)−1

11

classical 3d Coulomb ∝
1
r

quantum screening due
to virtual electron-hole pairs

D(p) =

(

2|!p|
e2

+
Nf

8

|!p|2

(p2
0 + v2

F |!p|2)
1
2

)−1

λ =
e2Nf

16εε0!vF
"

1.4Nf

ε

11

fermions live on two-dimensional “braneworld” & interact with photons living in the 3d bulk

νµ

(i) parametrises quantum vs. classical
(ii) depends on dielectric properties of substrate

“instantaneous” Coulomb potential
since vF≪c - unscreened since ρ(E=0)=0

∝
1
r
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For sufficiently large g2, or sufficiently small N, the Fock vacuum is 
conceivably disrupted by a particle-hole bilinear condensate

Hypothesis: 
the semimetal-insulator transition at 

 defines a Quantum Critical Point:
whose universal properties characterise 
low-energy excitations of graphene

g2
c (N)

D.T. Son, Phys. Rev. B75 (2007) 235423

Corresponds to a new strongly-interacting QFT… 
…a priori there are no small dimensionless parameters 😮

⟨ψ̄ψ⟩ ≡
∂ ln Z
∂m

≠ 0
resulting in a 
dynamically-generated 
mass gap at the Dirac point

Cf. chiral symmetry breaking in QCD



What happens at a critical point?

Three views of NaF6

T < Tc T > TcT ≃ Tc

Inter-particle correlations scale   
the correlation length  as  

∝ e−x/ξ

ξ → ∞ T → Tc

 
ξ
a

∼
Λ
μ

critical phenomena ⇔ continuum QFT

UV cutoff

scale of interesting 
 physics, eg. particle massmolecular scale

droplet size



r ! (g2Nf)−1

ψψ̄

Σ(Nf)/g2, 〈ψ̄ψ(Nf)〉/g4

S =

∫

d3x Ψ̄(γµ∂µ)Ψ + mΨ̄Ψ

13

Continuum Symmetries in d = 2 + 1
J
H
E
P
0
9
(
2
0
1
5
)
0
4
7

This paper explores the application of formulations originally developed to optimise

the reproduction of global symmetries in lattice QCD, namely Ginsparg-Wilson (GW)

fermions [30] and, principally, domain wall fermions [31, 32], to reducible fermion models in

2+1d. After reviewing the relevant symmetries and identifying three distinct but physically

equivalent formulations of the mass term in the next section, in section 3 we generalise the

GW relation to fermions in 2+1d and identify remnant quasi-global symmetries, which

recover the desired U(2Nf ) form only in the continuum limit a → 0. A realisation of the

GW symmetries by an overlap operator [33] is given. In section 4 we define a domain

wall fermion operator in 2+1+1d which permits the definition of fermi fields localised on

domain walls at either end of the newly introduced 3 direction which purport to satisfy

the U(2Nf ) symmetry in the limit that the wall separation Ls → ∞. An important

component of the argument is the reformulation of the three distinct mass terms given in

section 2. Section 5 presents results from numerical investigations of the Nf = 1 domain

wall operator in the context of quenched non-compact QED3, which permits the use of

either weak, strong, or intermediate coupling. While there is no attempt to explore either

continuum or thermodynamic limits, we calculate both bilinear condensates (section 5.1)

and meson propagators (section 5.2) using each of the three alternative mass terms, and

show that in almost all cases as Ls → ∞ the results are in accord with a scenario in

which U(2) symmetry is broken to U(1)⊗U(1). Interestingly, the most rapid convergence

to the U(2)-symmetric limit is obtained for the case of a “twisted” mass term imψ̄γ3ψ. For

intermediate coupling the results for the condensate 〈ψ̄ψ〉 are compatible in the massless

limit with old results obtained with staggered fermions [35]. Finally in section 6 we present

a summary of the findings and an outlook for future investigations. We also discuss the

intriguing possibility that for reducible theories of fermions in 2+1d the overlap and domain

wall approaches may not coincide except in the continuum limit.

2 Relativistic fermions in 2+1d

I begin by reviewing the continuum formulation of a gauge theory with fermion fields

Ψ, Ψ̄ in a reducible representation of the spinor algebra, based on 4 × 4 Euclidean Dirac

matrices γµ with {γµ, γν} = 2δµν , µ, ν = 0, 1, 2, and having a parity-invariant mass. The

weakly-interacting long-wavelength limit of staggered lattice fermions naturally reproduces

this formulation with Nf = 2 flavors [20] — in what follows flavor indices are suppressed.

The action can be written (for convenience, the necessary
∫

d3x is omitted in all action

definitions)

S = Ψ̄DΨ+mΨ̄Ψ (2.1)

where the covariant derivative operator D can be expanded as

D = γ0D0 + γ1D1 + γ2D2 = −D†. (2.2)

This has global symmetries

Ψ (→ eiαΨ ; Ψ̄ (→ Ψ̄e−iα, (2.3)

Ψ (→ eαγ3γ5Ψ ; Ψ̄ (→ Ψ̄e−αγ3γ5 , (2.4)

– 3 –

For m=0  S is invariant under global U(2N) symmetry generated by 

For m≠0,      γ3 (iv)  and γ5 (ii) rotations are no longer symmetries

⇒   U(2N) → U(N)⊗U(N)

r ! (g2Nf)−1

ψψ̄

Σ(Nf)/g2, 〈ψ̄ψ(Nf)〉/g4

S =

∫

d3x Ψ̄(γµ∂µ)Ψ + mΨ̄Ψ

im3Ψ̄γ3Ψ; im5Ψ̄γ5Ψ

m35Ψ̄γ3γ5Ψ

13

The Haldane mass is not parity-invariant

Mass term           is hermitian & invariant under parity xµ ↦ -xµ

Two physically equivalent antihermitian   
twisted or Kekulé mass terms:

 

r ! (g2Nf)−1

ψψ̄

Σ(Nf)/g2, 〈ψ̄ψ(Nf)〉/g4

S =

∫

d3x Ψ̄(γµ∂µ)Ψ + mΨ̄Ψ

im3Ψ̄γ3Ψ; im5Ψ̄γ5Ψ

13

r ! (g2Nf)−1

ψψ̄

Σ(Nf)/g2, 〈ψ̄ψ(Nf)〉/g4

S =

∫

d3x Ψ̄(γµ∂µ)Ψ + mΨ̄Ψ

im3Ψ̄γ3Ψ; im5Ψ̄γ5Ψ

m35Ψ̄γ3γ5Ψ

tr(γµγµ) = 4

1

g2
=

2Λ

π2
−

Σ

π
≡

1

g2
c

−
Σ

π

13

J
H
E
P
0
9
(
2
0
1
5
)
0
4
7

where γ3 and γ5 are two additional traceless, hermitian, and linearly independent 4×4 ma-

trices which anticommute with all the γµ (see (2.8), (2.9) below), and as usual in Euclidean

matric γ5 ≡ γ0γ1γ2γ3. For fermion mass m = 0 there are two additional symmetries

Ψ #→ eiαγ5Ψ ; Ψ̄ #→ Ψ̄eiαγ5 , (2.5)

Ψ #→ eiαγ3Ψ ; Ψ̄ #→ Ψ̄eiαγ3 . (2.6)

These four rotations generate a global U(2) invariance, which generalises to U(2Nf ) for sev-

eral flavors. The mass term explicitly breaks the symmetry from U(2Nf ) → U(Nf )⊗U(Nf ).

It will prove interesting to explore different forms of the mass term, which are simply

accessed by changing integration variables in the path integral. Since there is no axial

anomaly in 2 + 1d, this procedure is straightforward in the continuum and the resulting

action describes identical physics. If, however, the representations of the Dirac matrices are

tied to the particular form of the underlying lattice, as is the case for staggered fermions

or graphene, then due to discretisation effects the mass terms are not equivalent and

correspond to distinct patterns of symmetry breaking (see the discussion following eq. (2.17)

for an example). Let’s recast the continuum action (2.1) in terms of two two-component

spinors u and d:

S = ūD̃u− d̄D̃d+mūu+md̄d , (2.7)

where D̃ = −D̃† = σ1D0+σ2D1+σ3D2 and the σi are Pauli matrices. The link with (2.1)

requires the identification

γ0 =

(

σ1
−σ1

)

; γ1 =

(

σ2
−σ2

)

; γ2 =

(

σ3
−σ3

)

, (2.8)

implying

γ3 =

(

−i

i

)

; γ5 =

(

1

1

)

; iγ3γ5 =

(

1

−1

)

. (2.9)

We now define an important discrete symmetry, parity, here specified for convenience in

terms of reversal of all three spacetime axes xµ #→ −xµ (in general parity must invert

an odd number of axes, since flipping an even number is equivalent to a rotation: the

Euclidean parity operation which flips just one axis is formally equivalent to the time-

reversal operation frequently discussed in condensed matter physics). In fact it can be

realised in two ways:

ū #→ d̄; d̄ #→ −ū; u #→ d; d #→ −u; i.e. Ψ #→ iγ3Ψ; Ψ̄ #→ −iΨ̄γ3 (2.10)

ū #→ −id̄; d̄ #→ −iū; u #→ id; d #→ iu; i.e. Ψ #→ iγ5Ψ; Ψ̄ #→ −iΨ̄γ5 . (2.11)

This should be no surprise, since both γ3 and γ5 behave identically with respect to the γµ
appearing in (2.1). In either case the parity operation effectively exchanges the u and d

fields, absorbing the sign change of D̃ under x → −x, but keeping the mass term invariant.

Now consider a change of basis

ψ =
1√
2
(u+ d); χ =

1√
2
(−u+ d); ψ̄ =

1√
2
(ū− d̄); χ̄ =

1√
2
(ū+ d̄) (2.12)

– 4 –

(i) (ii)
(iii) (iv)



Numerical Lattice Approach

vector auxiliary  defined on link between x and x+μAμx

Early work used staggered fermions

no such expectation in general at a QCP

   U(N)⊗U(N) → U(N) symmetry breaking resulting 
from gap generation:

{

non-unitary link fields

{Slatt =
1
2 ∑

x,μi

χ̄i
xημx(1 + iAμx)χi

x+ ̂μ − χ̄i
xημx(1 − iAμx− ̂μ)χi

x− ̂μ

+m∑
xi

χ̄i
x χi

x +
N

4g2 ∑
xμ

A2
μx

In weak coupling continuum limit 
 U(2Nf) symmetry is recovered, with Nf  = 2N

this is an instance of “lattice fermion doubling”



Find symmetry broken phase (gapped, insulating) 
for small , large N g2

0 0.5 1 1.5 2

g
-2

0

2

4

6

8

N
f

M

Λ
∝ exp

[

−
2π

√

Nfc
Nf

− 1

]

Nfc =
128

3π2
# 4.32 (d = 3)

〈ψ̄ψ〉 &= 0

ψ '→ Uψ; ψ̄ '→ ψ̄U−1γ5γ3; U ∈ U(2Nf)

Slatt =
1

2

∑

xµi

χ̄i
xηµx(1 + iAµx)χ

i
x+µ̂ − χ̄i

xηµx(1 − iAµx−µ̂)χ
i
x−µ̂

+ m
∑

xi

χ̄i
xχ

i
x +

N

4g2

∑

xµ

A2
µx

i = 1, . . . , N

χi
x, χ̄i

x

6

∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

〈ψ̄ψ〉 = 0

9

weaker  
coupling 

stronger  
coupling 

Nc = Nfc / 2 ⪆ 3

Christofi, SJH, Strouthos PRD75 (2007) 101701

Phase diagram of the Staggered Thirring Model



Two Old Conjectures…

In leading order large-N, in the limit g2→∞, the 
interaction between conserved currents is mediated by 
a vector boson with mass  MV

m
=

6π
mg2

→ 0 SJH, PRD51 (1995) 5816

Thirring QCP in strong coupling limit
equivalent to IR limit of QED3?

 An asymptotically-free theory like QED3 is constrained 
by the following inequality:

Here f =            × (thermodynamic free energy density)

fIR ≤ fUV

Appelquist, Cohen, Schmaltz PRD 60 (1999) 045003

1.

2.

f can be related to # degrees of freedom, 
be they massless fermions or Goldstone bosons

−
90

π2T4



Prediction for QED3 from   fIR ≤ fUV
Staggered fermions U(N)⊗U(N)→U(N):

N2 ≤
3
4

× 2d × N ⇒ Nc ≤ 6

Continuum fermions U(2N)→U(N)⊗U(N):

2N2 ≤
3
4

× 4N ⇒ Nc ≤
3
2

Big disparity !

This motivates studies using 
fermions transforming with the correct symmetry

# Goldstone bosons # fermion dofs

{

NB F-theorem prediction: Nc < 4.4
Giombi, Klebanov, Tarnopolsky JPA49 (2016) 135403



 Staggered Fermion Bag Algorithm with minimal Nf = 2 (N=1)

Thirring Model:    ν=0.85(1),  η=0.65(1),  ηψ=0.37(1)

Chandrasekharan & Li, PRL 108 (2012) 140404; PRD88 (2013) 021701 

U(1) GN Model:  ν=0.849(8), η=0.633(8), ηψ=0.373(3)

Interactions between staggered fields χ, χ spread over elementary cubes. 
Only difference between Thirring & GN is body-diagonal term

2

YX

X

Y

X

Y

FIG. 1. A pictorial representation of the bond couplings UL (left),
UF (center) and UB (right) discussed in the text. Each bond refers to
the four-fermion interaction term of the form χxχx χyχy .

that live at the center of cubes and couple to fermions on the
corners [22]. After integrating over the auxiliary fields we ob-
tain four-fermion models that couple fermion fields within a
hypercube. Their action can be written as

S =
∑

x,y

χ(x) Dxy χ(y) −
∑

〈xy〉

U〈xy〉χxχx χyχy (1)

where χ(x),χ(x) denote two Grassmann valued fermion
fields at the lattice site x andD is the free massless staggered
fermion matrix defined by

Dxy =
1

2

∑

α

ηx,α [δx+α,y − δx,y+α] , (2)

in which α labels the three directions and ηx,α =
e(iπζa·x), ζ1 = (0, 0, 0), ζ2 = (1, 0, 0), ζ3 = (1, 1, 0) are
the staggered fermion phase factors [41]. The four-fermion
interaction term involves the sum over three types bonds de-
noted by 〈xy〉 (see Fig. 1): (1) link bonds L (where x, y are
nearest neighbor sites), (2) face bonds F (where x, y are sites
diagonally across faces of squares), (3) body bonds B (where
x, y are sites diagonally across the bodies of cubes).
In a general lattice four-fermion model the three couplings

UL, UF and UB will be arbitrary. However, in our study they
are constrained since the action (1) is obtained by integrating
over auxiliary fields from a model that contains a single cou-
pling. In the Gross-Neveu model with Z2 chiral symmetry,
we find UL = 2UF = 4UB ≡ U , while with U(1) chiral sym-
metry we find UL = 4UB ≡ U,UF = 0 [33]. In other words,
face diagonal bonds break the U(1) symmetry to Z2. In ad-
dition to chiral symmetries, models with action (1) have an
SU(2) flavor symmetry which is hidden in the auxiliary field
approach and was not appreciated earlier [42]. Indeed, when
UF = 0 it is easy to verify that the action (1) is invariant under
the following SU(2)× U(1) symmetry,
(

χe

χe

)

→ eiθV

(

χe

χe

)

,
(

χo χo

)

→
(

χo χo

)

V †e−iθ,

(3)
where the subscripts e and o refer to even and odd sites and V
is an SU(2) matrix. When UF '= 0 the symmetry is restricted
to θ = π/2 and the action is invariant only under an SU(2)×
Z2 symmetry.
Since four-fermion couplings are perturbatively irrelevant

in three dimensions, models with action (1) have a massless

0 5 10 15 20 25 30 35 40 45
L

0.42
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0.46

χU
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0.97
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/L
3

FIG. 2. Plot of the chiral susceptibility at U = ∞ for the Z2 (top)
and U(1) (bottom) models. The solid curve in the top graph is a
fit to the constant for L ≥ 16, while in the bottom graph it is a fit
to the finite size scaling form (5) for L ≥ 10 obtained from chiral
perturbation theory.

fermion phase at small couplings U . As the coupling in-
creases, a second order phase transition to a massive fermion
phase accompanied by spontaneous breaking of chiral sym-
metries occurs at a critical coupling Uc. Our goal is to study
the critical exponents at this transition. However, before fo-
cusing on the transition region, it is useful to understand qual-
itatively the physics of the massive phase at large U . There is
an important difference between spontaneous breaking of Z2

and U(1) symmetries; the former does not produce massless
Goldstone bosons while the latter does. It is important to dis-
tinguish this feature in our results. For this purpose we have
computed the chiral condensate susceptibility,

χ =
1

L3

∑

x,y

〈χxχxχyχy〉, (4)

as a function of the lattice size L at U = ∞. At infinite
coupling our models can be mapped into a statistical model
of closed packed dimers and can be updated efficiently us-
ing worm algorithms [43]. Results obtained are shown in
Fig. 2. As expected, finite size effects are enhanced in the
U(1) invariant model due to the presence of massless Gold-
stone bosons. Results for L ≥ 10 fit well to the leading order
chiral perturbation theory form [44]

χ/L3 =
Σ2

2

(

1 + 0.224/(ρsL)
)

, (5)

with Σ2 = 0.844(1), ρs = 0.381(3) and χ2/d.o.f = 0.4.
In contrast, the Z2 model shows very small finite size effects
which indicates the absence of massless modes, and the data
for L ≥ 16 fits the constant 0.971(1) with a χ2/d.o.f = 1.7.
In order to uncover the properties of the quantum critical

point we focus on the chiral susceptibility (4) and the fermion
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UF (center) and UB (right) discussed in the text. Each bond refers to
the four-fermion interaction term of the form χxχx χyχy .

that live at the center of cubes and couple to fermions on the
corners [22]. After integrating over the auxiliary fields we ob-
tain four-fermion models that couple fermion fields within a
hypercube. Their action can be written as

S =
∑

x,y

χ(x) Dxy χ(y) −
∑

〈xy〉

U〈xy〉χxχx χyχy (1)

where χ(x),χ(x) denote two Grassmann valued fermion
fields at the lattice site x andD is the free massless staggered
fermion matrix defined by

Dxy =
1

2

∑

α

ηx,α [δx+α,y − δx,y+α] , (2)

in which α labels the three directions and ηx,α =
e(iπζa·x), ζ1 = (0, 0, 0), ζ2 = (1, 0, 0), ζ3 = (1, 1, 0) are
the staggered fermion phase factors [41]. The four-fermion
interaction term involves the sum over three types bonds de-
noted by 〈xy〉 (see Fig. 1): (1) link bonds L (where x, y are
nearest neighbor sites), (2) face bonds F (where x, y are sites
diagonally across faces of squares), (3) body bonds B (where
x, y are sites diagonally across the bodies of cubes).
In a general lattice four-fermion model the three couplings

UL, UF and UB will be arbitrary. However, in our study they
are constrained since the action (1) is obtained by integrating
over auxiliary fields from a model that contains a single cou-
pling. In the Gross-Neveu model with Z2 chiral symmetry,
we find UL = 2UF = 4UB ≡ U , while with U(1) chiral sym-
metry we find UL = 4UB ≡ U,UF = 0 [33]. In other words,
face diagonal bonds break the U(1) symmetry to Z2. In ad-
dition to chiral symmetries, models with action (1) have an
SU(2) flavor symmetry which is hidden in the auxiliary field
approach and was not appreciated earlier [42]. Indeed, when
UF = 0 it is easy to verify that the action (1) is invariant under
the following SU(2)× U(1) symmetry,
(

χe

χe

)

→ eiθV

(

χe

χe

)

,
(

χo χo

)

→
(

χo χo

)

V †e−iθ,

(3)
where the subscripts e and o refer to even and odd sites and V
is an SU(2) matrix. When UF '= 0 the symmetry is restricted
to θ = π/2 and the action is invariant only under an SU(2)×
Z2 symmetry.
Since four-fermion couplings are perturbatively irrelevant

in three dimensions, models with action (1) have a massless
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fermion phase at small couplings U . As the coupling in-
creases, a second order phase transition to a massive fermion
phase accompanied by spontaneous breaking of chiral sym-
metries occurs at a critical coupling Uc. Our goal is to study
the critical exponents at this transition. However, before fo-
cusing on the transition region, it is useful to understand qual-
itatively the physics of the massive phase at large U . There is
an important difference between spontaneous breaking of Z2

and U(1) symmetries; the former does not produce massless
Goldstone bosons while the latter does. It is important to dis-
tinguish this feature in our results. For this purpose we have
computed the chiral condensate susceptibility,

χ =
1

L3

∑

x,y

〈χxχxχyχy〉, (4)

as a function of the lattice size L at U = ∞. At infinite
coupling our models can be mapped into a statistical model
of closed packed dimers and can be updated efficiently us-
ing worm algorithms [43]. Results obtained are shown in
Fig. 2. As expected, finite size effects are enhanced in the
U(1) invariant model due to the presence of massless Gold-
stone bosons. Results for L ≥ 10 fit well to the leading order
chiral perturbation theory form [44]

χ/L3 =
Σ2

2

(

1 + 0.224/(ρsL)
)

, (5)

with Σ2 = 0.844(1), ρs = 0.381(3) and χ2/d.o.f = 0.4.
In contrast, the Z2 model shows very small finite size effects
which indicates the absence of massless modes, and the data
for L ≥ 16 fits the constant 0.971(1) with a χ2/d.o.f = 1.7.
In order to uncover the properties of the quantum critical

point we focus on the chiral susceptibility (4) and the fermion

Staggered fermions not reproducing expected distinction 
between Thirring and GN QCPs

… so we need “better” lattice fermions?

(Nf→∞: ν=η=1)
(Nf  < Nfc ≈7)



Basic idea as Ls→∞: 
• zero-modes of DDWF localised on walls are ± eigenmodes of γ3
• Modes propagating in bulk can be decoupled (with cunning)

“Physical” fields
in 2+1d target space 

Fermions propagate freely along a 
fictitious third direction 

of extent Ls with open boundaries

Domain Wall Fermions
Fermions propagate freely along a 
fictitious third direction of extent Ls

the only coupling between the walls
is proportional to explicit massgap

State-of-the-Art for QCD:
“Domain Wall Fermions”

U(2Nf)➞U(Nf)⨂U(Nf)
recovered on the walls

as Ls→∞
SJH: JHEP 1509 (2015) 047; 

Phys.Lett. B754 (2016) 264-269
First graphene results out soon….

J
H
E
P
0
9
(
2
0
1
5
)
0
4
7

coordinates of a lattice site and s = 1, . . . , Ls its coordinate along the extra dimension,

here labelled 3. The kinetic term in the action is then

SDW =
∑

x,y

∑

s,r

Ψ̄(x, s)DDW(x, s|y, r)Ψ(y, r) , (4.1)

with domain wall Dirac operator

DDW(x, s|y, r) = δs,rD(x|y) + δx,yD
DW
3 (s|r). (4.2)

The first term is the orthodox 2 + 1d Wilson operator

D(x|y) =
1

2

∑

µ=0,1,2

[

(1− γµ)Uµ(x)δx+µ̂,y + (1 + γµ)U
†
µ(y)δx−µ̂,y

]

+ (M − 3)δx,y (4.3)

with gauge link variables Uµ(x), and DDW
3 controls hopping in the 3 direction:

DDW
3 (s|s′) =

1

2

[

(1− γ3)δs+1,s′(1− δs′,Ls
) + (1 + γ3)δs−1,s′(1− δs′,1)− 2δs,s′

]

. (4.4)

Note there are Dirichlet boundary conditions imposed in direction 3, at s = 1 and s = Ls.

The inclusion of DDW
3 explicitly destroys the equivalence of γ3 and γ5 in the dynamics

described by the action (4.1), so it will be important to test whether and how this is

recovered in practice.

The key idea [31] is that the dynamics generated by (4.3) and (4.4), with suitably

chosen M , results in fermion zeromodes localised on domain walls at s = 1, Ls, which are

also respectively ∓ eigenmodes of γ3. The 2+1d physics we wish to describe is formulated

entirely using these localised modes (the Wilson terms in (4.3), (4.4) render the would-be

zeromodes due to unwanted doubler species non-normalisable in the limit Ls → ∞ [31]).

In particular we need to define 2+1d fermion mass terms corresponding to their continuum

counterparts in (2.1), (2.14) and (2.17). To this end, define fermion fields ψ(x), ψ̄(x) living

in 2+1d:

ψ(x) = P−Ψ(x, 1) + P+Ψ(x, Ls);

ψ̄(x) = Ψ̄(x, Ls)P− + Ψ̄(x, 1)P+, (4.5)

where from now on P± ≡ 1
2(1±γ3). We thus consider actions of the form (4.1) supplemented

by three alternative mass terms:

mhSh = mhψ̄ψ = mh[Ψ̄(x, Ls)P−Ψ(x, 1) + Ψ̄(x, 1)P+Ψ(x, Ls)]; (4.6)

m3S3 = im3ψ̄γ3ψ = im3[Ψ̄(x, Ls)γ3P−Ψ(x, 1) + Ψ̄(x, 1)γ3P+Ψ(x, Ls)]; (4.7)

m5S5 = im5ψ̄γ5ψ = im5[Ψ̄(x, Ls)γ5P+Ψ(x, Ls) + Ψ̄(x, 1)γ5P−Ψ(x, 1)]. (4.8)

It is interesting to note that Sh has the same form as the fermion mass term for domain

wall formulations of 3 + 1d physics, and couples fields from opposite walls; S3 also couples

opposite walls, but S5 couples fields living on the same wall.

In the next section we will examine the numerical consequences of the three terms (4.6)–

(4.8) and in particular check whether they yield compatible, U(2)-symmetric results in the

Ls → ∞ limit.

– 9 –

with projectors  

∂3γ3Ls

P± = 1
2 (1 ± γ3)

ℒ = Ψ̄(x, s)DDWFΨ(y, s′ )

m



Bottom Up View…

• Modes localised on walls carry U(2N)-invariant physics 
• Fermion doublers don’t contribute to normalisable modes 
• Bulk modes can be made to decouple

in DWF approach we simulate 
2+1+1d fermions

Desiderata…

Claim…
It appears to work for…. 
• carefully-chosen “domain wall height” M 
• smooth gauge field background 



write the fermion bilinear: ψ̄Mψ = ψ̄(D + m)ψ

Then U(2N) symmetry can be re-expressed:
{γ3, D} = {γ5, D} = [γ3γ5, D] = 0

There is no regular lattice discretisation respecting 
these relations, while simultaneously describing unitary, local  

dynamics of a single Dirac fermion species 
Nielsen & Ninomiya,1981 

The closest we can get is articulated by the  
Ginsparg-Wilson relations:

detDDWF(mi)

detDDWF(mh = 1)
= detDLs(mi)

{γ3, D} = 2Dγ3D

{γ5, D} = 2Dγ5D

[γ3γ5, D] = 0

16

detDDWF(mi)

detDDWF(mh = 1)
= detDLs(mi)

{γ3, D} = 2Dγ3D

{γ5, D} = 2Dγ5D

[γ3γ5, D] = 0

16

detDDWF(mi)

detDDWF(mh = 1)
= detDLs(mi)

{γ3, D} = 2Dγ3D

{γ5, D} = 2Dγ5D

[γ3γ5, D] = 0

[∂3, Dµ] = [∂3, D̂
2] = 0

[∂3, ∂̂
2
3 ] != 0

detD > 0

〈ψ̄ψ〉Ls = 〈ψ̄ψ〉∞ − A(m, g2)e−∆(m,g2)Ls

16

RHS is O(aD), so U(2N) recovered in long-wavelength limit if D local

Top Down View…



By construction GW is satisfied by the 2+1d overlap operator

266 S. Hands / Physics Letters B 754 (2016) 264–269

and

D =





1 0 · · · 0

0 1 0
...

... 1
. . .

0 C+ − (T −1)Ls C−




. (15)

Again, note L "= L(mh), and detL = detU = 1. We conclude

det[D(1)−1 D(mh)]
= det[D̃(1)−1 D̃(mh)] = det[DLs,Ls (1)−1DLs,Ls (mh)], (16)

where the 4V Nc × 4V Nc matrix DLs,Ls is the Schur complement 
of D̃:

DLs,Ls (mh) = C+ − (T −1)Ls C−

= (1 + T −1)γ3
1
2

[
(1 + mh) − (1 − mh)γ3

1 − T
1 + T

]

= DLs,Ls (1)
1
2

[
(1 + mh) − (1 − mh)γ3

1 − T
1 + T

]
, (17)

with T ≡ T Ls . We now multiply both sides of (17) by D−1
Ls,Ls

(1)
to find that the combination of domain wall fermion determinants 
det[D(1)−1 D(mh)] is the same as the determinant of the truncated 
overlap operator

D Ls[H] = 1
2



(1 + mh) − (1 − mh)γ3

1 −
(

1−H
1+H

)Ls

1 +
(

1−H
1+H

)Ls



 (18)

≡ 1
2

[
(1 + mh) − (1 − mh)γ3 tanh(Ls tanh−1 H)

]
. (19)

In order for the tanh function to be defined by a power series the 
second equality (19) requires H to be a bounded operator, namely 
|H | < 1. The factor D(1)−1 can be thought of as modelling Pauli–
Villars boson fields which cancel the contributions of the fermions 
from the 4d bulk. Now, tanh(Ls tanh−1(x)) is an analytic approxi-
mation to the signum function sgn(x) which becomes exact in the 
limit Ls → ∞. So long as H is hermitian and bounded, we there-
fore recover the overlap operator [9]:

lim
Ls→∞

D Ls = Dov

= 1
2

[
(1 + mh) − (1 − mh)γ3sgn

(
−γ3

DW − M
2 + (DW − M)

)]

= 1
2

[
(1 + mh) + (1 − mh)

A√
A† A

]
, (20)

where the unphysical nature of the sign of γ3 is manifest. For 
mh → 0 (20) coincides with the 2 + 1d overlap operator given 
in [7].

Next let’s check the overlap operator (20) has the expected 
weak-coupling limit. For link fields Uµ = 1, and with lattice spac-
ing set to unity, in momentum space DW = i 

∑
µ γµ sin pµ +∑

µ(1 − cos pµ), implying propagator poles at pµ ≈ 0 and near 
the Brillouin Zone corners pµ ≈ π . At the origin DW ≈ iγµpµ so

sgn(H) = H√
H2

≈ −γ3
(i/p − M)

(2 − M)

(2 − M)

M
= −γ3

[
i/p
M

− 1
]

(21)

so that the overlap operator

Dov ≈ i/p
(1 − mh)

2M
+ mh. (22)

Taking into account a benign wavefunction renormalisation, this 
is the propagator for a continuum species with mass proportional 
to mh . By contrast near a doubler pole p̃µ = pµ − (i, j, k)π ≈ 0, 
i, j, k ∈ {+1, −1},

sgn(H) ≈ −γ3
i/̃p + (2n − M)

(2n − M)
= −γ3

[
i/̃p

(2n − M)
+ 1

]

(23)

with n = |i| + | j| + |k|, so the overlap is

Dov ≈ 1 + (1 − mh)

2(2n − M)
i/̃p. (24)

So long as (2n − M) is not too small, the species has a mass of 
O(1) in cutoff units, and decouples from low-energy physics.

Since mh and M have opposite signs, for strong enough cou-
pling there is the possibility of the system entering a parity-
breaking Aoki phase signalled by a bilinear condensate with the 
quantum numbers of an isotriplet pion. This was investigated in 
the context of a 3d Gross–Neveu model in [15], where it was found 
that the Aoki phase was manifest for mh < 0 with the width of the 
parity-broken region vanishing exponentially as Ls → ∞.

3. Equivalence of γ3 and γ5

Despite the manifest independence of the overlap operator Dov
(20) of which matrix γ3 or γ5 is used to define the hermitian 
argument H of the signum function, for finite Ls it remains un-
clear whether the distinction is important or not [7], since clearly 
the definition (4) of the domain wall operator D3 distinguishes 
them. We can address this using the analytic approximation for 
signum (19).

First, the series expansion for tanh−1 H is well-defined since 
H = γ3 A is a bounded operator, i.e. |H | = M/(2 − M) < 1 for 0 <
M < 11:

tanh−1 H = H + H3

3
+ H5

5
+ · · · (25)

Each term is an odd power, so can be reexpressed using
γ3 Aγ3 = A†:

H2n+1 = γ3 A(A† A)n. (26)

The signum approximation is then

tanh(Lsγ3 A
∑

n

bn(A† A)n) = sinh(Lsγ3 A
∑

n bn(A† A)n)

cosh(Lsγ3 A
∑

n bn(A† A)n)
(27)

with bn = (2n + 1)−1. In the McLaurin series expansions of the hy-
perbolic functions on the RHS of (27), expansion of the argument 
yields a general term of the form

Lm
s




∞∑

n1=0

∞∑

n2=0

· · ·
∞∑

nm




m∏

i=1

[bni (γ3 A)(A† A)ni ] (28)

For the sinh series, m is an odd integer so that the term in square 
brackets reads

(
∏

bni )(γ3 A)(A†)n1(γ3 A)(A† A)n2 . . . (γ3 A)(A† A)nm

= (
∏

bni )(γ3 A)(A†)n1(A† A)n2+1(A† A)n3 . . .

(A† A)nm−1+1(A† A)nm

= (
∏

bni )(γ3 A)(A† A)
∑

i ni+(m−1)/2. (29)

1 For free fermions the most stringent limit on M comes from the origin of mo-
mentum space. In practice on any finite lattice with antiperiodic temporal boundary 
conditions M = 1 is safe since |H| = 1/

√
5 − 4 cos π

Lt
< 1 for Lt < ∞.

Dov

ψ̄ψ

[(ψ̄ψ)2] = 2(d − 1) − 2γψ̄ψ = d − 2 + η = 2

∏

!

ηηηη = −1

DLs = 1

2
[(1 + mh) + (1 − mh)γ3 tanh(Ls tanh−1(γ3A))]

= 1
2
[(1 + mh) + (1 − mh)γ5 tanh(Ls tanh−1(γ5A))]

A ≡ [2+(DW−M)]−1[DW−M ]; DW local; Ma = O(1)

14

SHLS =

∫

d3x ψ̄(∂µ + iAµ)ψ +
1

2g2
(Aµ − ∂µϕ)2

ψ "→ eiαψ; Aµ "→ Aµ + ∂µϕ; ϕ "→ ϕ + α

〈ψ̄ψ〉
m

=
∑

x

〈ψ̄γ3ψ(0)ψ̄γ3ψ(x)〉

γ3Aγ3 = γ5Aγ5 = A†
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and

D =





1 0 · · · 0

0 1 0
...

... 1
. . .

0 C+ − (T −1)Ls C−




. (15)

Again, note L "= L(mh), and detL = detU = 1. We conclude

det[D(1)−1 D(mh)]
= det[D̃(1)−1 D̃(mh)] = det[DLs,Ls (1)−1DLs,Ls (mh)], (16)

where the 4V Nc × 4V Nc matrix DLs,Ls is the Schur complement 
of D̃:

DLs,Ls (mh) = C+ − (T −1)Ls C−

= (1 + T −1)γ3
1
2

[
(1 + mh) − (1 − mh)γ3

1 − T
1 + T

]

= DLs,Ls (1)
1
2

[
(1 + mh) − (1 − mh)γ3

1 − T
1 + T

]
, (17)

with T ≡ T Ls . We now multiply both sides of (17) by D−1
Ls,Ls

(1)
to find that the combination of domain wall fermion determinants 
det[D(1)−1 D(mh)] is the same as the determinant of the truncated 
overlap operator

D Ls[H] = 1
2



(1 + mh) − (1 − mh)γ3

1 −
(

1−H
1+H

)Ls

1 +
(

1−H
1+H

)Ls



 (18)

≡ 1
2

[
(1 + mh) − (1 − mh)γ3 tanh(Ls tanh−1 H)

]
. (19)

In order for the tanh function to be defined by a power series the 
second equality (19) requires H to be a bounded operator, namely 
|H | < 1. The factor D(1)−1 can be thought of as modelling Pauli–
Villars boson fields which cancel the contributions of the fermions 
from the 4d bulk. Now, tanh(Ls tanh−1(x)) is an analytic approxi-
mation to the signum function sgn(x) which becomes exact in the 
limit Ls → ∞. So long as H is hermitian and bounded, we there-
fore recover the overlap operator [9]:

lim
Ls→∞

D Ls = Dov

= 1
2

[
(1 + mh) − (1 − mh)γ3sgn

(
−γ3

DW − M
2 + (DW − M)

)]

= 1
2

[
(1 + mh) + (1 − mh)

A√
A† A

]
, (20)

where the unphysical nature of the sign of γ3 is manifest. For 
mh → 0 (20) coincides with the 2 + 1d overlap operator given 
in [7].

Next let’s check the overlap operator (20) has the expected 
weak-coupling limit. For link fields Uµ = 1, and with lattice spac-
ing set to unity, in momentum space DW = i 

∑
µ γµ sin pµ +∑

µ(1 − cos pµ), implying propagator poles at pµ ≈ 0 and near 
the Brillouin Zone corners pµ ≈ π . At the origin DW ≈ iγµpµ so

sgn(H) = H√
H2

≈ −γ3
(i/p − M)

(2 − M)

(2 − M)

M
= −γ3

[
i/p
M

− 1
]

(21)

so that the overlap operator

Dov ≈ i/p
(1 − mh)

2M
+ mh. (22)

Taking into account a benign wavefunction renormalisation, this 
is the propagator for a continuum species with mass proportional 
to mh . By contrast near a doubler pole p̃µ = pµ − (i, j, k)π ≈ 0, 
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sgn(H) ≈ −γ3
i/̃p + (2n − M)

(2n − M)
= −γ3

[
i/̃p

(2n − M)
+ 1

]

(23)

with n = |i| + | j| + |k|, so the overlap is

Dov ≈ 1 + (1 − mh)

2(2n − M)
i/̃p. (24)

So long as (2n − M) is not too small, the species has a mass of 
O(1) in cutoff units, and decouples from low-energy physics.

Since mh and M have opposite signs, for strong enough cou-
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∑
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 Formulational issues

By analogy with QCD, formulate auxiliary field Aµ(x) 
throughout bulk and 3-static ie. ∂3Aµ=0:                        

Can we simulate N = 1 with DWF and HMC?

Let’s start by defining the fermion action for a single reducible fermion
flavor (ie. N = 1) in terms of 2+1+1d fields:

S = Ψ̄DΨ = Ψ̄DWΨ + Ψ̄D3Ψ + miSi (1)

where the mass term Si will be specified later and the components of the
kinetic operator are:

DW = γµDµ − (D̂2 + M); (2)

D3 = γ3∂3 − ∂̂2
3 , (3)

with

Dµxy =
1

2
[Uµxδx+µ̂ − U †

µyδx−µ̂,y] ≡ −D†
µxy (4)

−(D̂2 + M)xy = −
1

2
[
∑

µ

(Uµxδx+µ̂ + U †
µyδx−µ̂,y) − (6 − 2M)δxy] (5)

≡ −(D̂2 + M)†xy

∂3xy =
1

2
[δx+3̂,y(1 − δx3,Ls

) − δx−3̂,y(1 − δx3,1)] ≡ −∂†3xy (6)

−∂̂2
3xy = −

1

2
[δx+3̂,y(1 − δx3,Ls

) + δx−3̂,y(1 − δx3,1) − 2δxy] (7)

≡ −(∂̂2
3xy)

†

It is important to note that D̂2 = D̂2† #=
∑

µ D2
µ and ∂̂2

3 = ∂̂2†
3 #= ∂3∂3.

In the Dirac basis γµ = σµ+1 ⊗ τ3, µ = 0, 1, 2 and γ3 = 11⊗ τ2, for mi = 0
we can write

D =

(

σµ+1Dµ − (D̂2 + M + ∂̂2
3) −i∂3

i∂3 −σµ+1Dµ − (D̂2 + M + ∂̂2
3)

)

(8)

Use the identity

det

(

X Y
W Z

)

= detXdet(Z − WX−1Y ) (9)

where X, Y, Z, W are all square blocks of even dimension to write

detD = det(−i∂3)det(i∂3 − (DW + ∂̂2
3)

†(−i∂3)
−1(DW + ∂̂2

3)) (10)

1
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3xy)
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∑
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In the Dirac basis γµ = σµ+1 ⊗ τ3, µ = 0, 1, 2 and γ3 = 11⊗ τ2, for mi = 0
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σµ+1Dµ − (D̂2 + M + ∂̂2
3) −i∂3

i∂3 −σµ+1Dµ − (D̂2 + M + ∂̂2
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(8)

Use the identity
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(
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1

with

detDDWF(mi)

detDDWF(mh = 1)
= detDLs(mi)

{γ3, D} = 2Dγ3D

{γ5, D} = 2Dγ5D

[γ3γ5, D] = 0

[∂3, Dµ] = [∂3, D̂
2] = 0

[∂3, ∂̂
2
3 ] != 0

16

detDDWF(mi)

detDDWF(mh = 1)
= detDLs(mi)

{γ3, D} = 2Dγ3D

{γ5, D} = 2Dγ5D

[γ3γ5, D] = 0

[∂3, Dµ] = [∂3, D̂
2] = 0

[∂3, ∂̂
2
3 ] != 0
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importance of seeking the Ls → ∞ limit of all observables
in the DWF approach, in particular the bilinear condensate.
Section III presents a first investigation in this direction in
the quenched limit N ¼ 0, and enables us to address the
question what does spontaneous symmetry breaking due to
bilinear condensation look like with DWF?

III. RESULTS IN THE QUENCHED LIMIT N = 0

The quenched theory with N ¼ 0 is technically very
simple to explore; one simply performs fermionic mea-
surements using the operator M on field configurations
inexpensively generated using the Gaussian auxiliary
action. Unlike gauge theory, there is no theoretical expect-
ation that the results have any relevance to the full theory;
this is best understood via the auxiliary propagator SAðxÞ in
the large-N expansion, which at strong coupling decays as
jxj−2 as a result of vacuum polarization corrections [3], but
which remains a contact SAðxÞ ∼ δdðxÞ in the quenched
limit. Figure 3 compares condensate data obtained with
the bulk formulation for N ¼ 0, 1, 2 for m ¼ 0.01 with
Ls ¼ 16; for N > 0 the spacetime volume is 123, but the
low computational cost enabled the quenched study on 163.
Compared to Fig. 1 the vertical scale has been extended
to accommodate the quenched data: the hierarchy
hψ̄ψðN¼0Þi≫hψ̄ψðN¼1Þi≫hψ̄ψðN¼2Þi is as expected;
the low eigenvalues of the effective Dirac operator respon-
sible for the condensate signal via the Banks-Casher relation
also suppress the determinant in the path integral measure.
To explore the Ls → ∞ limit we performed a systematic

study of the bilinear condensate hψ̄ψðg2; mÞi on 163 × Ls
with Ls ¼ 8;…; 40, g−2 ¼ 0.2; 0.3;…; 1.0 and m ¼ 0.01;
0.02;…; 0.05. Each boson configuration, separated by 100
HMC trajectories, was analysed using 10 stochastic noise
vectors located on either wall. 25000 trajectories were
studied for Ls ¼ 8, 16, and 5000 for Ls ¼ 24, 32, 40.

Results for hψ̄ψðLsÞi withm ¼ 0.05 and varying g−2 are
shown in Fig. 4, and for varying m at g−2 ¼ 0.4, 0.8 in
Fig. 5. It is evident that finite-Ls corrections are significant,
and increase in importance as the coupling grows. We have
modeled them using the notation of (12) as follows:

hψ̄ψiLs¼∞−hψ̄ψiLs
¼2ϵ3ðLs;m;g2Þ¼Aðm;g2Þe−Δðm;g2ÞLs :

ð21Þ

The resulting three parameter fits are plotted as dashed lines
in Figs. 4 and 5. The exponential form (21) works well
across the dataset, but the asymptotic value hψ̄ψi∞
becomes poorly constrained as m → 0 resulting in large
uncertainties in this limit. Also note that the strongest
coupling g−2 ¼ 0.2 looks to be an outlier in both Figs. 3
and 4, reflecting the probable influence of strong coupling
artifacts.
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FIG. 3. hψ̄ψi vs g−2 for N ¼ 0, 1, 2 on L3 × 16 with m ¼ 0.01.
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Bilinear Condensates in Quenched QED3 on 243×Ls…
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J
H
E
P
0
9
(
2
0
1
5
)
0
4
7

Figure 1. Residual errors as a function of Ls for bilinear condensates evaluated using point spatial
sources on 243 at β = 0.5.

γ5 do not appear in (4.1) on an equal footing. By hypothesis, however, U(2) symmetry

should be recovered as Ls → ∞.

To begin, we present results obtained using a spatial point source on a configuation

generated at β = 0.5 (in fact, the numbers result from averaging over 10 spatial sources);

the systematics are easiest to expose at the strongest coupling. Note from (4.6)–(4.8) that

each condensate gets contributions from two terms: for 〈ψ̄ψ〉 and i〈ψ̄γ3ψ〉 the two terms

arise from four-dimensional propagators running from s = 1 to Ls and Ls to 1 respectively;

for i〈ψ̄γ5ψ〉 each contribution is from a propagator starting and ending on the same domain

wall. Within the working numerical precison each contribution is the complex conjugate of

the other, so the sum is real. However, it turns out the imaginary component parametrises

the approach to the U(2)-symmetric limit. Define i〈Ψ̄(1)γ3Ψ(Ls)〉 = i
2〈ψ̄γ3ψ〉Ls

+ i∆h(Ls)

(where the first term is real, and the spatial coordinate x is suppressed), and then write:

1

2
〈ψ̄ψ〉Ls

=
i

2
〈ψ̄γ3ψ〉LS→∞ +∆h(Ls) + εh(Ls); (5.3)

i

2
〈ψ̄γ3ψ〉Ls

=
i

2
〈ψ̄γ3ψ〉LS→∞ + ε3(Ls); (5.4)

i

2
〈ψ̄γ5ψ〉Ls

=
i

2
〈ψ̄γ3ψ〉LS→∞ + ε5(Ls). (5.5)

The residuals ∆h and εi must vanish for a U(2)-invariant limit.

Figure 1 plots the residuals for Ls = 16, . . . , 40; note that ∆h is measured directly

as the imaginary component of i〈ψ̄γ3ψ〉 using just the + components of Ψ, Ψ̄, while to

estimate the εi the value of i〈ψ̄γ3ψ〉Ls→∞ is taken to be that measured at Ls = 48. Several

features are apparent:

• The dominant correction by almost an order of magnitude is ∆h, which contributes to

the hermitian condensate 〈ψ̄ψ〉 but not, as a result of the twist, to the antihermitian

i〈ψ̄γ3,5ψ〉. Indeed, at the weakest coupling β = 2.0 ∆h is the only residual large

enough to measure.
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ForN ¼ 1 at the strongest coupling examined g−2 ¼ 0.3,
hψ̄ψðmÞi is a factor of two or greater than data from
the next strongest coupling, and a linear extrapolation
limm→0hψ̄ψðmÞi ¼ Σ ≈Oð0.1Þ ≠ 0 looks reasonable, par-
ticularly if the 163 point is used at m ¼ 0.01. This would be
consistent with the spontaneous breakdown of U(2) sym-
metry due to bilinear condensation at this coupling, although
nonlinear extrapolations to a symmetric limit hψ̄ψi ¼ 0
cannot at this stage be excluded. If symmetry is indeed
broken, on general grounds significant finite volume cor-
rections are expected in the mesoscopic regime mΣV ≲ 1,
and the data support this; note that the dimensionless
combination mΣV ≈ 1.5 for the 123, m ¼ 0.01 point.
In summary, Fig. 10 presents strong evidence for the

Thirring model with g−2 ¼ 0.3 to exhibit qualitatively very
different behavior from that observed at weaker couplings,
due to a significant enhancement of fermion-antifermion
pairing. Finite-Ls corrections are also much more important
in this regime, as illustrated in Fig. 9, and an Ls → ∞
extrapolation proves key to interpreting the data. The
simplest explanation is that U(2) symmetry is spontane-
ously broken at the strongest coupling examined, imply-
ing Nc > 1.

B. The approach to Ls → ∞
It is interesting to compare the m-dependence of the

decay constant Δ, implicitly defined in (21), between
different couplings. Of course, for a fixed window in Ls,
Δ is easier to pin down for data with large curvature,
corresponding to strong couplings and larger masses. For
this reason the large uncertainties on Δ from the weaker
couplings g−2 ¼ 0.5, 0.6 do not yield much of use; however
results from the stronger couplings g−2 ¼ 0.3, 0.4 plotted
in Fig. 11 show a marked contrast. Within sizeable
uncertainties Δðg−2 ¼ 0.4Þ ≈ 0.06–0.07 is approximately
m-independent, whereas Δðg−2 ¼ 0.3Þ ∝ m, the linearity

becoming more convincing still if the 163 value is taken at
m ¼ 0.01. The straight line fit shown yields a slope
1.33(15), with intercept consistent with passing through
the origin. This is another hint of a qualitative difference in
the behavior of the model at these two couplings.
Another measure for the approach to the Ls → ∞ limit

is the residual δh defined in (14). As shown in [15], it
quantifies the difference between the U(2)-equivalent con-
densates hψ̄ψi and the measured ihψ̄γ3ψi, and should
therefore vanish in a simulation respecting U(2) symmetry.
Results for δhðLsÞ for various couplings are shown on a log
scale in Fig. 12. Just as in quenched QED3 (see Fig. 2 of
[15]), δh is strongly coupling-dependent. In all cases the
data is consistent with an asymptotic behavior δh ∝ e−cLs

implying U(2) restoration in the large-Ls limit; however
the restoration becomes slower as coupling increases. There
is a marked difference between g−2 ¼ 0.6, where δh is
roughly m-independent, and g−2 ¼ 0.3 where data from all
5 masses are plotted, and c found apparently to decrease
systematically with m. At this strong coupling for m ¼
0.01 δh is of the same order of magnitude as the signal
ihψ̄γ3ψi even for Ls ¼ 48. For the larger 163 lattice, c is
smaller still; a similar trend was observed in [15].
The findings of both Figs. 11 and 12 are consistent with

the extrapolation Ls → ∞ used to obtain Fig. 10, and
moreover both display qualitative differences between
strong and weak coupling, thus supporting the argument
that g−2 ¼ 0.3 and g−2 ¼ 0.6 lie in different phases.
However the approach to the large-Ls limit becomes very
slow in the symmetry broken phase in the limit m → 0,
which will almost certainly present practical difficulties in
future more refined simulations, and may also raise more
conceptual problems related to the existence of a U(2)-
symmetric limit at strong coupling.
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FIG. 11. The decay constant ΔðmÞ obtained from fits to (21) for
g−2 ¼ 0.3, 0.4.
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FIG. 12. The residual δhðLsÞ, defined in (14), for various g−2

and m ¼ 0.01. For g−2 ¼ 0.3 results for all 5 mass values are
shown, along with 163, m ¼ 0.01 (open circles). For g−2 ¼ 0.6
results for m ¼ 0.05 are shown as open circles.

CRITICAL FLAVOR NUMBER IN THE 2þ 1D THIRRING MODEL PHYS. REV. D 99, 034504 (2019)

034504-9

am=0.01

am=0.05

U(2) symmetry restoration requires residual δh → 0

Qualitatively different at strong and weak coupling, 
and slow…

😦

peak at criticality is roughly as expected, once an empirical
rescaling is applied. However, there are features of Fig. 9
which are clearly problematic: the m ordering of the data is
opposite to model expectations, with χl increasing with m
over the whole β range studied, and the convergence of χl
curves with different m as β grows large seen in Fig. 11 is
not observed. We postpone further discussion of these
issues to Sec. IV.
Next we discuss the approach to recovery of U(2)

symmetry expected as Ls → ∞. Reference [22] introduced
a residual δh defined in terms of the 2þ 1þ 1-dimensional
fields as follows:

δhðLsÞ ¼ ImhΨ̄ðx; s ¼ 1Þiγ3Ψðx; s ¼ LsÞi
¼ −ImhΨ̄ðx; s ¼ LsÞiγ3Ψðx; s ¼ 1Þi: ð18Þ

In Ref. [22] 2δh was found to furnish a lower bound for the
difference between hψ̄ψi and hψ̄iγ3ψi, and to vanish
∝ e−cLs for quenched QED3. In the Thirring model,
δhðLsÞ for various couplings was presented in Fig. 12 of
Ref. [14]. While in all cases δh still decreases with Ls, it
grows larger as coupling increases, and by β ¼ 0.3 its
decay constant c even develops a dependence on m.
Figure 12 taken at fixed Ls ¼ 48 confirms that the m
dependence of δh does indeed set in for β ≲ 0.4, and that δh
continues to grow as β decreases, suggesting that the
recovery of U(2) symmetry will be an ever-increasing
challenge in the symmetry-broken phase as m → 0.
Finally, Fig. 13 shows results for the bosonic auxiliary

action density ð2g2Þ−1hA2
μi. As discussed in Ref. [14], for

DWFs with the bulk formulation of the Thirring model
there is no simple interpretation in terms of a local four-
fermion condensate available; rather we regard it as an extra
observable sensitive to light fermion dynamics. Its behavior
is nonmonotonic, with a minimum at β ≃ 0.46 before rising
to approach and then exceed the free-field value 3

2 at

β ≃ 0.24. The notable feature of Fig. 13 is the fermion
mass dependence; broadly speaking the departure from the
free-field result increases with decreasing m (although the
m ordering of the data is somewhat noisy), the effect being
most pronounced for 0.3≲ β ≲ 0.4 immediately above the
suspected critical region.

C. Properties of the associated overlap operator

The equivalence of DWFs [21,27] and the (truncated)
overlap operator [28] is well established in 3þ 1D, e.g.,
[29]. This equivalence is further shown in 2þ 1D [24] for
both the regular mass term mψ̄ψ and the linearly inde-
pendent twisted mass terms imψ̄γ3;5ψ introduced above. As
such, the locality of the domain wall operator in the target
dimensionality can be demonstrated by showing the local-
ity of the overlap operator.
We use the Shamir and Wilson formulations of the

overlap operator with twisted mass −imψ̄γ3ψ given by

D3
OLðmÞ ¼ 1 − imγ3

2
þ 1þ imγ3

2
VS=W ð19Þ
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FIG. 11. Susceptibility χlðβ; mÞ obtained by differentiation of
the EoS (16). The inset shows the “corrected” version discussed
in Sec. IV.

FIG. 12. The U(2)-breaking residual δhðβ; mÞ on 163 × 48.

FIG. 13. Auxiliary action density ð2g2Þ−1hA2
μi vs β on

163 × 48. The dashed line through thema ¼ 0.005 data is merely
to guide the eye.
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on  123 × Ls → ∞ as a function of  on β ≡ ag−2 163 × 48

163×Ls=48, am=0.005, ag-2=0.3:  
RHMC Hamiltonian step requires ~20k 
solver iterations (recall non-unitary links) 



m = A(g−2 − g−2
c )⟨ψ̄ψ⟩δ−1/β + B⟨ψ̄ψ⟩δ

Fit to renormalisation group-inspired 
equation of state suggests QCP exists for N=1

 Ls → ∞

Latest data extrapolated with  and straddling  Ls = 64,80 βc
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Preliminary EoS fit in  limitLs → ∞

Critical parameters
βc ≡ g−2

c = 0.283(1)

δ = 4.17(5) β = 0.320(5)

Cf: old result for  staggered fermion  
⇔  Kähler-Dirac fermion 
≠  Dirac fermions!
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hyperscaling ⇒  ν = 0.55(1) η = 0.16(1)

Dirac and Kähler-Dirac fermions have distinct QCPs

1 < Nc < 2

δ = 2.75(9) β = 0.57(2)
ν = 0.71(3) η = 0.60(4)

3 < Nc < 4
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Funnies….

•Susceptibility  shows inverted mass hierarchy 

•Axial Ward Identity  a long way from being satisfied

χℓ = ⟨(ψ̄ψ)2⟩ − ⟨ψ̄ψ⟩2

⟨ψ̄ψ⟩/mχπ = 1

limit of the model is now taken as β → β! > 0. In Ref. [11]
β! was taken to be the location of the maximum of
hψ̄ψðβÞi, enabling a model equation of state hψ̄ψðNÞi in
the effective strong-coupling limit and consequent predic-
tion ofNc. A decrease of hψ̄ψiβ→0 has also been reported in
simulations with SLAC fermions [17,18] and with DWFs
in a variant “surface” formulation of the model [20],
suggesting that strong-coupling lattice artifacts are a
generic feature of the Thirring model, and may have a
more general origin than that suggested by the large-N
approach. Be that as it may it will clearly be important to
establish a clear separation between β! and any βc
associated with a Thirring model QCP. From Fig. 8 we
might estimate β! ≈ 0.25, uncomfortably close, with cur-
rent resolution, to the βc estimates of Sec. III A.
At this point it is appropriate to discuss a technical aside.

In the RHMC algorithm described in Ref. [14], it is
necessary to calculate fractional powers of the fermion
kernel A ¼ M†M. In practice this is performed using a
rational approximation

Ap ≃ rpðAÞ ¼ α0 þ
XNpf

i¼1

αi
Aþ βi

; ð17Þ

where the coefficients αi, βi may be calculated using the
Remez algorithm implementation described in Ref. [26].
They are chosen so that over a spectral range ðλd; 50.0Þ,
jrpðxÞ − xpj < 10−6 for matrices needed during trajectory
guidance and < 10−13 for those needed in the Monte Carlo
acceptance step. For all work to date we have used
λd ¼ 10−4 corresponding to the smallest value of ðmaÞ2
explored, which translates to partial fraction numbers
Npf ¼ 12 (guidance) and Npf ¼ 25 (acceptance); however
one might question whether this is sufficiently accurate
for studies with ma ¼ 0.005. Accordingly we have per-
formed “enhanced” simulations at three β values with
Remez coefficients generated with λd ¼ 10−5, correspond-
ing to Npf ¼ 14 (guidance), and Npf ¼ 29 (acceptance).
As shown in Fig. 8, fortunately there appears to be no
significant difference with data calculated using the
previous λd ¼ 10−4.
Next we present data for the susceptibility χl defined in

Eq. (12), for the whole data set in Fig. 9 and for the lightest
ma ¼ 0.005 in Fig. 10. As might be anticipated, statistical
errors in χl are considerably larger than those for the
condensate, and accordingly we choose not to attempt an
Ls → ∞ extrapolation. However, again, the agreement
between results obtained using the default and enhanced
rational approximations seen in Fig. 10 is reassuring. For
each value of m χlðβÞ is nonmonotonic, with the peak
shifting to stronger coupling as m decreases in accord with
expectations for a second derivative of the free energy at a
critical point; this is corroborated by the model prediction
obtained by differentiation of Eq. (16) with respect to m,
and plotted using the fitted parameters in Fig. 11. Figure 10
suggests that the location and even the sharpness of the

FIG. 8. hψ̄ψðβÞi for ma ¼ 0.005 on 163 × 48. The dashed line
is the same EoS fit shown in Fig. 7. Also shown is the result of a
pilot simulation with β ¼ 0.3, Ls ¼ 64.

FIG. 9. Susceptibility χlðβ; mÞ on 163 × 48.

FIG. 10. Susceptibility χlðβÞ for ma ¼ 0.005 on 163 × 48. The
dashed line is calculated using the same EoS fit shown in Fig. 7,
multiplied by an empirical factor 0.014. Also shown is the result
of a pilot simulation with β ¼ 0.3, Ls ¼ 64.
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Much more work to do…

In view of the results for the would-be order parameter
hψ̄ψi of Sec. IVA, a natural interpretation of these results is
that U(2) symmetry spontaneously breaks somewhere in
the range g−2 ∈ ð0.5; 0.3Þ and that both the increased
magnitude of CG and its enhanced sensitivity to a change
in m is due to its developing into a true Goldstone boson.
It is interesting to compare these results with those

presented in Fig. 15 of Ref. [17] for the would-be
Goldstone meson on 122 × 24 in the surface formulation
of the Thirring model with N ¼ 2. In that case CGðτÞ
manifests a τ-independent plateau for 5≲ τ ≲ 20 over a
range of couplings, interpreted in [17] as being due to
fermion propagators reconnecting only after one of them
loops around the timelike extent of the system. In other
words, the surface formulation does not appear to support
mesonic bound states. With the caveats already discussed,
the meson correlators of Figs. 13, 14 do appear to resemble
those of conventional mesons. This is the first hint that the
bulk formulation is the preferred approach to the Thirring
model with DWF.
Finally, we consider more a formulational issue by

examining the axial Ward identity, first considered in this
context in [17]. For a system with the U(2) symmetry
anticipated in the Ls → ∞ limit, the following identity
relating the order parameter with the integrated correlator
holds1:

ihψ̄γ3ψi
m

¼
X

x

hψ̄γ5ψð0Þψ̄γ5ψðxÞi ¼ 2
X

τ

CGðτÞ≡ χπ:

ð24Þ

The ratio hψ̄ψi=mχπ is plotted vs g−2 in Fig. 15, together
with bulk formulation results for N ¼ 2 on 123 × 16 [17].
The clear issues are that the ratio is neither constant, nor
equal to unity, as required by (24). Reference [17] sug-
gested this is due to a nontrivial relation between either or
both of the fermion mass m and the physical fields ψψ̄
defined in (10), and their continuum counterparts (amus-
ingly, on the vertical scale used in Fig. 15 the data
provoking this speculation now looks rather constant as
a function of g−2). This would mean that bilinear operators
and/or the fermion mass m would need to be renormalized
for the Ward identity to apply. Figure 15 suggests these
considerations become still more important at strong
coupling for N ¼ 1; indeed, at g−2 ¼ 0.3 even the effect
of changing m results in a marked renormalization. Recall
the ratio was observed to bem-independent for N ¼ 2 [17].
Strong renormalizations depending on both g2 and m
cannot be ruled out for the parameter regime studied in
this paper; moreover we draw some encouragement from
the hints in Fig. 15 that the effect is smooth as g−2 ranges
from 0.6 to 0.3, consistent with UV physics, and in contrast

with the sharp changes over the same range reported in the
rest of this section, associated with a symmetry breaking
phase transition.

V. DISCUSSION

The main result of this paper is that the spontaneous
breakdown of the Uð2NÞ symmetry present for massless
reducible fermions in 2þ 1d can be demonstrated in
simulations of an interacting field theory using domain
wall fermions. The proof of concept was given in the
quenched limit in Sec. III, where the importance of taking
the Ls → ∞ limit before the m → 0 limit was shown.
Next, simulations of the unitaryN ¼ 1model with a newly-
developed RHMC algorithm, discussed in Sec. IV, yielded
results following the same procedure consistent with
unbroken U(2) symmetry for g−2 ≥ 0.4, but with enhanced
bilinear condensation at the strongest available coupling
g−2 ¼ 0.3, consistent with a nonvanishing intercept in the
m → 0 limit signaling the breaking of U(2) (see Fig. 10).
Meson correlators on admittedly small spacetime volumes
were consistent with the Goldstone spectrum expected for
the breaking pattern Uð2Þ → Uð1Þ ⊗ Uð1Þ (see Figs. 13,
14). The most natural conclusion is that there is a
symmetry-breaking phase transition at some g−2c ∈
ð0.3; 0.4Þ, that the critical flavor number in the 2þ 1d
Thirring model satisfies 1 < Nc < 2, and that there is the
potential for a QCP in the N ¼ 1 model described by a
strongly-interacting local unitary quantum field theory.
Final confirmation of this important result must await
further simulations permitting enhanced control over both
V → ∞ and m → 0 limits; until then strictly the bound we
have found is 0 < Nc < 2. The large disparity with the
staggered Thirring model result Nc ¼ 6.6ð1Þ [11] is a
dramatic indicator of the importance of the faithful
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FIG. 15. The ratio hψ̄ψi=mχπ vs g−2 on 123 × 40 for variousm,
together with corresponding data taken at N ¼ 2 on 123 × 16 and
m ¼ 0.01 [17].

1The factor of 2 after the second equality in (24) reflects the
contributions of C−þ, Cþþ.
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• new QCP for Dirac fermions in 2+1d with 

• not everyone agrees:  with SLAC fermions

•  Dirac / Kähler-Dirac fermions support distinct QCPs 
•  need fermion propagator data to access exponent  
•  need meson  propagators to confirm Goldstones 

• need smarter ways to access U(2) limit   

1 < Nc < 2

Nc ≈ 0.8

ηψ
ψ ψ̄

Ls → ∞
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DiRAC Health Data Science and AI Placement Opportunity 

DiRAC will award one Innovation Placement in 2021 in the area of Health Data Science and the application of 
AI. The nominal length is 6 months and has to be completed by 30 September 2021. In this scheme a final year 
PhD student or an early career researcher can have a funded placement (up to £25k) with the Getting It Right 
First Time (GIRFT) programme.  GIRFT is funded by the UK Department of Health and Social Care and is a 
collaboration between NHS England & NHS Improvement and the Royal National Orthopaedic Hospital NHS 
Trust.  GIRFT uses comprehensive benchmarking data analysis to identify unwarranted variation in healthcare 
provision and outcomes in National Health Service (NHS) hospitals in England and combine this with deep dive 
visits to the hospital by clinicians with follow up on agreed actions by an improvement team. The programme 
covers the majority of healthcare specialities. 

You have to be working on research that falls within the STFC remit in order to qualify for the placement; 
however, you can be funded by other organisations besides STFC, as long as the subject area is identifiable as 
being in Particle Physics, Astronomy & Cosmology, Solar Physics and Planetary Science, Astro-particle Physics, 
and Nuclear Physics.  

To check your eligibility please contact Jeremy Yates (j.a.yates@ucl.ac.uk) and Maria Marcha 
(m.marcha@ucl.ac.uk). 

You must get your Supervisor or PIs permission before applying for this placement.   It is allowed under UKRI’s 
rules, but only with your supervisor/PIs consent. 

We will do our best to be flexible; part time working can be arranged as long as the placement does not exceed 
9 months. 

This should be looked on as an opportunity to learn new skills and contribute outside of your research area. 

The deadline for applications is 10am on Monday 11th January 2021. 

We are pleased to offer the following DIRAC Innovation Placement with GIRFT 

Developing common approaches to apply to English hospital activity data to facilitate a deeper 
understanding of issues related to the COVID-19 pandemic in the UK.   

This provides a unique opportunity to work with one of the most detailed healthcare datasets in the world, 
to develop common approaches which provide insight into the COVID-19 pandemic.  The areas of work will 
also be relevant to other healthcare areas beyond the current pandemic, providing long term benefit to both 
GIRFT and the wider health community. 
 
Candidates will be expected to apply the tools and techniques they have learnt or used during their studies 
from areas with an advanced approach to data science, into an applied healthcare project.  This approach 
can lead to both disruptive innovation within the NHS and promotes the upskilling of both clinicians and 
healthcare researchers. After their placement, candidates should be able to apply this experience to future 
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Call for applications for DiRAC Community Development Director 

1 Background 
The DiRAC Facility Management Team invites applications for the new position of Community 
Development Director. The post is available from 1st April 2021, and will initially run until 31st March 
2023. There is the possibility of extension beyond this date (subject to funding). The post-holder 
should be available to take up the role no later than 1st October 2021. 

Established in 2009, DiRAC is now the primary provider of computing resources for the Science & 
Technology Facilities Council (STFC) community working in the areas of theoretical astrophysics, 
particle physics, cosmology and nuclear physics (www.dirac.ac.uk). DiRAC is a distributed facility with 
hardware deployments at the University of Cambridge, Durham University, the University of Edinburgh 
and the University of Leicester. The DiRAC Project Office is based at University College London. The 
current DiRAC Director is Mark Wilkinson, Professor of Astrophysics at the University of Leicester.  

This is an exciting opportunity to join the DiRAC team and further develop engagement between the 
facility and the user community. DiRAC’s success relies on the support of its researcher community 
and the direct engagement of researchers in the design and oversight of HPC services is a unique 
feature of the DiRAC facility. The creation of this post to maintain and develop community engagement 
activities is an explicit recognition of the importance of these activities to DiRAC’s mission of delivering 
world-class science, training and innovation. 

2 Detailed job description 
2.1 Role purpose:  
To determine how DiRAC can best serve its user community and expand its user base in terms of the 
number and variety of projects supported. 

2.2 Roles and Responsibilities:  
User engagement 

• Act as liaison between the DiRAC Management Team and the user community, proactively 
engaging with PPAN researchers to discuss their HPC requirements; 

• Carry out an annual satisfaction survey among the user community;  

• Introducing DiRAC researchers to new technologies and their cutting-edge research 
applications in order to contribute to the assessment of their suitability for DiRAC workflows; 

• Facilitate the mentoring of new users by existing users. 

• Encourage users to participate in public engagement activities and to develop press releases 
which highlight the value of DiRAC to their research. 

• Promote participation in innovation placement schemes and other activities in collaboration 
with industry. 
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DiRAC Health Data Science and AI Placement Opportunity 

DiRAC will award one Innovation Placement in 2021 in the area of Health Data Science and the application of 
AI. The nominal length is 6 months and has to be completed by 30 September 2021. In this scheme a final year 
PhD student or an early career researcher can have a funded placement (up to £25k) with the Getting It Right 
First Time (GIRFT) programme.  GIRFT is funded by the UK Department of Health and Social Care and is a 
collaboration between NHS England & NHS Improvement and the Royal National Orthopaedic Hospital NHS 
Trust.  GIRFT uses comprehensive benchmarking data analysis to identify unwarranted variation in healthcare 
provision and outcomes in National Health Service (NHS) hospitals in England and combine this with deep dive 
visits to the hospital by clinicians with follow up on agreed actions by an improvement team. The programme 
covers the majority of healthcare specialities. 

You have to be working on research that falls within the STFC remit in order to qualify for the placement; 
however, you can be funded by other organisations besides STFC, as long as the subject area is identifiable as 
being in Particle Physics, Astronomy & Cosmology, Solar Physics and Planetary Science, Astro-particle Physics, 
and Nuclear Physics.  

To check your eligibility please contact Jeremy Yates (j.a.yates@ucl.ac.uk) and Maria Marcha 
(m.marcha@ucl.ac.uk). 

You must get your Supervisor or PIs permission before applying for this placement.   It is allowed under UKRI’s 
rules, but only with your supervisor/PIs consent. 

We will do our best to be flexible; part time working can be arranged as long as the placement does not exceed 
9 months. 

This should be looked on as an opportunity to learn new skills and contribute outside of your research area. 

The deadline for applications is 10am on Monday 11th January 2021. 

We are pleased to offer the following DIRAC Innovation Placement with GIRFT 

Developing common approaches to apply to English hospital activity data to facilitate a deeper 
understanding of issues related to the COVID-19 pandemic in the UK.   

This provides a unique opportunity to work with one of the most detailed healthcare datasets in the world, 
to develop common approaches which provide insight into the COVID-19 pandemic.  The areas of work will 
also be relevant to other healthcare areas beyond the current pandemic, providing long term benefit to both 
GIRFT and the wider health community. 
 
Candidates will be expected to apply the tools and techniques they have learnt or used during their studies 
from areas with an advanced approach to data science, into an applied healthcare project.  This approach 
can lead to both disruptive innovation within the NHS and promotes the upskilling of both clinicians and 
healthcare researchers. After their placement, candidates should be able to apply this experience to future 


