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Introduction

In 1988 Constantino Tsallis entertained the possibility of ensembles
where the entropy took a nonextensive form involving a parameter q
which reduced to the usual entropy in the limit q = 1. Since then the
so-called Tsallis statistics has been applied to many areas of the
natural and social sciences. I will give a concise introduction to the
topic meant especially for those interested in its relation to high
energy proton-proton, proton-nucleus, and nucleus-nucleus collisions.



Introduction

Three-parameter fits to pp collisions with A (1 + (q − 1)βmT )−1/(q−1).



Introduction

9,000 citations to this paper according to Google Scholar.
1,500 articles in the arXiv with Tsallis in the abstract.



Tsallis Nonextensive Entropy

In statistical mechanics the entropy is defined to be

S = −
∑
i

pi ln pi

where i labels an eigenstate of the Hamiltonian H, and pi is the probability of
that state being occupied within the ensemble. In 1988 Tsallis entertained the
possibility of ensembles where the entropy instead had the form

S =
1

q − 1

∑
i

(pi − pqi )

where q is a real parameter. This has the property that S(q → 1) yields the
normal expression for the entropy.



Tsallis Nonextensive Entropy

If there are two independent systems A and B such that the probabilities
multiply pi → pAipBj and the probabilities are normalized∑

i

pAi =
∑
i

pAj = 1

then the total entropy is not the sum of the entropies of each system. Instead

SA+B = SA + SB + (1− q)SASB

meaning that the entropy as defined is not an extensive quantity. Hence q is
referred to as the nonextensivity parameter. The average of an operator must
also be defined to complete the statistics of the ensemble. Tsallis and
collaborators proposed three.



Tsallis Type I

Type I assumes that probabilities are normalized in the usual way∑
i

pi = 1

as are averages of an operator O that commutes with H

〈O〉 =
∑
i

piOi

where Oi = 〈i|O|i〉. The |i〉 are eigenstates of H such that H|i〉 = Ei|i〉. The
probabilities are found by maximizing the entropy at fixed energy E = 〈H〉
subject to the normalization condition.

δ

δpk

[
S − βE − α

∑
i

pi

]
= 0

Here α and β are Lagrange multipliers.



Tsallis Type I

The resulting distribution is

pk =

[
1 + α(1− q)

q

] 1
q−1

[
1 +

(1− q)βEk
1 + α(1− q)

] 1
q−1

There is an upper limit on the allowed values of energy Ek if q > 1 and a
lower limit if q < 1. The distribution is not invariant under an overall shift in
energy. Normally, only energy differences matter. For independent systems
A and B the energy is additive

EA+B = EA + EB

even though the entropy is not.



Tsallis Type II

Type II assumes that probabilities are normalized in the usual way∑
i

pi = 1

but that averages of an operator O are computed in an unconventional way

〈O〉 =
∑
i

pqiOi

This leads to the probability distribution

pk =

[
1 + α(1− q)

q

] 1
q−1

[1 + (q − 1)βEk]
− 1

q−1

There is a lower limit on the allowed values of energy Ek if q > 1 and an
upper limit if q < 1. The distribution is not invariant under an overall shift in
energy. This choice has the strange feature that 〈1〉 6= 1 in general.



Tsallis Type II

For independent systems A and B the energy is not additive but satisfies

EA+B = EA + EB + (1− q)(SAEB + SBEA)

This is rather odd since the assumption was that H = HA +HB with no
interaction between the two systems. A redefinition of the entropy should not
introduce interactions between the systems.



Tsallis Type III

Type III assumes that probabilities are normalized in the usual way∑
i

pi = 1

but that averages of an operator O are computed in another unconventional
way

〈O〉 =

∑
i p
q
iOi∑
j p

q
j

This leads to the probability distribution

pk =

[
1 + α(1− q)

q

] 1
q−1

[
1 +

(q − 1)β(Ek − E)

1 + (1− q)S

]− 1
q−1

This distribution is invariant under an overall shift in energy; only energy
differences matter. Furthermore the energies of two independent systems
add, namely

EA+B = EA + EB

Note that the entropy S and average energy E enter explicitly and nontrivialy
in the probability distribution.



Observations on the Three Types

A notable property of all three types is that in the limit q → 1 the probability
becomes the Boltzmann one

pi =
1

Z
e−βEi

with
Z =

∑
j

e−βEj

Keep in mind that Ei is the total energy of the system in the quantum state |i〉.
All of the discussion so far concerns the canonical ensemble where
conserved charges, such as baryon number, electric charge, strangeness,
and so on are fixed. One may introduce Lagrange multipliers, or chemical
potentials, for each conserved charge in the same way as β is the Lagrange
mulitplier for the conserved energy. The calculation of the probabilities
proceeds in a similar manner.



Observations on the Three Types

D. H. Zanette and M. A. Montemurro showed that for any observed probability
distribution function p(Xi) of the variable X one can always find a constraint
together with the Tsallis entropy which gives that distribution. For example, if
one takes O = φ(H) with Type III then

p(Ek) =

[
1 + α(1− q)

q

] 1
q−1

[
1 +

(q − 1)βφ(φ(Ek)− 〈φ〉)
1 + (1− q)S

]− 1
q−1

where βφ is the Lagrange multiplier. This can be solved for φ(Ek) in terms of
p(Ek).



Microcanonical Ensemble

The fundamental hypothesis of equilibrium statistical mechanics is that all
quantum states with energies between E and E + ∆, with ∆� E, are
equally likely. The number of such states is

Ω(E) =
∑
n

θ(En − E)θ(E + ∆− En)

and the probabilities for En in this range are

p(En) =
1

Ω(E)

and zero otherwise. This is the microcanonical ensemble. The standard
entropy is

S(E) = ln Ω(E)

whereas the Tsallis entropy is

S(E) =
1

q − 1

[
1−

(
1

Ω(E)

)(q−1)
]



Microcanonical Ensemble

We emphasizes that the difference is in the definition of the entropy. The
temperature associated with the standard definition of entropy is

1

T
=
dS

dE
=

1

Ω

dΩ

dE

whereas using the Tsallis entropy

1

T
=
dS

dE
=

1

Ωq
dΩ

dE

Consider the canonical ensemble which follows from the microcanonical
ensemble. A closed system is divided into parts A and B with total energy E.
The probability for part A to be in the state n with energy EAn is

p(EAn) =
1

ΩA+B(E)

∑
m

θ(EAn + EBm − E)θ(E + ∆− EAn − EBm)

=
ΩB(E − EAn)

ΩA+B(E)



Microcanonical Ensemble

Let part A be much smaller than part B. Then a Taylor series expansion
yields

SB(E − 〈EA〉+ 〈EA〉 − EAn) = SB(E − 〈EA〉) +
dSB(E − 〈EA〉)
d(E − 〈EA〉)

ε+ · · ·

= SB(E − 〈EA〉) + βε+ · · ·

where ε = 〈EA〉 − EAn and β is the inverse temperature associated with the
major part B. With the usual definition of entropy this leads to the Boltzmann
distribution

p(EAn) =
ΩB(E − 〈EA〉)

ΩA+B(E)
eβε =

1

Z
e−β(EAn−〈EA〉)

Whereas with the Tsallis definition of the entropy it leads to

p(EAn) =
1

ΩA+B(E)
[1 + (1− q)SA]

− 1
q−1

[
1 +

(q − 1)β(EAn − 〈EA〉)
1 + (1− q)SA

]− 1
q−1

=
1

Z

[
1 +

(q − 1)β(EAn − 〈EA〉)
1 + (1− q)SA

]− 1
q−1

The latter is exactly the Tsallis Type III distribution. It is the one consistent
with the fundamental hypothesis of equilibrium statistical mechanics.



Single Particle Distributions

Consider one fermion degree of freedom with Type III. There is one quantum
state which can be unoccupied with zero energy, or it can have one occupant
with energy ω. The probabilities are

p0 = Z−1 [1 + (1− q)(S + βE)]
− 1

q−1

p1 = Z−1 [1 + (1− q)(S + βE − βω)]
− 1

q−1

The number operator N̂ commutes with the Hamiltonian H = N̂ω. Its
average is

〈N̂〉 =
pq1

pq0 + pq1

and not p1/(p0 + p1) as one would have expected.



Single Particle Distributions

Explicitly

〈N̂〉 =
1

[1 + (q − 1)β∗ω]
q

q−1 + 1

and
E ≡ 〈E〉 =

ω

[1 + (q − 1)β∗ω]
q

q−1 + 1

where
β∗ =

β

1 + (1− q)(S + βE)

There is a self-consistency condition on these results. The classical limit is
when p1 � p0 in which case

〈N̂〉 → [1 + (q − 1)β∗ω]
− q

q−1

and β∗ → β. This limit corresponds to βω � 1 and q > 1.



Single Particle Distributions

Next consider an arbitrarily large number of independent states with a set of
quantum numbers and/or momenta labeled by α. The Hamiltonian is
H =

∑
α N̂αωα with number operators N̂α. The probabilities for these

independent states factorize and are written as

pα0 = Z−1
α [1 + (1− q)(Sα + βEα)]

− 1
q−1

pα1 = Z−1
α [1 + (1− q)(Sα + βEα − βωα)]

− 1
q−1

with the averages for each state being

Nα =
1

[1 + (q − 1)β∗αωα]
q

q−1 + 1

Eα =
ωα

[1 + (q − 1)β∗αωα]
q

q−1 + 1

where
β∗α =

β

1 + (1− q)(Sα + βEα)



Single Particle Distributions

The total energy is
E =

∑
α

Eα

and the total number of particles is

N =
∑
α

Nα

Note that there is a common temperature T = 1/β but that β∗α is
state–dependent. For a gas of particles

ωα → ω(k)

where k is the momentum and∑
α

→ (2s+ 1)

∫
d3xd3k

(2π)3

with s the spin of the fermions.



Single Particle Distributions

Any number of bosons may occupy a given quantum state. This means that
for bosons

pn = Z−1 [1 + (1− q)(S + βE − nβω)]
− 1

q−1

The average of the number operator is

〈N̂〉 =

∑∞
n=1 np

q
n∑∞

m=0 p
q
m

=

∑
n n [1 + (q − 1)β∗ωn]

− q
q−1∑

m [1 + (q − 1)β∗ωm]
− q

q−1

where β∗ is again calculated self-consistently. This expression cannot be
evaluated in closed form for arbitrary q. Several methods exist for evaluating it
numerically. In the limit of classical statistics (small occupation probabilities) it
reduces to the same expression as the fermions did, and in the limit q → 1 it
reduces to the usual Bose-Einstein distribution

〈N̂〉 =
1

eβω − 1



Single Particle Distributions

One might have guessed that it was equal to

1

[1 + (q − 1)β∗ω]
q

q−1 − 1

but it is not. The extension to a gas of bosons follows in the same way as for
fermions.

It is worth pointing here out that Tsallis’s definition of entropy, which leads to
so-called “Tsallis statistics”, was not expected to describe a system of
noninteracting particles even according to him.



Boltzmann Equation

Consider the Boltzmann equation for the reaction a+ b→ c+ d and its
inverse.

dfa

dt
=

∫
d3pb

(2π)3
d3pc

(2π)3
d3pd

(2π)3

{
1

1 + δcd
W (c+d→ a+b)fcfd

(
1 + (−1)2safa

) (
1 + (−1)2sbfb

)
−

1

1 + δab
W (a+ b→ c+ d)fafb

(
1 + (−1)2scfc

) (
1 + (−1)2sdfd

)}

This includes Pauli suppression for fermions and Bose enhancement for
bosons in the final state. The si is the spin of particle i. The coefficients take
into account the possibility that the particles in the initial state are identical.
There is a gain term and a loss term. Microscopic physics originating in
quantum mechanics or quantum field theory says that

1

1 + δab
W (a+ b→ c+ d) =

1

1 + δcd
W (c+ d→ a+ b)

The W ’s are proportional to the square of a dimensional scattering amplitude
|M|2 which in turn is proportional to the differential cross section dσ/dΩ in
the center of momentum frame. They do not depend on the distribution
functions f . In addition the W ’s are proportional to an energy–momentum
conserving δ function δ(pa + pb − pc − pd).



Boltzmann Equation

In perturbation theory, relevant to the Boltzmann equation, the equilibrium
distributions are

f =
1

exp(βω)− (−1)2s

In equilibrium dfa/dt = 0. This leads to the condition ωa + ωb = ωc + ωd, in
other words energy conservation. This is also true in the limit of classical
statistics.
On the other hand, consider using one of the Tsallis distributions. We choose
the limit of classical statistics for simplicity. It is

f = [1 + (q − 1)βω]
− q

q−1

In order that dfa/dt = 0 requires

ωa + ωb + (q − 1)βωaωb = ωc + ωd + (q − 1)βωcωd

This is inconsistent with energy conservation and the δ function constraint
unless q = 1 which is conventional statistical mechanics. One can only
imagine what happens when a collision involves m particles in the initial state
and n particles in the final state. Thus the aforementioned Tsallis distribution
cannot be time independent.



Boltzmann Equation

To address this problem it has been postulated by A. Lavagno that the
Boltzmann equation be modified so that the factor fafb (with classical
statistics) be replaced with

hq[fa, fb] ≡
(
f1−q
a + f1−q

b − 1
) 1

1−q

and that the equilibrium distribution function be

feq = [1 + (q − 1)βω]
1

1−q

By doing this it is easy to see that ωa + ωb = ωc + ωd. There is a mention that
the “molecular chaos hypothesis” used to derive the original Boltzmann
equation is not valid for Tsallis statistics but no proof or quantitative reasoning
was given. It would seem that this postulated modification is not consistent
with the definition and physical interpretation of the W ’s.



High Energy Collision Phenomenology

Tsallis-like or Tsallis-inspired distributions have been used many times to
parametrize particle spectra in high-energy proton-proton collisions. This has
been done by the STAR and PHENIX collaborations at RHIC and the ALICE
and CMS collaborations at the LHC. Generally they are of the form

dN

dyd2pT
∝ dN

dy

(
1 +

mT −m
nT

)−n
(1)

where mT =
√
m2 + p2T is the transverse mass and pT is the transverse

momentum. This is approximately exp(−mT /T ) at low pT and p−nT at high
pT . If one makes the identification n = 1/(q − 1) then one would associate T
with the temperature, whereas if one makes the identification n = q/(q − 1)
then one would associate qT with the temperature. Comparisons to data
taken at RHIC for d + Au, Cu + Cu, Au + Au and at the LHC for p + Pb and Pb
+ Pb show that n depends on the colliding systems, beam energy, and
particle species. J. Chen et al. included hydrodynamic flow into comparisons
with Au + Au and Pb + Pb data and associated n with 1/(q − 1). The results
show that q also depends on the centrality, or impact parameter. Typically q
ranges between 1.01 and 1.15, which is a very wide range in n. This implies
that q is not a fundamental or intrinsic quantity to be interpretted in terms of
new statistics.



High Energy Collision Phenomenology

The underlying physics in these collisions is QCD. Low transverse
momentum hadrons are produced with the normal kinetic and chemical
equilibrium distributions boosted by collective hydrodynamic flow. They
essentially exhibit exponential decay in energy. High transverse momentum
hadrons exhibit power-law decay because of the asymptotic freedom of QCD.
The parton model for scattering of point particles predicts n = 4 and
therefore either q = 1.25 or q = 4/3. However, scale breaking and realistic
parton distribution functions in the projectile and target increase n
significantly and so numerically q turns out to be much closer to 1 for
hadrons, although n ∼ 4.5 to 5.5 for jets according to C.-Y. Wong et al.
Essentially the Tsallis distributions have an extra parameter, q, which controls
the transition from exponential to power-law behavior. It is an efficient
parametrization of data and/or perturbative QCD based parton models, but
should not be considered a fundamental constant.



High Energy Collision Phenomenology

Blast wave model fits.



High Energy Collision Phenomenology

Average flow velocity and temperature. Power-law tails very sensitive to
1/(q − 1).



Conclusion

Tsallis and collaborators proposed three types of nonextensive statistical
mechanics. They all assumed the same form of a nonextensive entropy but
differed in how averages of conserved quantities were defined. It turns out
that only Type III is consistent with the fundamental hypothesis of equilibrium
statistical mechanics. Everything else follows without ambiguity. Notably
there are nontrivial self-consistency conditions to be solved. These
self-consistency conditions must be solved mode by mode for single particle
distribution functions. In the limit of small occupation probabilities (classical
statistics) these conditions simplify and basically are satisfied by the
normalization of probabilities. With Type III energies are additive. However,
the single particle distribution functions are not time independent solutions of
Boltzmann’s equation. They are time independent solutions of a modified
Boltzmann equation with fractional exponents of the distributions appearing,
but this does not appear to be physically consistent with the microscopic
derivation of scattering amplitudes. Tsallis-inspired single particle distribution
functions provide an efficient parametrization of high energy collision data but
have not been derived from QCD. The parameter q encapsulates a lot of
complicated physics in these collisions but is not a fundamental quantity in
any sense.
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