

Quantum field theories of particle physics are (for the most part) weakly-interacting at short distances: we have a reasonable idea of how to calculate with them.
But this is not the only possibility...
Inspired by condensed-matter systems eg. graphene, I will

- discuss QFTs of relativistic fermions in 2+1d exhibiting critical behaviour, signalling a new strongly-interacting QFT
- argue that to characterise the Quantum Critical Point it is crucial to capture relevant global symmetries accurately
- present simulation results showing that different lattice discretisations tell very different stories...

The Thirring Model in 2+1d

$$
\mathscr{L}=\bar{\psi}_{i}(\not \partial+m) \psi_{i}+\frac{g^{2}}{2 N}\left(\bar{\psi}_{i} \gamma_{\mu} \psi_{i}\right)^{2}
$$

Covariant quantum field theory of
N flavors of interacting fermion in $2+1$ dimensions.
Fermions are spinor fields $\psi, \bar{\psi}$ acted on by 4×4 Dirac matrices γ_{μ}
Interaction between conserved currents:
like charges repel, opposite charges attract

$$
\begin{array}{cc}
\mathscr{D} \equiv \partial_{\mu} \gamma_{\mu} & \mu=0,1,2 \quad i=1, \ldots, N \\
\operatorname{tr}\left(\gamma_{\mu} \gamma_{\mu}\right)=4 & \left\{\gamma_{\mu}, \gamma_{\nu}\right\}=2 \delta_{\mu \nu} \quad \gamma_{5} \equiv \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3} \\
& \mu, \nu=0,1,2,3
\end{array}
$$

Many applications of "Flatland fermions" in condensed matter physics

- Nodal fermions in d-wave superconductors
- \quad Spin liquids in Heisenberg AFM
- surface states of topological insulators graphene

Relativity in Graphene

The electronic properties of graphene were first studied theoretically almost 75 years ago

Rules of the Dance

On each carbon atom there can reside 0, I or 2 electrons which can hop between sites

$$
H=-t \sum_{\mathbf{r} \in \mathbf{B}} \sum_{i=1}^{3} b^{\dagger}(\mathbf{r}) a\left(\mathbf{r}+\mathbf{s}_{i}\right)+a^{\dagger}\left(\mathbf{r}+\mathbf{s}_{i}\right) b(\mathbf{r})
$$

"tight-binding" Hamiltonian describes hopping of electrons in π-orbitals from A to B sublattices and vice versa

In momentum space $H=\sum_{\vec{k}}\left(\Phi(\vec{k}) a^{\dagger}(\vec{k}) b(\vec{k})+\Phi^{*}(\vec{k}) b^{\dagger}(\vec{k}) a(\vec{k})\right)$
with $\Phi(\vec{k})=-t\left[e^{i k_{x} l}+2 \cos \left(\frac{\sqrt{3} k_{y} l}{2}\right) e^{-i \frac{k_{k} l}{2}}\right]$

Define states $\quad\left|\vec{k}_{ \pm}\right\rangle=(\sqrt{2})^{-1}\left[a^{\dagger}(\vec{k}) \pm b^{\dagger}(\vec{k})\right]|0\rangle$
$\Rightarrow\left\langle\vec{k}_{ \pm}\right| H\left|\vec{k}_{ \pm}\right\rangle= \pm\left(\Phi(\vec{k})+\Phi^{*}(\vec{k})\right) \equiv \pm E(\vec{k})$
Energy spectrum is symmetric about $E=0$

Half-filling (neutral "undoped" graphene) has zero energy at Dirac points at corners of first Brillouin Zone:
$\left.\begin{array}{l}\text { Two independent } \\ \begin{array}{c}\text { Dirac points }\end{array} \\ \text { T }\end{array} \vec{k}\right)=0 \Rightarrow \vec{k}=\vec{K}_{ \pm}=\left(0, \pm \frac{4 \pi}{3 \sqrt{ } 3 l}\right)$

Taylor expand
@ Dirac point

$$
\Phi\left(\vec{K}_{ \pm}+\vec{p}\right)= \pm v_{F}\left[p_{y} \mp i p_{x}\right]+O\left(p^{2}\right)
$$

the pitch of the cone is the "Fermi velocity"

$$
v_{F}=\frac{3}{2} t l
$$

Define modified operators $\quad a_{ \pm}(\vec{p})=a\left(\vec{K}_{ \pm}+\vec{p}\right) \quad$ etc.
Now combine them into a "4-spinor" $\Psi=\left(b_{+}, a_{+}, a_{-}, b_{-}\right)^{t r}$
$\Rightarrow H \simeq v_{F} \sum_{\vec{p}} \Psi^{\dagger}(\vec{p})\left(\begin{array}{cc}p_{y}-i p_{x}+i p_{x} \\ & -p_{y}+i p_{x}\end{array}\right) \Psi(\vec{p})$

$$
=v_{F} \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \vec{\alpha} \cdot \vec{p} \Psi(\vec{p}) \quad \text { Dirac Hamiltonian }
$$

$$
\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}
$$

ie. low-energy excitations are massless fermions with Fermi velocity

$$
v_{F}=\frac{3}{2} t l \approx \frac{1}{300} c
$$

For monolayer graphene the number of flavors $N=2$
$(2 \mathrm{C}$ atoms/cell $\times 2$ Dirac points/zone $\times 2$ spins $=2$ flavors $\times 4$ spinor $)$

Inter-electron interactions: an effective field theory

$$
\begin{aligned}
S & =\sum_{a=1}^{N_{f}} \int d x_{0} d^{2} x\left(\bar{\psi}_{a} \gamma_{0} \partial_{0} \psi_{a}+v_{F} \overline{\psi_{a}} \vec{\gamma} \cdot \vec{\nabla} \psi_{a}+i V \bar{\psi}_{a} \gamma_{0} \psi_{a}\right) \\
& +\frac{1}{2 e^{2}} \int d x_{0} d^{3} x\left(\partial_{i} V\right)^{2}, \underbrace{}_{\text {"instantaneous" Coulomb potential }} \begin{array}{r}
\text { since } v_{F} \ll c \text { - unscreened since } \varrho(E=0)=0
\end{array}
\end{aligned}
$$

$$
\text { V-propagator (large-Nf): } D(p)=\left(\frac{2|\vec{p}|}{e^{2}}+\frac{N_{f}}{8} \frac{|\vec{p}|^{2}}{\left(p_{0}^{2}+v_{F}^{2} \mid \overrightarrow{p^{2}}\right)^{\frac{1}{2}}}\right)^{-1}
$$

$$
\begin{aligned}
& \text { quantum screening due } \\
& \text { virtual electron-hole pairs }
\end{aligned} \frac{1}{r}
$$

$$
\lambda=\frac{e^{2} N_{f}}{16 \varepsilon \varepsilon_{0} \hbar v_{F}} \simeq \frac{1.4 N_{f}}{\varepsilon}
$$

(i) parametrises quantum vs. classical
(ii) depends on dielectric properties of substrate

For sufficiently large g^{2}, or sufficiently small N, the Fock vacuum is conceivably disrupted by a particle-hole bilinear condensate

$$
\langle\bar{\psi} \psi\rangle \equiv \frac{\partial \ln Z}{\partial m} \neq 0
$$

resulting in a
dynamically-generated mass gap at the Dirac point

Cf. chiral symmetry breaking in QCD

Hypothesis:
the semimetal-insulator transition at $g_{c}^{2}(N)$ defines a Quantum Critical Point: whose universal properties characterise low-energy excitations of graphene
D.T. Son, Phys. Rev. B75 (2007) 235423

Corresponds to a new strongly-interacting QFT... ...a priori there are no small dimensionless parameters

What happens at a critical point?

Three views of NaF_{6}
Inter-particle correlations scale $\propto e^{-x / \xi}$ the correlation length $\xi \rightarrow \infty$ as $T \rightarrow T_{c}$

$$
\begin{aligned}
& \text { droplet size } \longrightarrow \frac{\xi}{a} \sim \frac{\Lambda}{\mu} \longleftarrow \text { UV cutoff } \\
& \text { molecular scale } \text { physics, eg. particle mass }
\end{aligned}
$$

critical phenomena \Leftrightarrow continuum QFT

Continuum Symmetries in $d=2+1$

$$
\mathcal{S}=\int d^{3} x \bar{\Psi}\left(\gamma_{\mu} \partial_{\mu}\right) \Psi+m \bar{\Psi} \Psi
$$

For $m=0 \quad S$ is invariant under global $\mathrm{U}(2 \mathrm{~N})$ symmetry generated by
(i) $\Psi \mapsto e^{i \alpha} \Psi ; \quad \bar{\Psi} \mapsto \bar{\Psi} e^{-i \alpha}, \quad$ (ii) $\Psi \mapsto e^{i \alpha \gamma_{5}} \Psi ; \quad \bar{\Psi} \mapsto \bar{\Psi} e^{i \alpha \gamma_{5}}$
(iii) $\Psi \mapsto e^{\alpha \gamma_{3} \gamma_{5}} \Psi ; \quad \bar{\Psi} \mapsto \bar{\Psi} e^{-\alpha \gamma_{3} \gamma_{5}}$; (iv) $\Psi \mapsto e^{i \alpha \gamma_{3}} \Psi ; \quad \bar{\Psi} \mapsto \bar{\Psi} e^{i \alpha \gamma_{3}}$

For $m \neq 0, \quad \gamma_{3}$ (iv) and γ_{5} (ii) rotations are no longer symmetries

$$
\Rightarrow \quad U(2 N) \rightarrow U(N) \otimes U(N)
$$

Mass term $m \bar{\Psi} \Psi$ is hermitian \& invariant under parity $x_{\mu} \leftrightarrow-x_{\mu}$
Two physically equivalent antihermitian $\quad i m_{3} \bar{\Psi} \gamma_{3} \Psi ; \quad i m_{5} \bar{\Psi} \gamma_{5} \Psi$ twisted or Kekulé mass terms:

The Haldane mass $m_{35} \Psi \gamma_{3} \gamma_{5} \Psi$ is not parity-invariant

Numerical Lattice Approach

Early work used staggered fermions

$$
S_{\text {latt }}=\frac{1}{2} \sum_{x, \mu i} \bar{\chi}_{x}^{i} \eta_{\mu x}(\underbrace{1+i A_{\mu x}}) \chi_{x+\hat{\mu}}^{i}-\bar{\chi}_{x}^{i} \eta_{\mu x}(1 \underbrace{-i A_{\mu x-\hat{\mu}}}) \chi_{x-\hat{\mu}}^{i}
$$

$$
+m \sum_{x i} \bar{\chi}_{x}^{i} \chi_{x}^{i}+\frac{N}{4 g^{2}} \sum_{x \mu} A_{\mu x}^{2}
$$

vector auxiliary $A_{\mu x}$ defined on link between x and $x+\mu$
symmetry breaking resulting from gap generation:

$\mathrm{U}(\mathrm{N}) \otimes \mathrm{U}(\mathrm{N}) \rightarrow \mathrm{U}(\mathrm{N})$

In weak coupling continuum limit
$\mathrm{U}\left(2 \mathrm{~N}_{f}\right)$ symmetry is recovered, with $\mathrm{N}_{f}=2 \mathrm{~N}$ this is an instance of "lattice fermion doubling"

Phase diagram of the Staggered Thirring Model

Find symmetry broken phase (gapped, insulating) for small N, large g^{2}

Two Old Conjectures...

1. In leading order large- N , in the limit $\mathrm{g}^{2} \rightarrow \infty$, the interaction between conserved currents is mediated by a vector boson with mass $\frac{M_{V}}{m}=\sqrt{\frac{6 \pi}{m g^{2}}} \rightarrow 0 \quad$ SJH, PRD51 (1995) 5816

Thirring QCP in strong coupling limit equivalent to IR limit of QED_{3} ?
2. An asymptotically-free theory like QED_{3} is constrained by the following inequality: $\quad f_{I R} \leq f_{U V}$
Here $f=-\frac{90}{\pi^{2} T^{4}} \times$ (thermodynamic free energy density)

$$
\text { Appelquist, Cohen, Schmaltz PRD } 60 \text { (1999) } 045003
$$

f can be related to \# degrees of freedom, be they massless fermions or Goldstone bosons

Prediction for QED $_{3}$ from $f_{I R} \leq f_{U V}$

Staggered fermions $U(N) \otimes U(N) \rightarrow U(N)$:

Continuum fermions $U(2 N) \rightarrow U(N) \otimes U(N)$:

$$
2 N^{2} \leq \frac{3}{4} \times 4 N \Rightarrow N_{c} \leq \frac{3}{2}
$$

Big disparity!

NB F-theorem prediction: $N_{c}<4.4$
Giombi, Klebanov, Tarnopolsky JPA49 (2016) 135403
This motivates studies using fermions transforming with the correct symmetry

Staggered Fermion Bag Algorithm with minimal $\mathrm{N}_{f}=2(\mathrm{~N}=1)$

Chandrasekharan \& Li, PRL 108 (2012) 140404; PRD88 (2013) 021701

Thirring Model: $\quad v=0.85(1), \eta=0.65(1), \eta_{\psi}=0.37(1) \quad\left(N_{f}<N_{f c} \approx 7\right)$
$U(1)$ GN Model: $v=0.849(8), \eta=0.633(8), \eta_{\psi}=0.373(3) \quad\left(N_{f} \rightarrow \infty: v=\eta=1\right)$

Interactions between staggered fields $\chi, \bar{\chi}$ spread over elementary cubes.
Only difference between Thirring \& GN is body-diagonal term
Staggered fermions not reproducing expected distinction between Thirring and GN QCPs

$$
\mathscr{L}=\bar{\Psi}(x, s) D_{D W F} \Psi\left(y, s^{\prime}\right)
$$

Fermions propagate freely along a fictitious third direction
of extent L_{s} with open boundaries

Domain Wall Fermions

Basic idea as $L_{s} \rightarrow \infty$:

- zero-modes of Ddwf localised on walls are \pm eigenmodes of γ_{3}
- Modes propagating in bulk can be decoupled (with cunning)
"Physical" fields in 2+1d target space

$$
\begin{aligned}
\psi(x) & =P_{-} \Psi(x, 1)+P_{+} \Psi\left(x, L_{s}\right) ; \\
\bar{\psi}(x) & =\bar{\Psi}\left(x, L_{s}\right) P_{-}+\bar{\Psi}(x, 1) P_{+} ;
\end{aligned}
$$

with projectors $P_{ \pm}=\frac{1}{2}\left(1 \pm \gamma_{3}\right)$

Bottom Up View...

 in DWF approach we simulate 2+1+1d fermions
Desiderata...

- Modes localised on walls carry $\mathrm{U}(2 \mathrm{~N})$-invariant physics
- Fermion doublers don't contribute to normalisable modes
- Bulk modes can be made to decouple

Claim...
It appears to work for....

- carefully-chosen "domain wall height" M
- smooth gauge field background

Top Down View...

write the fermion bilinear: $\bar{\psi} M \psi=\bar{\psi}(D+m) \psi$

Then $\mathrm{U}(2 \mathrm{~N})$ symmetry can be re-expressed:

$$
\left\{\gamma_{3}, D\right\}=\left\{\gamma_{5}, D\right\}=\left[\gamma_{3} \gamma_{5}, D\right]=0
$$

There is no regular lattice discretisation respecting these relations, while simultaneously describing unitary, local dynamics of a single Dirac fermion species

Nielsen \& Ninomiya, 1981
The closest we can get is articulated by the Ginsparg-Wilson relations:

$\left\{\gamma_{3}, D\right\}=2 D \gamma_{3} D \quad\left\{\gamma_{5}, D\right\}=2 D \gamma_{5} D \quad\left[\gamma_{3} \gamma_{5}, D\right]=0$
RHS is $\mathrm{O}(a D)$, so $\mathrm{U}(2 \mathrm{~N})$ recovered in long-wavelength limit if D local

By construction GW is satisfied by the 2+1d overlap operator

$$
D_{o v}=\frac{1}{2}\left[\left(1+m_{h}\right)+\left(1-m_{h}\right) \frac{A}{\sqrt{A^{\dagger} A}}\right]
$$

with, eg. $A \equiv\left[2+\left(D_{W}-M\right)\right]^{-1}\left[D_{W}-M\right] ; \quad D_{W}$ local; $M a=O(1)$

$$
\gamma_{3} A \gamma_{3}=\gamma_{5} A \gamma_{5}=A^{\dagger}
$$

locality of Dov not manifest but confirmed numerically SJH, Mesiti, Worthy PRD 102 (2020) 094502

$$
\text { ie. } \frac{\operatorname{det} D_{\mathrm{DWF}}\left(m_{i}\right)}{\operatorname{det} D_{\mathrm{DWF}}\left(m_{h}=1\right)}=\operatorname{det} D_{L_{s}}\left(m_{i}\right) \quad \text { with } \quad \lim _{L_{s} \rightarrow \infty} D_{L_{s}}=D_{o v}
$$

Formulational issues

By analogy with QCD, formulate auxiliary field $\mathrm{A}_{\mu}(\mathrm{x})$ throughout bulk and 3 -static ie. $\partial_{3} \mathrm{~A}_{\mu}=0$:

$$
\begin{aligned}
\mathcal{S}=\bar{\Psi} \mathcal{D} \Psi=\bar{\Psi} D_{W} \Psi+\bar{\Psi} D_{3} \Psi+m_{i} S_{i} \quad \text { with } \quad D_{W} & =\gamma_{\mu} D_{\mu}-\left(\hat{D}^{2}+M\right) ; \\
D_{3} & =\gamma_{3} \partial_{3}-\hat{\partial}_{3}^{2},
\end{aligned}
$$

NB $D_{\mu} \propto\left(1+i A_{\mu}\right)$, not $e^{i A_{\mu}}$, ie. links are non-compact and non-unitary

$$
\begin{gathered}
{\left[\partial_{3}, D_{\mu}\right]=\left[\partial_{3}, \hat{D}^{2}\right]=0 \text { but }\left[\partial_{3}, \hat{\partial}_{3}^{2}\right] \neq 0 \text { on walls }} \\
\text { obstruction to proving } \operatorname{det} \mathscr{D}>0
\end{gathered}
$$

RHMC with measure $\sqrt{\operatorname{det}\left(\mathscr{D}^{\dagger} \mathscr{D}\right)}$ for $N=1$

Exploratory Results
with fixed $L_{s}=16$

Bilinear condensate $\left\langle i \bar{\psi} \gamma_{3} \psi\right\rangle$ for $N=0,1,2 \ldots$ hierarchy consistent with $1<N_{c}<2$

But to achieve $U(2)$ symmetry we need $L_{s} \rightarrow \infty \ldots$

Stress-testing DWF...

Decay constant $\Delta(\beta, m)$:
$\sim \propto m^{0}$ at weak coupling $\sim \propto m$ at strong coupling

$$
\langle\bar{\psi} \psi\rangle_{\infty}-\langle\bar{\psi} \psi \psi\rangle_{L_{s}}=A(\beta, m) e^{-\Delta(\beta, m) L_{s}}
$$

$$
\text { Have } L_{s}=8,16, \ldots, 48
$$

currently accumulating $L_{s}=64,80$
$L_{s} \rightarrow \infty$ not yet under control at lightest masses, strongest couplings

Bilinear Condensates in Quenched QED 3 on $24^{3} \times L_{s}$...

Define main residual: $i\left\langle\bar{\Psi}(1) \gamma_{3} \Psi\left(L_{s}\right)\right\rangle=\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s}}+i \Delta_{h}\left(L_{s}\right)$

$$
\begin{aligned}
& \frac{1}{2}\langle\bar{\psi} \psi\rangle_{L_{s}}=\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s} \rightarrow \infty}+\Delta_{h}\left(L_{s}\right)+\epsilon_{h}\left(L_{s}\right) ; \\
& \frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s}}=\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s} \rightarrow \infty}+\epsilon_{3}\left(L_{s}\right) ; \quad \mathrm{U} \text { real } \quad \text { imaginary } \\
&
\end{aligned}
$$

$$
\frac{i}{2}\left\langle\bar{\psi} \gamma_{5} \psi\right\rangle_{L_{s}}=\frac{i}{2}\left\langle\bar{\psi} \gamma_{3} \psi\right\rangle_{L_{s} \rightarrow \infty}+\epsilon_{5}\left(L_{s}\right) .
$$

- exponentially suppressed as $\mathrm{L}_{\mathrm{s}} \rightarrow \infty$
- hierarchy: $\Delta_{\mathrm{h}}>\varepsilon_{\mathrm{h}}>\varepsilon_{3} \equiv \varepsilon_{5}$

\section*{$\mathrm{U}(2)$ symmetry restored

$\mathrm{U}(2)$ symmetry restored $\Leftrightarrow \Delta_{h} \rightarrow 0$

 $\Leftrightarrow \Delta_{h} \rightarrow 0$}$\mathrm{U}(2)$ symmetry restoration requires residual $\delta_{h} \rightarrow 0$

as a function of $\beta \equiv a g^{-2}$ on $16^{3} \times 48$
Qualitatively different at strong and weak coupling, and slow...
$16^{3} \times L_{s}=48, a m=0.005, \mathrm{ag}^{-2}=0.3$:
RHMC Hamiltonian step requires ~20k solver iterations (recall non-unitary links)

Latest data extrapolated with $L_{s}=64,80$ and straddling β_{c}

Fit to renormalisation group-inspired equation of state suggests QCP exists for $N=1$

$$
\begin{aligned}
& \text { Critical parameters }\left\{\begin{array}{l}
\beta_{c} \equiv g_{c}^{-2}=0.283(1)
\end{array}\right. \\
& \delta=4.17(5) \quad \beta=0.320(5) \\
& \text { hyperscaling } \Rightarrow \quad \nu=0.55(1) \quad \eta=0.16(1)
\end{aligned}
$$

Cf: old result for $N=1$ staggered fermion Del Debbio, SJH, Mehegan $\Leftrightarrow N=1$ Kähler-Dirac fermion
$\neq N_{f}=2$ Dirac fermions! NPB502 (1997) 269
Christofi, SJH, Strouthos
PRD75 (2007) 101701
SJH Symmetry 13 (2021) 8

$$
\begin{array}{lll}
3<N_{c}<4 & \delta=2.75(9) & \beta=0.57(2) \\
\nu=0.71(3) & \eta=0.60(4)
\end{array}
$$

Dirac and Kähler-Dirac fermions have distinct QCPs

Funnies

- Susceptibility $\chi_{\ell}=\left\langle(\bar{\psi} \psi)^{2}\right\rangle-\langle\bar{\psi} \psi\rangle^{2}$ shows inverted mass hierarchy

-Axial Ward Identity $\langle\bar{\psi} \psi\rangle / m \chi_{\pi}=1$ a long way from ${ }^{2^{2}}$ being satisfied

Summary

- new QCP for Dirac fermions in $2+1$ d with $1<N_{c}<2$
- not everyone agrees: $N_{c} \approx 0.8$ with SLAC fermions Lenz, Wellegehausen \& Wipf, PRD100 (2019) 054501

- Dirac / Kähler-Dirac fermions support distinct QCPs
- need fermion propagator data to access exponent η_{ψ}
- need meson $\psi \bar{\psi}$ propagators to confirm Goldstones
- need smarter ways to access $U(2)$ limit $L_{s} \rightarrow \infty$

0

Science \& Technology Facilities Council

Engineering and Physical Sciences Research Council

JHEP 1509 (2015) 047
PLB 754 (2016) 264 JHEP 1611 (2016) 015 PRD 99 (2019) 034504 PRD 102 (2020) 094502
Symmetry 13 (2021) 8

