Adventures in Flatland: Quantum Criticality in the 2+1 Thirring Model

Simon Hands

Theoretical Physics Colloquium Arizona State University 17/11/21 Quantum field theories of particle physics are (for the most part) <u>weakly-interacting</u> at short distances: we have a reasonable idea of how to calculate with them. But this is not the only possibility...

Inspired by condensed-matter systems eg. graphene, I will

- discuss QFTs of relativistic fermions in 2+1d exhibiting
 critical behaviour, signalling a new strongly-interacting QFT
- argue that to characterise the **Quantum Critical Point** it is crucial to capture relevant global symmetries accurately
- present simulation results showing that different lattice discretisations tell very different stories...

The Thirring Model in 2+1d

$$\mathscr{L} = \bar{\psi}_i (\partial \!\!\!/ + m) \psi_i + \frac{g^2}{2N} (\bar{\psi}_i \gamma_\mu \psi_i)^2$$

Covariant quantum field theory of *N* flavors of interacting fermion in 2+1 dimensions. Fermions are spinor fields $\psi, \bar{\psi}$ acted on by 4x4 Dirac matrices γ_{μ}

> Interaction between conserved currents: like charges *repel*, opposite charges *attract*

$$\partial = \partial_{\mu} \gamma_{\mu} \quad \mu = 0, 1, 2 \qquad i = 1, \dots, N$$

$$\operatorname{tr}(\gamma_{\mu} \gamma_{\mu}) = 4 \qquad \{\gamma_{\mu}, \gamma_{\nu}\} = 2\delta_{\mu\nu} \qquad \gamma_{5} \equiv \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$$

 $\mu, \nu = 0, 1, 2, 3$

Many applications of "Flatland fermions" in condensed matter physics

- Nodal fermions in *d*-wave superconductors
 - Spin liquids in Heisenberg AFM
 - surface states of topological insulators
 - graphene

Relativity in Graphene

The electronic properties of graphene were first studied theoretically almost 75 years ago

<u>Rules of the Dance</u>

On each carbon atom there can reside 0, 1 or 2 electrons which can hop between sites

$$H = -t \sum_{\mathbf{r}\in\mathbf{B}} \sum_{i=1}^{3} b^{\dagger}(\mathbf{r}) a(\mathbf{r} + \mathbf{s}_{i}) + a^{\dagger}(\mathbf{r} + \mathbf{s}_{i}) b(\mathbf{r})$$

"tight-binding" Hamiltonian

describes hopping of electrons in π-orbitals from A to B sublattices and vice versa

In momentum space
$$H = \sum_{\vec{k}} \left(\Phi(\vec{k}) a^{\dagger}(\vec{k}) b(\vec{k}) + \Phi^{*}(\vec{k}) b^{\dagger}(\vec{k}) a(\vec{k}) \right)$$

with $\Phi(\vec{k}) = -t \left[e^{ik_{x}l} + 2\cos\left(\frac{\sqrt{3}k_{y}l}{2}\right) e^{-i\frac{k_{x}l}{2}} \right]$

Define states $|\vec{k}_{+}\rangle = (\sqrt{2})^{-1} [a^{\dagger}(\vec{k}) \pm b^{\dagger}(\vec{k})]|0\rangle$ $\Rightarrow \langle \vec{k}_{\pm} | H | \vec{k}_{\pm} \rangle = \pm (\Phi(\vec{k}) + \Phi^*(\vec{k})) \equiv \pm E(\vec{k}) \quad \text{and} \quad \psi \in \mathcal{E}(\vec{k}) = \pm E(\vec{k}) \quad \text{and} \quad \psi \in \mathcal{E}(\vec{k}) = \pm E(\vec{k}) \quad \text{and} \quad \psi \in \mathcal{E}(\vec{k}) \quad \psi$

Energy spectrum is symmetric about E = 0

Half-filling (neutral "undoped" graphene) has zero energy at **Dirac points** at corners of first Brillouin Zone:

Two independent
$$\Phi(\vec{k}) = 0 \Rightarrow \vec{k} = \vec{K}_{\pm} = (0, \pm \frac{4\pi}{3\sqrt{3l}})$$

Dirac points

Taylor expand
(a) Dirac point
$$\Phi(\vec{K}_{\pm} + \vec{p}) = \pm v_F[p_y \mp ip_x] + O(p^2)$$

 $v_F = \frac{3}{2}tl$

the pitch of the cone is the "Fermi velocity"

 (α)

Define modified operators $a_{\pm}(\vec{p}) = a(\vec{K}_{\pm} + \vec{p})$ etc.

Now combine them into a "4-spinor" $\Psi = (b_+, a_+, a_-, b_-)^{tr}$

$$\Rightarrow H \simeq v_F \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \begin{pmatrix} p_y + ip_x \\ p_y - ip_x \\ -p_y - ip_x \end{pmatrix} \Psi(\vec{p}) \begin{pmatrix} p_y - ip_x \\ -p_y - ip_x \end{pmatrix} \Psi(\vec{p})$$

ie. low-energy excitations are massless fermions with **Fermi velocity**

 $v_F = \frac{3}{2}tl \approx \frac{1}{300}c$

For monolayer graphene the number of flavors N=2(2 C atoms/cell × 2 Dirac points/zone × 2 spins = 2 flavors × 4 spinor)

Inter-electron interactions: an effective field theory

fermions live on two-dimensional "braneworld" & interact with photons living in the 3d bulk

$$S = \sum_{a=1}^{N_f} \int dx_0 d^2 x (\bar{\psi}_a \gamma_0 \partial_0 \psi_a + v_F \bar{\psi}_a \vec{\gamma}. \vec{\nabla} \psi_a + iV \bar{\psi}_a \gamma_0 \psi_a) \\
+ \frac{1}{2e^2} \int dx_0 d^3 x (\partial_i V)^2, \qquad \text{``instantaneous'' Coulomb potential since } v_F \ll c \text{ - unscreened since } \varrho(E=0)=0$$
classical 3d Coulomb $\propto \frac{1}{r}$

$$V\text{-propagator (large-N_f): } D(p) = \left(\frac{2|\vec{p}|}{e^2} + \frac{N_f}{8} \frac{|\vec{p}|^2}{(p_0^2 + v_F^2 |\vec{p}|^2)^{\frac{1}{2}}}\right)^{-1}$$
quantum screening due to virtual electron-hole pairs $\propto \frac{1}{r}$

$$\lambda = \frac{e^2 N_f}{16\varepsilon \varepsilon_0 \hbar v_F} \simeq \frac{1.4N_f}{\varepsilon} \qquad (\text{i) parametrises quantum vs. classical}$$

For sufficiently large g^2 , or sufficiently small N, the Fock vacuum is conceivably disrupted by a particle-hole **bilinear condensate**

$$\langle \bar{\psi}\psi \rangle \equiv \frac{\partial \ln Z}{\partial m} \neq 0$$

resulting in a dynamically-generated mass gap at the Dirac point

Cf. chiral symmetry breaking in QCD

Hypothesis:

the semimetal-insulator transition at $g_c^2(N)$ defines a **Quantum Critical Point**: whose universal properties characterise low-energy excitations of graphene D.T. Son, Phys. Rev. B**75** (2007) 235423

What happens at a critical point?

Three views of NaF₆

Inter-particle correlations scale $\propto e^{-x/\xi}$ the correlation length $\xi \to \infty$ as $T \to T_c$ droplet size $\longrightarrow \frac{\xi}{a} \sim \frac{\Lambda}{\mu} \leftarrow \text{UV cutoff}$ $a \quad \mu \leq x$ scale of interesting physics, eg. particle mass

critical phenomena ⇔ continuum QFT

Continuum Symmetries in d = 2 + 1

$$\mathcal{S} = \int d^3x \; \bar{\Psi}(\gamma_\mu \partial_\mu) \Psi \; + \; m \bar{\Psi} \Psi$$

For *m*=0 *S* is invariant under global U(2N) symmetry generated by (i) $\Psi \mapsto e^{i\alpha}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{-i\alpha}$, (ii) $\Psi \mapsto e^{i\alpha\gamma_5}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{i\alpha\gamma_5}$ (iii) $\Psi \mapsto e^{\alpha\gamma_3\gamma_5}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{-\alpha\gamma_3\gamma_5}$, (iv) $\Psi \mapsto e^{i\alpha\gamma_3}\Psi$; $\bar{\Psi} \mapsto \bar{\Psi}e^{i\alpha\gamma_3}$ For *m*≠0, γ_3 (iv) and γ_5 (ii) rotations are no longer symmetries \Rightarrow U(2N) \rightarrow U(N) \otimes U(N)

Mass term $m\bar{\Psi}\Psi$ is hermitian & invariant under parity $x_{\mu} \mapsto -x_{\mu}$

Two physically equivalent antihermitian $im_3 \bar{\Psi} \gamma_3 \Psi$; $im_5 \bar{\Psi} \gamma_5 \Psi$ *twisted* or *Kekulé* mass terms:

The *Haldane* mass $m_{35}\overline{\Psi}\gamma_3\gamma_5\Psi$ is *not* parity-invariant

Numerical Lattice Approach

vector auxiliary $A_{\mu x}$ defined on link between x and $x+\mu$

symmetry breaking resulting from gap generation: $U(N) \otimes U(N) \rightarrow U(N)$

In weak coupling continuum limit $U(2N_f)$ symmetry is recovered, with $N_f = 2N$ this is an instance of "lattice fermion doubling"

no such expectation in general at a QCP

Phase diagram of the Staggered Thirring Model

Find symmetry broken phase (gapped, insulating) for small N, large g^2

Christofi, SJH, Strouthos PRD75 (2007) 101701

Two Old Conjectures...

1. In leading order large-N, in the limit $g^2 \rightarrow \infty$, the interaction between conserved currents is mediated by a vector boson with mass $M_V = \sqrt{6\pi}$ SJH, PRD**51** (1995) 5816

$$\frac{1}{m} = \sqrt{\frac{1}{mg^2}} \to 0$$

Thirring QCP in strong coupling limit equivalent to IR limit of QED₃?

2. An asymptotically-free theory like QED₃ is constrained by the following inequality: $f_{IR} \leq f_{UV}$

Here $f = -\frac{90}{\pi^2 T^4} \times (\text{thermodynamic free energy density})$ Appelquist, Cohen, Schmaltz PRD **60** (1999) 045003

f can be related to *#* degrees of freedom, be they massless fermions or Goldstone bosons

NB F-theorem prediction: $N_c < 4.4$

Giombi, Klebanov, Tarnopolsky JPA49 (2016) 135403

This motivates studies using fermions transforming with the correct symmetry

<u>Staggered Fermion Bag Algorithm with minimal $N_f = 2$ (N=1)</u>

Chandrasekharan & Li, PRL 108 (2012) 140404; PRD88 (2013) 021701

Thirring Model: $\nu=0.85(1), \eta=0.65(1), \eta_{\psi}=0.37(1)$ (N_f < N_{fc} \approx 7) U(1) GN Model: $\nu=0.849(8), \eta=0.633(8), \eta_{\psi}=0.373(3)$ (N_f $\rightarrow \infty: \nu=\eta=1$)

Interactions between staggered fields χ , $\overline{\chi}$ spread over elementary cubes. Only difference between Thirring & GN is body-diagonal term

Staggered fermions not reproducing expected distinction between Thirring and GN QCPs

... so we need "better" lattice fermions?

 $\mathscr{L} = \bar{\Psi}(x, s) D_{DWF} \Psi(y, s')$

Fermions propagate freely along a fictitious third direction of extent L_s with open boundaries

Domain Wall Fermions

Basic idea as $L_s \rightarrow \infty$:

- zero-modes of D_{DWF} localised on walls are \pm eigenmodes of γ_3
- Modes propagating in bulk can be decoupled (with cunning)

"Physical" fields $\psi(x) = P_-\Psi(x,1) + P_+\Psi(x,L_s);$ in 2+1d target space $\bar{\psi}(x) = \bar{\Psi}(x,L_s)P_- + \bar{\Psi}(x,1)P_+,$

with projectors $P_{\pm} = \frac{1}{2}(1 \pm \gamma_3)$

Bottom Up View...

in DWF approach we simulate 2+1+1d fermions

Desiderata...

- Modes localised on walls carry U(2N)-invariant physics
- Fermion doublers don't contribute to normalisable modes
- Bulk modes can be made to decouple

Claim...

It appears to work for....

- carefully-chosen "domain wall height" M
- smooth gauge field background

Top Down View...

write the fermion bilinear: $\bar{\psi}M\psi = \bar{\psi}(D+m)\psi$

Then U(2N) symmetry can be re-expressed: $\{\gamma_3, D\} = \{\gamma_5, D\} = [\gamma_3\gamma_5, D] = 0$

There is no regular lattice discretisation respecting these relations, while simultaneously describing unitary, local dynamics of a single Dirac fermion species Nielsen & Ninomiya,1981

The closest we can get is articulated by the **Ginsparg-Wilson** relations:

 $\{\gamma_3, D\} = 2D\gamma_3 D \qquad \{\gamma_5, D\} = 2D\gamma_5 D \qquad [\gamma_3\gamma_5, D] = 0$

RHS is O(aD), so U(2N) recovered in long-wavelength limit if D local

By construction GW is satisfied by the 2+1d overlap operator

$$D_{ov} = \frac{1}{2} \left[(1+m_h) + (1-m_h) \frac{A}{\sqrt{A^{\dagger}A}} \right]$$

with, eg.
$$A \equiv [2+(D_W-M)]^{-1}[D_W-M];$$
 D_W local; $Ma = O(1)$
 $\gamma_3 A \gamma_3 = \gamma_5 A \gamma_5 = A^{\dagger}$

locality of D_{ov} not manifest but confirmed numerically SJH, Mesiti, Worthy PRD **102** (2020) 094502

DWF provide a regularisation of overlap with a *local* kernel in 2+1+1d

ie.
$$\frac{\det D_{\text{DWF}}(m_i)}{\det D_{\text{DWF}}(m_h = 1)} = \det D_{L_s}(m_i)$$
 with $\lim_{L_s \to \infty} D_{L_s} = D_{ov}$

SJH PLB 754 (2016) 264

••

Formulational issues

By analogy with QCD, formulate auxiliary field $A_{\mu}(x)$ throughout bulk and 3-static ie. $\partial_3 A_{\mu}=0$:

 $S = \bar{\Psi} \mathcal{D} \Psi = \bar{\Psi} D_W \Psi + \bar{\Psi} D_3 \Psi + m_i S_i \quad \text{with} \quad D_W = \gamma_\mu D_\mu - (\hat{D}^2 + M);$ $D_3 = \gamma_3 \partial_3 - \hat{\partial}_3^2,$ **NB** $D_\mu \propto (1 + iA_\mu), \text{ not } e^{iA_\mu}, \text{ ie. links are}$ *non-compact* and *non-unitary* $[\partial_3, D_\mu] = [\partial_3, \hat{D}^2] = 0 \quad \text{but} \quad [\partial_3, \hat{\partial}_3^2] \neq 0 \quad \text{on walls}$ obstruction to proving det $\mathscr{D} > 0$

RHMC with measure $\sqrt{\det(\mathcal{D}^{\dagger}\mathcal{D})}$ for N = 1

Exploratory Results with fixed $L_s = 16$

Bilinear condensate $\langle i\bar{\psi}\gamma_3\psi\rangle$ for N = 0,1,2...hierarchy consistent with $1 < N_c < 2$

But to achieve U(2) symmetry we need $L_s \rightarrow \infty$...

Stress-testing DWF...

Decay constant $\Delta(\beta, m)$:

- $\sim \propto m^0$ at weak coupling
- $\sim \propto m$ at strong coupling

$$\langle \bar{\psi}\psi \rangle_{\infty} - \langle \bar{\psi}\psi \rangle_{L_s} = A(\beta, m)e^{-\Delta(\beta, m)L_s}$$

Have $L_s = 8, 16, \dots, 48$ currently accumulating $L_s = 64, 80$

 $L_s \rightarrow \infty$ not yet under control at lightest masses, strongest couplings

Bilinear Condensates in Quenched QED₃ on 24³×L_s...

SJH JHEP **09**(2015)047, PLB **754** (2016) 264

- exponentially suppressed as $L_s \rightarrow \infty$
- hierarchy: $\Delta_h > \varepsilon_h > \varepsilon_3 \equiv \varepsilon_5$

U(2) symmetry restoration requires residual $\delta_h ightarrow 0$

Qualitatively different at strong and weak coupling, and *slow*...

16³×L_s=48, am=0.005, ag⁻²=0.3: RHMC Hamiltonian step requires ~20k solver iterations (recall non-unitary links)

Latest data extrapolated with $L_s = 64,80$ and straddling β_c

Fit to renormalisation group-inspired equation of state suggests QCP exists for N=1SJH, Mesiti, Worthy arXiv:2110.03944

Preliminary EoS fit in $L_s \to \infty$ limit $1 < N_c < 2$

Critical parameters
$$\begin{cases} \beta_c \equiv g_c^{-2} = 0.283(1) \\ \delta = 4.17(5) & \beta = 0.320(5) \end{cases}$$

hyperscaling $\Rightarrow \quad \nu = 0.55(1) \quad \eta = 0.16(1)$

Cf: old result for N = 1 staggered fermion $\Rightarrow N = 1$ Kähler-Dirac fermion $\neq N_f = 2$ Dirac fermions! Del Debbio, SJH, Mehegan NPB502 (1997) 269 Christofi, SJH, Strouthos PRD75 (2007) 101701 SJH Symmetry 13 (2021) 8

$$3 < N_c < 4$$

 $\nu = 0.71(3)$
 $\beta = 0.57(2)$
 $\eta = 0.60(4)$

Dirac and Kähler-Dirac fermions have distinct QCPs

Funnies....

• Susceptibility $\chi_{\ell} = \langle (\bar{\psi}\psi)^2 \rangle - \langle \bar{\psi}\psi \rangle^2$ shows inverted mass hierarchy

Much more work to do...

Summary

- new QCP for Dirac fermions in 2+1d with $1 < N_c < 2$
- not everyone agrees: $N_c \approx 0.8$ with SLAC fermions Lenz, Wellegehausen & Wipf, PRD100 (2019) 054501
- Dirac / Kähler-Dirac fermions support distinct QCPs
- need fermion propagator data to access exponent η_{ψ}
- need meson $\psi\bar{\psi}$ propagators to confirm Goldstones

• need smarter ways to access U(2) limit $L_s \rightarrow \infty$

JHEP **1509** (2015) 047 PLB **754** (2016) 264 JHEP **1611** (2016) 015 PRD **99** (2019) 034504 PRD **102** (2020) 094502 Symmetry **13** (2021) 8 NEWS, EVENTS AND PUBLICAT